
4. Sum-product algorithm

Elimination algorithm

Sum-product algorithm on a line

Sum-product algorithm on a tree

Sum-product algorithm 4-1

Inference tasks on graphical models

consider an undirected graphical model (a.k.a. Markov random field)

µ(x) =
1

Z

∏
c∈C

ψc(xc)

where C is the set of all maximal cliques in G

we want to

calculate marginals: µ(xA) =
∑

xV \A
µ(x)

calculating conditional distributions

µ(xA|xB) =
µ(xA, xB)

µ(xB)

calculation maximum a posteriori estimates: arg maxx̂ µ(x̂)

calculating the partition function Z

sample from this distribution

Sum-product algorithm 4-2

Elimination algorithm for calculating marginals
Elimination algorithm is exact but can require O(|X ||V |) operations

1

2

3 4

5

µ(x) ∝ ψ12(x1, x2)ψ13(x1, x3)ψ25(x2, x5)ψ345(x3, x4, x5)

we want to compute µ(x1)

brute force marginalization:

µ(x1) ∝
∑

x2,x3,x4,x5∈X
ψ12(x1, x2)ψ13(x1, x3)ψ25(x2, x5)ψ345(x3, x4, x5)

requires O(|C| · |X |5) operations, where big-O denotes that it is upper
bounded by c |C| |X |5 for some constant c and |C| is # of cliques

Sum-product algorithm 4-3

consider an elimination ordering (5, 4, 3, 2)

µ(x1) ∝
∑

x2,x3,x4,x5∈X
ψ12(x1, x2)ψ13(x1, x3)ψ25(x2, x5)ψ345(x3, x4, x5)

=
∑

x2,x3,x4∈X
ψ12(x1, x2)ψ13(x1, x3)

∑
x5∈X

ψ25(x2, x5)ψ345(x3, x4, x5)︸ ︷︷ ︸
≡m5(x2,x3,x4)

=
∑

x2,x3,x4∈X
ψ12(x1, x2)ψ13(x1, x3)m5(x2, x3, x4)

=
∑

x2,x3∈X
ψ12(x1, x2)ψ13(x1, x3)

∑
x4∈X

m5(x2, x3, x4)︸ ︷︷ ︸
≡m4(x2,x3)

=
∑

x2,x3∈X
ψ12(x1, x2)ψ13(x1, x3)m4(x2, x3)

=
∑
x2∈X

ψ12(x1, x2)
∑
x3∈X

ψ13(x1, x3)m4(x2, x3)︸ ︷︷ ︸
≡m3(x1,x2)

Sum-product algorithm 4-4

µ(x1) ∝
∑
x2∈X

ψ12(x1, x2)
∑
x3∈X

ψ13(x1, x3)m4(x2, x3)︸ ︷︷ ︸
≡m3(x1,x2)

=
∑
x2∈X

ψ12(x1, x2)m3(x1, x2)

≡ m2(x1)

normalize m2(·) to get µ(x1)

µ(x1) =
m2(x1)∑
x̂1
m2(x̂1)

computational complexity depends on the elimination ordering

how do we know which ordering is better?

Sum-product algorithm 4-5

Computational complexity of elimination algorithm

µ(x1) ∝
∑

x2,x3,x4,x5∈X
ψ12(x1, x2)ψ13(x1, x3)ψ25(x2, x5)ψ345(x3, x4, x5)

=
∑

x2,x3,x4∈X
ψ12(x1, x2)ψ13(x1, x3)

∑
x5∈X

ψ25(x2, x5)ψ345(x3, x4, x5)︸ ︷︷ ︸
≡m5(S5), S5={x2,x3,x4},Ψ5={ψ25,ψ345}

=
∑

x2,x3∈X
ψ12(x1, x2)ψ13(x1, x3)

∑
x4∈X

m5(x2, x3, x4)︸ ︷︷ ︸
≡m4(S4), S4={x2,x3},Ψ4={m5}

=
∑
x2∈X

ψ12(x1, x2)
∑
x3∈X

ψ13(x1, x3)m4(x2, x3)︸ ︷︷ ︸
≡m3(S3), S3={x1,x2},Ψ3={ψ13,m4}

=
∑
x2∈X

ψ12(x1, x2)m3(x1, x2)︸ ︷︷ ︸
≡m2(S2), S2={x1},Ψ2={ψ12,m3}

= m2(x1)

Total complexity:
∑
iO(|Ψi| · |X |1+|Si|) = O(|V | · maxi |Ψi| · |X |1+maxi|Si|)

Sum-product algorithm 4-6

Induced graph
elimination algorithm as transformation of graphs

1

2

3 4

5

1

2

3 4

1

2

3

1

2

induced graph G(G, I) for a graph G and an elimination ordering I
I is the union of (the edges of) all the transformed graphs
I or equivalently, start from G and for each i ∈ I connect all pairs in Si

1

2

3 4

5

theorem: every maximal clique in G(G, I) corresponds to a domain
of a message Si ∪ {i} for some i
size of the largest clique in G(G, I) is 1 + maxi |Si|
different orderings I’s give different cliques, resulting in varying
complexity

Sum-product algorithm 4-7

theorem: finding optimal elimination ordering is NP-hard

any suggestions?

greedy heuristic gives I = (4, 5, 3, 2, 1)

for Bayesian networks
I the same algorithm works with conditional probabilities instead of

compatibility functions
I complexity analysis can be done on moralized undirected graph
I intermediate messages do not correspond to a conditional distribution

Sum-product algorithm 4-8

Elimination algorithm

input: {ψc}c∈C , alphabet X , subset A ⊆ V , elimination ordering I

output: marginal µ(xA)

1. initialize active set Ψ to be the set of input compatibility functions

2. for node i in I that is not in A do

let Si be the set of nodes, not including i, that share a
compatibility function with i

let Ψi be the set of compatibility functions in Ψ involving xi

compute mi(xSi) =
∑

xi

∏
ψ∈Ψi

ψ(xi, xSi)

remove elements of Ψi from Ψ

add mi to Ψ

end

3. normalize µ(xA) =
∏
ψ∈Ψ ψ(xA) /

∑
xA

∏
ψ∈Ψ ψ(xA)

Sum-product algorithm 4-9

Role of the messages mi(xSi)

messages capture local information about what one side of the edge
needs to know about the other side of the edge

this intuition is exactly correct when the graph is a tree

we provide a heuristic (called sum-product algorithm or belief
propagation) that is accurate when the graph is a tree

but also provides surprisingly good approximate solutions, even when
the underlying graph has loops

mi(xi) =
∑
xa∈X

{
ψi,a(xi, xa)

∑
xA

ψA(xa, xA)
}

Sum-product algorithm 4-10

Role of the messages

mi(xi) =
∑

xa,xb∈X ,xA,xB

ψi,a(xi, xa)ψA(xa, xA)ψi,b(xi, xb)ψB(xb, xB)

=
{ ∑

xa∈X

{
ψi,a(xi, xa)

∑
xA

ψA(xa, xA)
}} { ∑

xb∈X

{
ψi,b(xi, xb)

∑
xB

ψB(xb, xB)
}}

Sum-product algorithm 4-11

Belief Propagation for approximate inference

given a pairwise MRF: µ(x) = 1
Z

∏
(i,j)∈E ψi,j(xi, xj)

compute marginal: µ(xi) for all i ∈ V
message update: set of 2|E| messages on each (directed) edge
{νi→j(xi)}(i,j)∈E , where νi→j : X → R+ encoding our belief (or
approximate P(xi))

I ν
(t+1)
i→j (xi) =

∏
k∈∂i\j

{ ∑
xk
ν

(t)
k→i(xk)ψi,k(xi, xk)

}
I O(di|X |2) computations

decision:

ν
(t)
i (xi) =

∏
k∈∂i

{ ∑
xk

ν
(t)
k→i(xk)ψi,k(xi, xk)

}

I µ̂(xi) = νi(xi)∑
x′ νi(x

′)

Sum-product algorithm 4-12

Sum-product algorithm on a line

x1 x2 x3 x4 x5 x6 x7

ν3→4(x3) ν5→4(x5)

Remove node i and recursively compute marginals on sub-graphs

µ(x) =
1

Z

n−1∏
i=1

ψi,i+1(xi, xi+1)

µ(xi) =
∑

x[n]\{i}

µ(x)

∝
∑

x[n]\{i}

ψ(x1, x2) · · ·ψ(xi−2, xi−1)︸ ︷︷ ︸
µ(i−1)→i:joint dist. on a sub-graph

ψ(xi−1, xi)ψ(xi, xi+1)ψ(xi+1, xi+2) · · ·ψ(xn−1, xn)︸ ︷︷ ︸
µ(i+1)→i

∝
∑

xi−1,xi+1

ν(i−1)→i(xi−1)︸ ︷︷ ︸
marginal dist. on a subrgaph

ψ(xi−1, xi)ψ(xi, xi+1)ν(i+1)→i(xi+1)

ν(i−1)→i(xi−1) ≡
∑

x1,...,xi−2

µ(i−1)→i(x1, . . . , xi−1)

ν(i+1)→i(xi+1) ≡
∑

xi+2,...,xn

µ(i+1)→i(xi+1, . . . , xn)

Sum-product algorithm 4-13

νi(xi) ≡
∑

xi−1,xi+1

ν(i−1)→i(xi−1)ψ(xi−1, xi)ψ(xi, xi+1)ν(i+1)→i(xi+1)

µ(xi) =
νi(xi)∑
xi
νi(xi)

definitions: of joint distribution and marginal on sub-graphs

µ(i−1)→i(x1, . . . , xi−1) ≡ 1

Z(i−1)→i

∏
k∈[i−2]

ψ(xk, xk+1)

ν(i−1)→i(xi−1) ≡
∑

x1,...,xi−2

µ(i−1)→i(x1, . . . , xi−1)

µ(i+1)→i(xi+1, . . . , xn) ≡ 1

Z(i+1)→i

∏
k∈{i+2,...,n}

ψ(xk−1, xk)

ν(i+1)→i(xi+1) ≡
∑

xi+2,...,xn

µ(i+1)→i(xi+1, . . . , xn)

Sum-product algorithm 4-14

how can we compute the messages ν, recursively?

µi→i+1(x1, . . . , xi) ∝ µi−1→i(x1, . . . , xi−1)ψ(xi−1, x1)

νi→i+1(xi) =
∑

x1,...,xi−1

µi→i+1(x1, . . . , xi)

∝
∑

x1,...,xi−1

µi−1→i(x1, . . . , xi−1)ψ(xi−1, x1)

=
∑
xi−1

νi−1→i(xi−1)ψ(xi−1, xi)

ν1→2(x1) = 1/|X |

ν2→3(x2) ∝
∑
x1

1

|X |
ψ(x1, x2)

how many operations are required?

O(n |X |2) operations to compute one marginal µ(xi)

what if we want all the marginals?

compute all the messages forward and backward O(n |X |2)

then compute all the marginals in O(n |X |2) operations

Sum-product algorithm 4-15

Computing partition function is as easy as computing
marginals
recall

µ(i−1)→i(x1, . . . , xi−1) ≡ 1

Z(i−1)→i

∏
k∈[i−2]

ψ(xk, xk+1)

ν(i−1)→i(xi−1) ≡
∑

x1,...,xi−2

µ(i−1)→i(x1, . . . , xi−1)

computing the partition function from the messages

Zi→(i+1) =
∑

x1,...,xi

∏
k∈[i−1]

ψ(xk, xk+1)

=
∑

xi,xi−1

Z(i−1)→i ν(i−1)→i(xi−1)ψ(xi−1, xi)

Z1 = 1

Zn = Z

how many operations do we need?

O(n |X |2) operations
Sum-product algorithm 4-16

Sum-product algorithm for hidden Markov models
hidden Markov model

Sequence of r.v.’s {(X1, Y1); (X2, Y2); . . . ; (Xn, Yn)}

hidden state {Xi} Markov Chain P{x} = P{x1}
n−1∏
i=1

P{xi+1|xi}

{Yi} noisy observations P{y|x} =

n∏
i=i

P{yi|xi}

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

(equivalent directed form)

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Sum-product algorithm 4-17

time homogeneous hidden Markov models

Sequence of r.v.’s {(X1, Y1); (X2, Y2); . . . ; (Xn, Yn)}

{Xi} Markov Chain P{x} = q0(x1)

n−1∏
i=1

q(xi, xi+1)

{Yi} noisy observations P{y|x} =

n∏
i=i

r(xi, yi)

µ(x, y) =
1

Z

n−1∏
i=1

ψi(xi, xi+1)
n∏
i=1

ψ̃i(xi, yi) ,

ψi(xi, xi+1) = q(xi, xi+1) , ψ̃i(xi, yi) = r(xi, yi) .

Sum-product algorithm 4-18

we want to compute marginals of the following graphical model on a
line (q0 uniform)

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

µy(x) = P{x|y} Bayes thm
=

1

Z(y)

n−1∏
i=1

q(xi, xi+1)

n∏
i=1

r(xi, yi) .

µy(x) =
1

Z(y)

n−1∏
i=1

q(xi, xi+1)

n∏
i=1

r(xi, yi)

=
1

Z(y)

n−1∏
i=1

ψi(xi, xi+1)

ψi(xi, xi+1) = q(xi, xi+1) r(xi, yi) (for i < n− 1)

ψn−1(xn−1, xn) = q(xn−1, xn) r(xn−1, yn−1) r(xn, yn) .

Sum-product algorithm 4-19

apply sum-product algorithm to compute marginals in O(n|X |2) time

νi→(i+1)(xi) ∝
∑

xi−1∈X
q(xi−1, xi) r(xi−1, yi−1) ν(i−1)→i(xi−1) ,

ν(i+1)→i(xi) ∝
∑

xi+1∈X
q(xi, xi+1) r(xi, yi) ν(i+2)→(i+1)(xi+1) .

known as forward-backward algorithm
I a special case of the sum-product algorithm
I BCJR algorithm for convolutional codes ([Bahl, Cocke, Jelinek and

Raviv 1974])
I cannot find the maximum likelihood estimate (cf. Viterbi algorithm)
I this requires max-product algorithm

implement sum-product algorithm for HMM [Exercise 4.3]

consider an extension of inference on HMM [Exercise 4.4]

Sum-product algorithm 4-20

Exercise 4.3

S&P 500 index over a period of time

For each week, measure the price movement relative to the previous
week: +1 indicates up and −1 indicates down

a hidden Markov model in which xt denotes the economic state (good
or bad) of week t and yt denotes the price movement (up or down)

xt+1 = xt with probability 0.8

PYt|Xt(yt = +1|xt = ‘good’) = PYt|Xt(yt = −1|xt = ‘bad’) = q

Sum-product algorithm 4-21

Example: Neuron firing patterns

Hypothesis

Assemblies of neurones activate in a coordinate way in correspondence to
specific cognitive functions. Performing of the function corresponds
sequence of these activity states.

Approach

Firing process ↔ Observed variables
Activity states ↔ Hidden variables

Sum-product algorithm 4-22

horizontal eye position
vertical eye position

single subject
ensemble neural spikes

baseline → planning → moving

I automatically detect (as opposed to manually specify) baseline, plan,
and perimovement epochs of neural activity

I detect target movement in advance
I goal: neural prosthesis to help patients with spinal cord injury or

neurodegenerative disease and significantly impaired motor control

[C. Kemere, G. Santhanam, B. M. Yu, A. Afshar, S.I. Ryu, T. H. Meng and

K.V. Shenoy, J. Neurophysiol. 100:2441-2452 (2008)]Sum-product algorithm 4-23

I discrete time 10ms
I P(xt+1|xt) = Aij ,

P(# spikes for measurement k = d|xt = i) ∝ e−λk,iλdk,i
I likelihood: P(xt=s)∑

s′ P(xt=s′)

Sum-product algorithm 4-24

Belief propagation for factor graphs

x1
x2

x3

x4

x5

x6

a

b

c

d

←factor ψa(x1, x5, x6︸ ︷︷ ︸
∂a

)

µ(x) =
1

Z

∏
a∈F

ψa(x∂a)

Sum-product algorithm 4-25

variable nodes i, j, etc.; factor nodes a, b, etc.

set of messages {νi→a}(i,a)∈E and {ν̃a→i}(a,i)∈E
messages from variables to factors

νi→a(xi) =
∏

b∈∂i\{a}

ν̃b→i(xi)

messages from factors to variables

ν̃a→i(xi) =
∑

x∂a\{i}

ψa(x∂a)
∏

j∈∂a\{i}

νj→a(xj)

marginal distribution at variables

νi(xi) =
∏
b∈∂i

ν̃b→i(xi)

this includes belief propagation (=sum-product algorithm) on
(general) Markov random fields

exact on factor trees

Sum-product algorithm 4-26

Example: decoding LDPC codes
LDPC code is defined by a factor graph model

a

b

x1

x2

x3

x4

variable nodes factor nodes

ψa(xi, xj , xk) = I(xi ⊕ xj ⊕ xk = 0)
xi ∈ {0, 1}

I block length n = 4
I number of factors m = 2
I allowed messages = {0000, 0111, 1010, 1101}

decoding using belief propagation (for BSC with ε = 0.3)

µy(x) =
1

Z

∏
i∈V

PY |X(yi|xi)
∏
a∈F

I(⊕x∂a = 0)

use (parallel) sum-product algorithm to find µ(xi) and let

x̂i = arg maxµ(xi)

I minimizes bit error rateSum-product algorithm 4-27

Decoding by sum-product algorithm

a

b

x1

x2

x3

x4

y

0

1

0

0

P(yi|xi)

[
0.7
0.3

]
[
0.3
0.7

]

[
0.7
0.3

]

[
0.7
0.3

]

[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]

[
0.5
0.5

]

[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]

ν
(t+1)
i→a (xi) = P(yi|xi)

∏
b∈∂i\{a} ν̃

(t)
b→i(xi)

ν̃
(t+1)
a→i (xi) =

∑
x∂a\{i}

∏
j∈∂a\{i} νj→a(xj)I(⊕x∂a = 0)

Sum-product algorithm 4-28

Decoding by sum-product algorithm

a

b

x1

x2

x3

x4

y

0

1

0

0

P(yi|xi)

[
0.7
0.3

]
[
0.3
0.7

]

[
0.7
0.3

]

[
0.7
0.3

]

[
0.7
0.3

]
[
0.3
0.7

]
[
0.3
0.7

]
[
0.7
0.3

]

[
0.7
0.3

]

[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]
[
0.5
0.5

]

ν
(t+1)
i→a (xi) = P(yi|xi)

∏
b∈∂i\{a} ν̃

(t)
b→i(xi)

ν̃
(t+1)
a→i (xi) =

∑
x∂a\{i}

∏
j∈∂a\{i} νj→a(xj)I(⊕x∂a = 0)

Sum-product algorithm 4-28

Decoding by sum-product algorithm

a

b

x1

x2

x3

x4

y

0

1

0

0

P(yi|xi)

[
0.7
0.3

]
[
0.3
0.7

]

[
0.7
0.3

]

[
0.7
0.3

]

[
0.7
0.3

]
[
0.3
0.7

]
[
0.3
0.7

]
[
0.7
0.3

]

[
0.7
0.3

]

[
0.42
0.58

]
=

[
0.3× 0.7 + 0.3× 0.7
0.3× 0.3 + 0.7× 0.7

]
[
0.58
0.42

]
[
0.42
0.58

]
[
0.7
0.3

]
[
0.3
0.7

]

ν
(t+1)
i→a (xi) = P(yi|xi)

∏
b∈∂i\{a} ν̃

(t)
b→i(xi)

ν̃
(t+1)
a→i (xi) =

∑
x∂a\{i}

∏
j∈∂a\{i} νj→a(xj)I(⊕x∂a = 0)

Sum-product algorithm 4-28

Decoding by sum-product algorithm

a

b

x1

x2

x3

x4

y

0

1

0

0

P(yi|xi)

[
0.7
0.3

]
[
0.3
0.7

]

[
0.7
0.3

]

[
0.7
0.3

]

[
0.7
0.3

]
[
0.5
0.5

]
∝
[
0.3× 0.7
0.7× 0.3

]
[
0.37
0.63

]
∝
[
0.3× 0.58
0.7× 0.42

]
[
0.7
0.3

]

[
0.7
0.3

]

[
0.42
0.58

]
[
0.58
0.42

]
[
0.42
0.58

]
[
0.7
0.3

]
[
0.3
0.7

]

ν
(t+1)
i→a (xi) = P(yi|xi)

∏
b∈∂i\{a} ν̃

(t)
b→i(xi)

ν̃
(t+1)
a→i (xi) =

∑
x∂a\{i}

∏
j∈∂a\{i} νj→a(xj)I(⊕x∂a = 0)

Sum-product algorithm 4-28

Decoding by sum-product algorithm

a

b

x1

x2

x3

x4

y

0

1

0

0

P(yi|xi)

[
0.7
0.3

]
[
0.3
0.7

]

[
0.7
0.3

]

[
0.7
0.3

]

[
0.7
0.3

]
[
0.5
0.5

]
[
0.37
0.63

]
[
0.7
0.3

]

[
0.7
0.3

]

[
0.5
0.5

]
[
0.58
0.42

]
[
0.5
0.5

]
[
0.7
0.3

]
[
0.37
0.63

]

ν
(t+1)
i→a (xi) = P(yi|xi)

∏
b∈∂i\{a} ν̃

(t)
b→i(xi)

ν̃
(t+1)
a→i (xi) =

∑
x∂a\{i}

∏
j∈∂a\{i} νj→a(xj)I(⊕x∂a = 0)

Sum-product algorithm 4-28

Decoding by sum-product algorithm

a

b

x1

x2

x3

x4

y

0

1

0

0

P(yi|xi)

[
0.7
0.3

]
[
0.3
0.7

]

[
0.7
0.3

]

[
0.7
0.3

]

[
0.7
0.3

]
[
0.5
0.5

]
[
0.37
0.63

]
[
0.7
0.3

]

[
0.7
0.3

]

[
0.5
0.5

]
[
0.58
0.42

]
[
0.5
0.5

]
[
0.7
0.3

]
[
0.37
0.63

]

µ̂(xi)[
0.7
0.3

]

[
0.58
0.42

]

[
0.7
0.3

]

[
0.58
0.42

]

ν
(t+1)
i→a (xi) = P(yi|xi)

∏
b∈∂i\{a} ν̃

(t)
b→i(xi)

ν̃
(t+1)
a→i (xi) =

∑
x∂a\{i}

∏
j∈∂a\{i} νj→a(xj)I(⊕x∂a = 0)

Sum-product algorithm 4-28

Sum-product algorithm on trees
a motivating example: influenza virus
complete sequence of the gene of the 1918 influenza virus

[A.H. Reid, T.G. Fanning, J.V. Hultin, and J.K. Taubenberger,

Proc. Natl. Acad. Sci. 96 (1999) 1651-1656]
Sum-product algorithm 4-29

challenges in phylogeny
I phylogeny reconstruction: given DNA sequences at vertices (only at

leaves), infer the underlying tree T = (V,E).
I phylogeny evaluation: given a tree T = (V,E) evaluate the

probability of observed DNA sequences at vertices (only at leaves).

Bayesian network model for phylogeny evaluation

T = (V,D) directed graph, DNA sequences x = (xi)i∈V ∈ X V

µT (x) = qo(xo)
∏

(i,j)∈D

qi,j(xi, xj) ,

qi,j(xi, xj) = Probability that the descendent is xj if ancestor is xi.

Sum-product algorithm 4-30

simplified model: X = {+1,−1}

qo(xo) =
1

2

q(xi, xj) =

{
1− q if xj = xi

q if xi 6= xj

MRF representation: q(xi, xj) ∝ eθxixj with θ =
1

2
log

q

1− q

probability of certain tree of
mutations x:

µT (x) =
1

Zθ(T)

∏
(i,j)∈E

eθxixj

problem: for given T , compute marginal µT (xi)

we prove the correctness of sum-product algorithm for this model, but
the same proof holds for any general pairwise MRF (and also for
general MRF and FG)

Sum-product algorithm 4-31

define graphical model on sub-trees

j

i

Tj→i

Tj→i = (Vj→i, Ej→i) ≡ Subtree rooted at j and excluding i

µj→i(xVj→i) ≡ 1

Z(Tj→i)

∏
(u,v)∈Ej→i

eθxuxv

νj→i(xj) ≡
∑

xVj→i\{j}

µj→i(xVj→i)

Sum-product algorithm 4-32

i
k1

k2

k3k4

Tk1→i = (V1, E1)
Tk2→i

Tk3→i
Tk4→i

the messages from neighbors k1, k2, k3, k4 are sufficient to compute the marginal µ(xi)

µT (xi) ∝
∑

xV \{i}

∏
(u,v)∈E

eθxuxv

=
∑

xV1
,xV2

,xV3
,xV4

4∏
`=1

{
eθxixk`

∏
(u,v)∈E`

eθxuxv
}

=
4∏
`=1

∑
xk`

,xV`\{k`}

{
eθxixk`

∏
(u,v)∈E`

eθxuxv
}

∝
4∏
`=1

{∑
xk`

eθxixk`

∑
xV`\{k`}

µk`→i(xV`
)

︸ ︷︷ ︸
νk`→i(xk`

)

}

Sum-product algorithm 4-33

recursion on sub-trees to compute the messages ν

i

j

k l

Ti→j

µi→j(xVi→j) =
1

Z(Ti→j)

∏
(u,v)∈Ei→j

eθxuxv

=
1

Z(Ti→j)
eθxixk eθxixl

{ ∏
(u,v)∈Ek→i

eθxuxv
}{ ∏

(u,v)∈El→i

eθxuxv
}

∝ eθxuxv eθxixl
{ ∏

(u,v)∈Ek→i

eθxuxv
}{ ∏

(u,v)∈El→i

eθxuxv
}

∝ eθxixk eθxixlµk→i(xVk→i)µl→i(xVl→i)

Sum-product algorithm 4-34

i

j

k l

νi→j

νk→i νl→i

νi→j(xi) =
∑

xVi→j\i

µi→j(xVi→j)

∝
∑

xVi→j\i

eθxixk eθxixlµk→i(xVk→i)µl→i(xVl→i)

∝
{ ∑
xVk→i

eθxixkµk→i(xVk→i)
}{ ∑

xVl→i

eθxixlµl→i(xVl→i)
}

=
{∑

xk

eθxixk
∑

xVk→i\{k}

µk→i(xVk→i)
}{∑

xl

eθxixl
∑

xVl→i\{l}

µl→i(xVl→i)
}

∝
{∑

xk

eθxixkνk→i(xk)
}{∑

xl

eθxixlνl→i(xl)
}

with uniform initialization νi→j(xi) =
1
|X| for all leaves i

Sum-product algorithm 4-35

sum-product algorithm (for our example)

νi→j(xi) ∝
∏

k∈∂i\j

{∑
xk

eθxixkνk→i(xk)
}

νi(xi) ≡
∏
k∈∂i

{∑
xk

eθxixkνk→i(xk)
}

µT (xi) =
νi(xi)∑
xi
νi(xi)

what if we want all the marginals?
I choose an arbitrary root φ
I compute all the messages towards the root (|E| messages)
I then compute all the messages outwards from the root (|E| messages)
I then compute all the marginals (n marginals)

how many operations are required?
I naive implementation requires O(|X |2

∑
i d

2
i) per iteration

F if i has degree di, then computing νi→j requires di|X |2 operations
F di messages start at each node i, each require di|X |2 operations

F total computation for 2|E| messages is
∑
i

{
di · (di|X |2)

}
I however, we can compute all marginals in O(n |X |2) operations

Sum-product algorithm 4-36

let D = {(i, j), (j, i)|(i, j) ∈ E} be the directed version of E (cf.
|D| = 2|E|)
(sequential) sum-product algorithm

1. initialize νi→j(xi) = 1/|X | for all leaves i
2. recursively over (i, j) ∈ D compute (from leaves)

νi→j(xi) =
∏

k∈∂i\j

{∑
xk

ψik(xi, xk)νk→i(xk)
}

3. for each i ∈ V compute marginal

νi(xi) =
∏
k∈∂i

{∑
xk

ψik(xi, xk)νk→i(xk)
}

µT (xi) =
νi(xi)∑
xi
νi(xi)

Sum-product algorithm 4-37

(parallel) sum-product algorithm

1. initialize ν
(0)
i→j(xi) = 1/|X | for all (i, j) ∈ D

2. for t ∈ {0, 1, . . . , tmax}
for all (i, j) ∈ D compute

ν
(t+1)
i→j (xi) =

∏
k∈∂i\j

{∑
xk

ψik(xi, xk)ν
(t)
k→i(xk)

}
3. for each i ∈ V compute marginal

νi(xi) =
∏
k∈∂i

{∑
xk

ψik(xi, xk)ν
(tmax+1)
k→i (xk)

}
µT (xi) =

νi(xi)∑
xi
νi(xi)

also called belief propagation

when tmax is larger than the diameter of the tree (the length of the
longest path), this converges to the correct marginal [Exercise 4.1]
more operations than the sequential version (O(n|X |2 · diam(T)))

I a naive implementation requires O(|X |2 · diam(T) ·
∑
d2
i)

naturally extends to general graphs but no proof of exactness

Sum-product algorithm 4-38

Sum-product algorithm on general graphs
(loopy) belief propagation

1. initialize νi→j(xi) = 1/|X | for all (i, j) ∈ D
2. for t ∈ {0, 1, . . . , tmax}

for all (i, j) ∈ D compute

ν
(t+1)
i→j (xi) =

∏
k∈∂i\j

{∑
xk

ψik(xi, xk)ν
(t)
k→i(xk)

}
3. for each i ∈ V compute marginal

νi(xi) =
∏
k∈∂i

{∑
xk

ψik(xi, xk)ν
(tmax+1)
k→i (xk)

}
µT (xi) =

νi(xi)∑
xi
νi(xi)

computes ‘approximate’ marginals in O(n|X |2 · tmax) operations
generally it does not converge; even if it does, it might be incorrect
folklore about loopy BP

I works better when G has few short loops
I works better when ψij(xi, xj) = ψij,1(xi)ψij,2(xj) + small(xi, xj)
I nonconvex variational principle

Sum-product algorithm 4-39

Exercise: partition function on trees

using the recursion for messages:

νi→j(xi) =
∏

k∈∂i\j

{∑
xk

ψik(xi, xk)νk→i(xk)
}

νi(xi) =
∏
k∈∂i

{∑
xk

ψik(xi, xk)νk→i(xk)
}

it follows that we can easily compute the partition function as

Z(T) =
∑
xi

νi(xi)

alternatively, if we had a black box that computes marginals for any tree,
then we can use it to compute partition functions efficiently

Z(Ti→j) =
∑
xi∈X

∏
k∈∂i\j

{ ∑
xk∈X

ψik(xi, xk) · Z(Tk→i) · µk→i(xk)
}

Z(T) =
∑
xi∈X

∏
k∈∂i

{ ∑
xk∈X

ψik(xi, xk) · Z(Tk→i) · µk→i(xk)
}

this recursive algorithm naturally extends to general graphs
Sum-product algorithm 4-40

Why would one want to compute the partition function?
Suppose you observe

x = (+1,+1,+1,+1,+1,+1,+1,+1,+1)

and you know this comes from either of

µ(x) =
1

Z(T)

∏
(i,j)∈E

ψ(xi, xj)

(e.g. coloring)

which one has highest likelihood?

Sum-product algorithm 4-41

Exercise: sampling on the tree
if we have a black-box for computing marginals on any tree, we can
use it to sample from any distribution on a tree

Sampling(Tree T = (V,E), ψ = {ψij}(ij)∈E)

1: Choose a root o ∈ V ;
2: Sample Xo ∼ µo(·);
2: Recursively over i ∈ V (from root to leaves):
3: Compute µi|π(i)(xi|xπ(i));
4: Sample Xi ∼ µi|π(i)(· |xπ(i));

π(i) is the parent of node i in the rooted tree To
we use the black-box to compute the conditional distribution

i

j

k

µT (xVi→j |xj) ∝ ψij(xixj)µi→j(xVi→j)

µT (xi|xj) ∝ ψij(xixj)µi→j(xi)

Sum-product algorithm 4-42

Tree decomposition

when we don’t have a tree we can create an equivalent tree graph

by enlarging the alphabet X → X k

Treewidth(G) ≡ Minimum such k

it is NP-hard to determine the treewidth of a graph

problem: in general Treewidth(G) = Θ(n)

Sum-product algorithm 4-43

Tree decomposition of G = (V,E)

1

2 3

4 5

6 7

1,2

4

3

2,5

6 7

1,2

4

2,3

5

6 7

A tree T = (VT , ET) and a mapping V : VT →SUBSETS(V) s.t.:

For each i ∈ V there exists at least one u ∈ VT with i ∈ V (u).

For each (i, j) ∈ E there exists at least one u ∈ VT with i, j ∈ V (u).

If i ∈ V (u1) and i ∈ V (u2), then i ∈ V (w) for any w on the path
between u1 and u2 in T .

Sum-product algorithm 4-44

