4. Sum-product algorithm

- Elimination algorithm
- Sum-product algorithm on a line
- Sum-product algorithm on a tree

Inference tasks on graphical models

 consider an undirected graphical model (a.k.a. Markov random field)$$
\mu(x)=\frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right)
$$

where \mathcal{C} is the set of all maximal cliques in G
we want to

- calculate marginals: $\mu\left(x_{A}\right)=\sum_{x_{V \backslash A}} \mu(x)$
- calculating conditional distributions

$$
\mu\left(x_{A} \mid x_{B}\right)=\frac{\mu\left(x_{A}, x_{B}\right)}{\mu\left(x_{B}\right)}
$$

- calculation maximum a posteriori estimates: $\arg \max _{\hat{x}} \mu(\hat{x})$
- calculating the partition function Z
- sample from this distribution

Elimination algorithm for calculating marginals

Elimination algorithm is exact but can require $O\left(|\mathcal{X}|^{|V|}\right)$ operations

- we want to compute $\mu\left(x_{1}\right)$
- brute force marginalization:

$$
\mu\left(x_{1}\right) \propto \sum_{x_{2}, x_{3}, x_{4}, x_{5} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{25}\left(x_{2}, x_{5}\right) \psi_{345}\left(x_{3}, x_{4}, x_{5}\right)
$$

- requires $O\left(|\mathcal{C}| \cdot|\mathcal{X}|^{5}\right)$ operations, where big-O denotes that it is upper bounded by $c|\mathcal{C}||\mathcal{X}|^{5}$ for some constant c and $|\mathcal{C}|$ is \# of cliques
- consider an elimination ordering ($5,4,3,2$)

$$
\begin{aligned}
& \mu\left(x_{1}\right) \propto \quad \sum \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{25}\left(x_{2}, x_{5}\right) \psi_{345}\left(x_{3}, x_{4}, x_{5}\right) \\
& =\sum_{x_{2}, x_{3}, x_{4} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \sum_{x_{5} \in \mathcal{X}} \psi_{25}\left(x_{2}, x_{5}\right) \psi_{345}\left(x_{3}, x_{4}, x_{5}\right) \\
& \equiv m_{5}\left(x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{x_{2}, x_{3}, x_{4} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{x_{2}, x_{3} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \underbrace{\sum_{x_{4} \in \mathcal{X}} m_{5}\left(x_{2}, x_{3}, x_{4}\right)}_{\equiv m_{4}\left(x_{2}, x_{3}\right)} \\
& =\sum_{x_{2}, x_{3} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) m_{4}\left(x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \underbrace{\sum_{x_{3} \in \mathcal{X}} \psi_{13}\left(x_{1}, x_{3}\right) m_{4}\left(x_{2}, x_{3}\right)}_{\equiv m_{3}\left(x_{1}, x_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\mu\left(x_{1}\right) & \propto \sum_{x_{2} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \underbrace{\sum_{x_{3} \in \mathcal{X}} \psi_{13}\left(x_{1}, x_{3}\right) m_{4}\left(x_{2}, x_{3}\right)}_{\equiv m_{3}\left(x_{1}, x_{2}\right)} \\
& =\sum_{x_{2} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) m_{3}\left(x_{1}, x_{2}\right) \\
& \equiv m_{2}\left(x_{1}\right)
\end{aligned}
$$

- normalize $m_{2}(\cdot)$ to get $\mu\left(x_{1}\right)$

$$
\mu\left(x_{1}\right)=\frac{m_{2}\left(x_{1}\right)}{\sum_{\hat{x}_{1}} m_{2}\left(\hat{x}_{1}\right)}
$$

- computational complexity depends on the elimination ordering
- how do we know which ordering is better?

Computational complexity of elimination algorithm

$$
\begin{aligned}
& \mu\left(x_{1}\right) \propto \sum_{x_{2}, x_{3}, x_{4}, x_{5} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{25}\left(x_{2}, x_{5}\right) \psi_{345}\left(x_{3}, x_{4}, x_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x_{2}, x_{3} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \underbrace{\sum_{x_{4} \in \mathcal{X}} \sum_{\left.x_{4}\right), S_{4}=\left\{x_{2}, x_{3}\right\}, \Psi_{4}=\left\{m_{5}\right\}} m_{5}\left(x_{2}, x_{3}, x_{4}\right)} \\
& =\sum_{x_{2} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) \underbrace{\sum_{x_{3} \in \mathcal{X}} \psi_{13}\left(x_{1}, x_{3}\right) m_{4}\left(x_{2}, x_{3}\right)}_{\equiv m_{3}\left(S_{3}\right), S_{3}=\left\{x_{1}, x_{2}\right\}, \Psi_{3}=\left\{\psi_{13}, m_{4}\right\}} \\
& \begin{aligned}
= & \underbrace{\sum_{x_{2} \in \mathcal{X}} \psi_{12}\left(x_{1}, x_{2}\right) m_{3}\left(x_{1}, x_{2}\right)}=m_{2}\left(x_{1}\right) \\
& \equiv m_{2}\left(S_{2}\right), S_{2}=\left\{x_{1}\right\}, \Psi_{2}=\left\{\psi_{12}, m_{3}\right\}
\end{aligned}
\end{aligned}
$$

Total complexity: $\sum_{i} O\left(\left|\Psi_{i}\right| \cdot|\mathcal{X}|^{1+\left|S_{i}\right|}\right)=O\left(|V| \cdot \max _{i}\left|\Psi_{i}\right| \cdot|\mathcal{X}|^{1+\max _{i}\left|S_{i}\right|}\right)$

Induced graph

elimination algorithm as transformation of graphs

- induced graph $\mathcal{G}(G, I)$ for a graph G and an elimination ordering I
- is the union of (the edges of) all the transformed graphs
- or equivalently, start from G and for each $i \in I$ connect all pairs in S_{i}

- theorem: every maximal clique in $\mathcal{G}(G, I)$ corresponds to a domain of a message $S_{i} \cup\{i\}$ for some i
- size of the largest clique in $\mathcal{G}(G, I)$ is $1+\max _{i}\left|S_{i}\right|$
- different orderings I 's give different cliques, resulting in varying complexity
- theorem: finding optimal elimination ordering is NP-hard
- any suggestions?
- greedy heuristic gives $I=(4,5,3,2,1)$
- for Bayesian networks
- the same algorithm works with conditional probabilities instead of compatibility functions
- complexity analysis can be done on moralized undirected graph
- intermediate messages do not correspond to a conditional distribution

Elimination algorithm

- input: $\left\{\psi_{c}\right\}_{c \in \mathcal{C}}$, alphabet \mathcal{X}, subset $A \subseteq V$, elimination ordering I
- output: marginal $\mu\left(x_{A}\right)$

1. initialize active set Ψ to be the set of input compatibility functions
2. for node i in I that is not in A do
let S_{i} be the set of nodes, not including i, that share a compatibility function with i
let Ψ_{i} be the set of compatibility functions in Ψ involving x_{i}
compute $m_{i}\left(x_{S_{i}}\right)=\sum_{x_{i}} \prod_{\psi \in \Psi_{i}} \psi\left(x_{i}, x_{S_{i}}\right)$
remove elements of Ψ_{i} from Ψ
add m_{i} to Ψ
end
3. normalize $\mu\left(x_{A}\right)=\prod_{\psi \in \Psi} \psi\left(x_{A}\right) / \sum_{x_{A}} \prod_{\psi \in \Psi} \psi\left(x_{A}\right)$

Role of the messages $m_{i}\left(x_{S_{i}}\right)$

- messages capture local information about what one side of the edge needs to know about the other side of the edge
- this intuition is exactly correct when the graph is a tree
- we provide a heuristic (called sum-product algorithm or belief propagation) that is accurate when the graph is a tree
- but also provides surprisingly good approximate solutions, even when the underlying graph has loops

$$
m_{i}\left(x_{i}\right)=\sum_{x_{a} \in \mathcal{X}}\left\{\psi_{i, a}\left(x_{i}, x_{a}\right) \sum_{x_{A}} \psi_{A}\left(x_{a}, x_{A}\right)\right\}
$$

Role of the messages

$$
\begin{aligned}
m_{i}\left(x_{i}\right) & =\sum_{x_{a}, x_{b} \in \mathcal{X}, x_{A}, x_{B}} \psi_{i, a}\left(x_{i}, x_{a}\right) \psi_{A}\left(x_{a}, x_{A}\right) \psi_{i, b}\left(x_{i}, x_{b}\right) \psi_{B}\left(x_{b}, x_{B}\right) \\
& =\left\{\sum_{x_{a} \in \mathcal{X}}\left\{\psi_{i, a}\left(x_{i}, x_{a}\right) \sum_{x_{A}} \psi_{A}\left(x_{a}, x_{A}\right)\right\}\right\}\left\{\sum_{x_{b} \in \mathcal{X}}\left\{\psi_{i, b}\left(x_{i}, x_{b}\right) \sum_{x_{B}} \psi_{B}\left(x_{b}, x_{B}\right)\right\}\right\}
\end{aligned}
$$

Belief Propagation for approximate inference

- given a pairwise MRF: $\mu(x)=\frac{1}{Z} \prod_{(i, j) \in E} \psi_{i, j}\left(x_{i}, x_{j}\right)$
- compute marginal: $\mu\left(x_{i}\right)$ for all $i \in V$
- message update: set of $2|E|$ messages on each (directed) edge $\left\{\nu_{i \rightarrow j}\left(x_{i}\right)\right\}_{(i, j) \in E}$, where $\nu_{i \rightarrow j}: \mathcal{X} \rightarrow \mathbb{R}^{+}$encoding our belief (or approximate $\left.\mathbb{P}\left(x_{i}\right)\right)$
- $\nu_{i \rightarrow j}^{(t+1)}\left(x_{i}\right)=\prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} \nu_{k \rightarrow i}^{(t)}\left(x_{k}\right) \psi_{i, k}\left(x_{i}, x_{k}\right)\right\}$
- $O\left(d_{i}|\mathcal{X}|^{2}\right)$ computations
- decision:

$$
\nu_{i}^{(t)}\left(x_{i}\right)=\prod_{k \in \partial i}\left\{\sum_{x_{k}} \nu_{k \rightarrow i}^{(t)}\left(x_{k}\right) \psi_{i, k}\left(x_{i}, x_{k}\right)\right\}
$$

- $\widehat{\mu}\left(x_{i}\right)=\frac{\nu_{i}\left(x_{i}\right)}{\sum_{x^{\prime}} \nu_{i}\left(x^{\prime}\right)}$

Sum-product algorithm on a line

Remove node i and recursively compute marginals on sub-graphs

$$
\mu(x)=\frac{1}{Z} \prod_{i=1}^{n-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)
$$

$$
\mu\left(x_{i}\right)=\sum_{x_{[n] \backslash\{i\}}} \mu(x)
$$

$$
\propto \sum_{x_{[n] \backslash\{i\}}} \underbrace{\psi\left(x_{1}, x_{2}\right) \cdots \psi\left(x_{i-2}, x_{i-1}\right)}_{\mu_{(i-1) \rightarrow i} \text { : joint dist. on a sub-graph }} \psi\left(x_{i-1}, x_{i}\right) \psi\left(x_{i}, x_{i+1}\right) \underbrace{\psi\left(x_{i+1}, x_{i+2}\right) \cdots \psi\left(x_{n-1}, x_{n}\right)}_{\mu_{(i+1) \rightarrow i}}
$$

$\propto \sum_{x_{i-1}, x_{i+1}} \underbrace{\nu_{(i-1) \rightarrow i}\left(x_{i-1}\right)}_{\text {marginal dist. on a subrgaph }} \psi\left(x_{i-1}, x_{i}\right) \psi\left(x_{i}, x_{i+1}\right) \nu_{(i+1) \rightarrow i}\left(x_{i+1}\right)$

$$
\begin{aligned}
\nu_{(i-1) \rightarrow i}\left(x_{i-1}\right) & \equiv \sum_{x_{1}, \ldots, x_{i-2}} \mu_{(i-1) \rightarrow i}\left(x_{1}, \ldots, x_{i-1}\right) \\
\nu_{(i+1) \rightarrow i}\left(x_{i+1}\right) & \equiv \sum_{x_{i+2}, \ldots, x_{n}} \mu_{(i+1) \rightarrow i}\left(x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
\nu_{i}\left(x_{i}\right) & \equiv \sum_{x_{i-1}, x_{i+1}} \nu_{(i-1) \rightarrow i}\left(x_{i-1}\right) \psi\left(x_{i-1}, x_{i}\right) \psi\left(x_{i}, x_{i+1}\right) \nu_{(i+1) \rightarrow i}\left(x_{i+1}\right) \\
\mu\left(x_{i}\right) & =\frac{\nu_{i}\left(x_{i}\right)}{\sum_{x_{i}} \nu_{i}\left(x_{i}\right)}
\end{aligned}
$$

definitions: of joint distribution and marginal on sub-graphs

$$
\begin{aligned}
\mu_{(i-1) \rightarrow i}\left(x_{1}, \ldots, x_{i-1}\right) & \equiv \frac{1}{Z_{(i-1) \rightarrow i}} \prod_{k \in[i-2]} \psi\left(x_{k}, x_{k+1}\right) \\
\nu_{(i-1) \rightarrow i}\left(x_{i-1}\right) & \equiv \sum_{x_{1}, \ldots, x_{i-2}} \mu_{(i-1) \rightarrow i}\left(x_{1}, \ldots, x_{i-1}\right) \\
\mu_{(i+1) \rightarrow i}\left(x_{i+1}, \ldots, x_{n}\right) & \equiv \frac{1}{Z_{(i+1) \rightarrow i}} \prod_{k \in\{i+2, \ldots, n\}} \psi\left(x_{k-1}, x_{k}\right) \\
\nu_{(i+1) \rightarrow i}\left(x_{i+1}\right) & \equiv \sum_{x_{i+2}, \ldots, x_{n}} \mu_{(i+1) \rightarrow i}\left(x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

how can we compute the messages ν, recursively?

$$
\begin{aligned}
\mu_{i \rightarrow i+1}\left(x_{1}, \ldots, x_{i}\right) & \propto \mu_{i-1 \rightarrow i}\left(x_{1}, \ldots, x_{i-1}\right) \psi\left(x_{i-1}, x_{1}\right) \\
\nu_{i \rightarrow i+1}\left(x_{i}\right) & =\sum_{x_{1}, \ldots, x_{i-1}} \mu_{i \rightarrow i+1}\left(x_{1}, \ldots, x_{i}\right) \\
& \propto \sum_{x_{1}, \ldots, x_{i-1}} \mu_{i-1 \rightarrow i}\left(x_{1}, \ldots, x_{i-1}\right) \psi\left(x_{i-1}, x_{1}\right) \\
& =\sum_{x_{i-1}} \nu_{i-1 \rightarrow i}\left(x_{i-1}\right) \psi\left(x_{i-1}, x_{i}\right) \\
\nu_{1 \rightarrow 2}\left(x_{1}\right) & =1 /|\mathcal{X}| \\
\nu_{2 \rightarrow 3}\left(x_{2}\right) & \propto \sum_{x_{1}} \frac{1}{|\mathcal{X}|} \psi\left(x_{1}, x_{2}\right)
\end{aligned}
$$

how many operations are required?

- $O\left(n|\mathcal{X}|^{2}\right)$ operations to compute one marginal $\mu\left(x_{i}\right)$
what if we want all the marginals?
- compute all the messages forward and backward $O\left(n|\mathcal{X}|^{2}\right)$
- then compute all the marginals in $O\left(n|\mathcal{X}|^{2}\right)$ operations

Computing partition function is as easy as computing marginals
recall

$$
\begin{aligned}
\mu_{(i-1) \rightarrow i}\left(x_{1}, \ldots, x_{i-1}\right) & \equiv \frac{1}{Z_{(i-1) \rightarrow i}} \prod_{k \in[i-2]} \psi\left(x_{k}, x_{k+1}\right) \\
\nu_{(i-1) \rightarrow i}\left(x_{i-1}\right) & \equiv \sum_{x_{1}, \ldots, x_{i-2}} \mu_{(i-1) \rightarrow i}\left(x_{1}, \ldots, x_{i-1}\right)
\end{aligned}
$$

computing the partition function from the messages

$$
\begin{aligned}
Z_{i \rightarrow(i+1)} & =\sum_{x_{1}, \ldots, x_{i}} \prod_{k \in[i-1]} \psi\left(x_{k}, x_{k+1}\right) \\
& =\sum_{x_{i}, x_{i-1}} Z_{(i-1) \rightarrow i} \nu_{(i-1) \rightarrow i}\left(x_{i-1}\right) \psi\left(x_{i-1}, x_{i}\right) \\
Z_{1} & =1 \\
Z_{n} & =Z
\end{aligned}
$$

how many operations do we need?

- $O\left(n|\mathcal{X}|^{2}\right)$ operations

Sum-product algorithm for hidden Markov models

- hidden Markov model

Sequence of r.v.'s $\quad\left\{\left(X_{1}, Y_{1}\right) ;\left(X_{2}, Y_{2}\right) ; \ldots ;\left(X_{n}, Y_{n}\right)\right\}$
hidden state $\left\{X_{i}\right\}$ Markov Chain $\quad \mathbb{P}\{x\}=\mathbb{P}\left\{x_{1}\right\} \prod_{i=1}^{n-1} \mathbb{P}\left\{x_{i+1} \mid x_{i}\right\}$

$$
\left\{Y_{i}\right\} \text { noisy observations } \quad \mathbb{P}\{y \mid x\}=\prod_{i=i}^{n} \mathbb{P}\left\{y_{i} \mid x_{i}\right\}
$$

(equivalent directed form)

- time homogeneous hidden Markov models

Sequence of r.v.'s $\quad\left\{\left(X_{1}, Y_{1}\right) ;\left(X_{2}, Y_{2}\right) ; \ldots ;\left(X_{n}, Y_{n}\right)\right\}$ $\left\{X_{i}\right\}$ Markov Chain $\mathbb{P}\{x\}=q_{0}\left(x_{1}\right) \prod_{i=1}^{n-1} q\left(x_{i}, x_{i+1}\right)$
$\left\{Y_{i}\right\}$ noisy observations $\quad \mathbb{P}\{y \mid x\}=\prod_{i=i}^{n} r\left(x_{i}, y_{i}\right)$

$$
\begin{aligned}
\mu(x, y)= & \frac{1}{Z} \prod_{i=1}^{n-1} \psi_{i}\left(x_{i}, x_{i+1}\right) \prod_{i=1}^{n} \tilde{\psi}_{i}\left(x_{i}, y_{i}\right) \\
& \psi_{i}\left(x_{i}, x_{i+1}\right)=q\left(x_{i}, x_{i+1}\right), \quad \tilde{\psi}_{i}\left(x_{i}, y_{i}\right)=r\left(x_{i}, y_{i}\right)
\end{aligned}
$$

- we want to compute marginals of the following graphical model on a line (q_{0} uniform)

$$
\begin{aligned}
& \mu_{y}(x)=\mathbb{P}\{x \mid y\} \stackrel{\text { Bayes thm }}{=} \frac{1}{Z(y)} \prod_{i=1}^{n-1} q\left(x_{i}, x_{i+1}\right) \prod_{i=1}^{n} r\left(x_{i}, y_{i}\right) \text {. } \\
& \mu_{y}(x)=\frac{1}{Z(y)} \prod_{i=1}^{n-1} q\left(x_{i}, x_{i+1}\right) \prod_{i=1}^{n} r\left(x_{i}, y_{i}\right) \\
& =\frac{1}{Z(y)} \prod_{i=1}^{n-1} \psi_{i}\left(x_{i}, x_{i+1}\right) \\
& \psi_{i}\left(x_{i}, x_{i+1}\right)=q\left(x_{i}, x_{i+1}\right) r\left(x_{i}, y_{i}\right) \quad(\text { for } i<n-1) \\
& \psi_{n-1}\left(x_{n-1}, x_{n}\right)=q\left(x_{n-1}, x_{n}\right) r\left(x_{n-1}, y_{n-1}\right) r\left(x_{n}, y_{n}\right) .
\end{aligned}
$$

- apply sum-product algorithm to compute marginals in $O\left(n|\mathcal{X}|^{2}\right)$ time

$$
\begin{aligned}
\nu_{i \rightarrow(i+1)}\left(x_{i}\right) & \propto \sum_{x_{i-1} \in \mathcal{X}} q\left(x_{i-1}, x_{i}\right) r\left(x_{i-1}, y_{i-1}\right) \nu_{(i-1) \rightarrow i}\left(x_{i-1}\right) \\
\nu_{(i+1) \rightarrow i}\left(x_{i}\right) & \propto \sum_{x_{i+1} \in \mathcal{X}} q\left(x_{i}, x_{i+1}\right) r\left(x_{i}, y_{i}\right) \nu_{(i+2) \rightarrow(i+1)}\left(x_{i+1}\right)
\end{aligned}
$$

- known as forward-backward algorithm
- a special case of the sum-product algorithm
- BCJR algorithm for convolutional codes ([Bahl, Cocke, Jelinek and Raviv 1974])
- cannot find the maximum likelihood estimate (cf. Viterbi algorithm)
- this requires max-product algorithm
- implement sum-product algorithm for HMM [Exercise 4.3]
- consider an extension of inference on HMM [Exercise 4.4]

Exercise 4.3

- S\&P 500 index over a period of time
- For each week, measure the price movement relative to the previous week: +1 indicates up and -1 indicates down
- a hidden Markov model in which x_{t} denotes the economic state (good or bad) of week t and y_{t} denotes the price movement (up or down)
- $x_{t+1}=x_{t}$ with probability 0.8
- $\mathbb{P}_{Y_{t} \mid X_{t}}\left(y_{t}=+1 \mid x_{t}=\right.$ 'good' $)=\mathbb{P}_{Y_{t} \mid X_{t}}\left(y_{t}=-1 \mid x_{t}=\right.$ 'bad' $)=q$

Example: Neuron firing patterns

Hypothesis

Assemblies of neurones activate in a coordinate way in correspondence to specific cognitive functions. Performing of the function corresponds sequence of these activity states.

Approach
Firing process \leftrightarrow Observed variables
Activity states \leftrightarrow Hidden variables

- automatically detect (as opposed to manually specify) baseline, plan, and perimovement epochs of neural activity
- detect target movement in advance
- goal: neural prosthesis to help patients with spinal cord injury or neurodegenerative disease and significantly impaired motor control
[C. Kemere, G. Santhanam, B. M. Yu, A. Afshar, S.I. Ryu, T. H. Meng and K凶m-qheduct algavithmonveiol 100•2441-2452 (2008)l

- discrete time 10 ms
- $\mathbb{P}\left(x_{t+1} \mid x_{t}\right)=A_{i j}$, $\mathbb{P}\left(\#\right.$ spikes for measurement $\left.k=d \mid x_{t}=i\right) \propto e^{-\lambda_{k, i}} \lambda_{k, i}^{d}$
- likelihood: $\frac{\mathbb{P}\left(x_{t}=s\right)}{\sum_{s^{\prime}} \mathbb{P}\left(x_{t}=s^{\prime}\right)}$

Belief propagation for factor graphs

$$
\mu(x)=\frac{1}{Z} \prod_{a \in F} \psi_{a}\left(x_{\partial a}\right)
$$

- variable nodes i, j, etc.; factor nodes a, b, etc.
- set of messages $\left\{\nu_{i \rightarrow a}\right\}_{(i, a) \in E}$ and $\left\{\tilde{\nu}_{a \rightarrow i}\right\}_{(a, i) \in E}$
- messages from variables to factors

$$
\nu_{i \rightarrow a}\left(x_{i}\right)=\prod_{b \in \partial i \backslash\{a\}} \tilde{\nu}_{b \rightarrow i}\left(x_{i}\right)
$$

- messages from factors to variables

$$
\tilde{\nu}_{a \rightarrow i}\left(x_{i}\right)=\sum_{x_{\partial a \backslash\{i\}}} \psi_{a}\left(x_{\partial a}\right) \prod_{j \in \partial a \backslash\{i\}} \nu_{j \rightarrow a}\left(x_{j}\right)
$$

- marginal distribution at variables

$$
\nu_{i}\left(x_{i}\right)=\prod_{b \in \partial i} \tilde{\nu}_{b \rightarrow i}\left(x_{i}\right)
$$

- this includes belief propagation (=sum-product algorithm) on (general) Markov random fields
- exact on factor trees

Example: decoding LDPC codes

- LDPC code is defined by a factor graph model variable nodes factor nodes

- block length $n=4$
- number of factors $m=2$
- allowed messages $=\{0000,0111,1010,1101\}$
- decoding using belief propagation (for BSC with $\epsilon=0.3$)

$$
\mu_{y}(x)=\frac{1}{Z} \prod_{i \in V} \mathbb{P}_{Y \mid X}\left(y_{i} \mid x_{i}\right) \prod_{a \in F} \mathbb{I}\left(\oplus x_{\partial a}=0\right)
$$

- use (parallel) sum-product algorithm to find $\mu\left(x_{i}\right)$ and let

$$
\hat{x}_{i}=\arg \max \mu\left(x_{i}\right)
$$

Sum-product ingibilyern bit error rate

Decoding by sum-product algorithm

$$
\begin{aligned}
& \nu_{i \rightarrow a}^{(t+1)}\left(x_{i}\right)=\mathbb{P}\left(y_{i} \mid x_{i}\right) \prod_{b \in \partial i \backslash\{a\}} \tilde{\nu}_{b \rightarrow i}^{(t)}\left(x_{i}\right) \\
& \tilde{\nu}_{a \rightarrow i}^{(t+1)}\left(x_{i}\right)=\sum_{x_{\partial a \backslash\{i\}}} \prod_{j \in \partial a \backslash\{i\}} \nu_{j \rightarrow a}\left(x_{j}\right) \mathbb{I}\left(\oplus x_{\partial a}=0\right)
\end{aligned}
$$

Decoding by sum-product algorithm

Sum-product algorithm on trees

a motivating example: influenza virus complete sequence of the gene of the 1918 influenza virus

[A.H. Reid, T.G. Fanning, J.V. Hultin, and J.K. Taubenberger, Proc. Natl. Acad. Sci. 96 (1999) 1651-1656]

- challenges in phylogeny
- phylogeny reconstruction: given DNA sequences at vertices (only at leaves), infer the underlying tree $T=(V, E)$.
- phylogeny evaluation: given a tree $T=(V, E)$ evaluate the probability of observed DNA sequences at vertices (only at leaves).
- Bayesian network model for phylogeny evaluation

$T=(V, D)$ directed graph, DNA sequences $x=\left(x_{i}\right)_{i \in V} \in \mathcal{X}^{V}$

$$
\mu_{T}(x)=q_{o}\left(x_{o}\right) \prod_{(i, j) \in D} q_{i, j}\left(x_{i}, x_{j}\right),
$$

$q_{i, j}\left(x_{i}, x_{j}\right)=$ Probability that the descendent is x_{j} if ancestor is x_{i}.

- simplified model: $\mathcal{X}=\{+1,-1\}$

$$
\begin{aligned}
q_{o}\left(x_{o}\right) & =\frac{1}{2} \\
q\left(x_{i}, x_{j}\right) & = \begin{cases}1-q & \text { if } x_{j}=x_{i} \\
q & \text { if } x_{i} \neq x_{j}\end{cases}
\end{aligned}
$$

MRF representation: $q\left(x_{i}, x_{j}\right) \propto e^{\theta x_{i} x_{j}}$ with $\theta=\frac{1}{2} \log \frac{q}{1-q}$

probability of certain tree of mutations x :

$$
\mu_{T}(x)=\frac{1}{Z_{\theta}(T)} \prod_{(i, j) \in E} e^{\theta x_{i} x_{j}}
$$

- problem: for given T, compute marginal $\mu_{T}\left(x_{i}\right)$
- we prove the correctness of sum-product algorithm for this model, but the same proof holds for any general pairwise MRF (and also for general MRF and FG)
- define graphical model on sub-trees

$$
T_{j \rightarrow i}=\left(V_{j \rightarrow i}, E_{j \rightarrow i}\right) \equiv \text { Subtree rooted at } j \text { and excluding } i
$$

$$
\mu_{j \rightarrow i}\left(x_{V_{j \rightarrow i}}\right) \equiv \frac{1}{Z\left(T_{j \rightarrow i}\right)} \prod_{(u, v) \in E_{j \rightarrow i}} e^{\theta x_{u} x_{v}}
$$

$$
\nu_{j \rightarrow i}\left(x_{j}\right) \equiv \sum_{x_{V_{j \rightarrow i} \backslash\{j\}}} \mu_{j \rightarrow i}\left(x_{V_{j \rightarrow i}}\right)
$$

the messages from neighbors $k_{1}, k_{2}, k_{3}, k_{4}$ are sufficient to compute the marginal $\mu\left(x_{i}\right)$

$$
\begin{aligned}
\mu_{T}\left(x_{i}\right) & \propto \sum_{x_{V} \backslash\{i\}} \prod_{(u, v) \in E} e^{\theta x_{u} x_{v}} \\
& =\sum_{x_{V_{1}, x_{V_{2}}, x_{V_{3}}, x_{V_{4}}} \prod_{\ell=1}^{4}\left\{e^{\theta x_{i} x_{k_{\ell}}} \prod_{(u, v) \in E_{\ell}} e^{\theta x_{u} x_{v}}\right\}} \quad=\prod_{\ell=1}^{4} \sum_{x_{k_{\ell}}, x_{V_{\ell} \backslash\left\{k_{\ell}\right\}}}\left\{e^{\theta x_{i} x_{k_{\ell}}} \prod_{(u, v) \in E_{\ell}} e^{\theta x_{u} x_{v}}\right\} \\
& \propto \prod_{\ell=1}^{4}\{\sum_{x_{k_{\ell}}} e^{\theta x_{i} x_{k_{\ell}}} \underbrace{\sum_{x_{V_{\ell} \backslash\left\{k_{\ell}\right\}}} \mu_{k_{\ell} \rightarrow i}\left(x_{V_{\ell}}\right)}_{x_{k_{\ell} \rightarrow i}\left(x_{k_{\ell}}\right)}\}
\end{aligned}
$$

- recursion on sub-trees to compute the messages ν

$$
\begin{aligned}
\mu_{i \rightarrow j}\left(x_{V_{i \rightarrow j}}\right) & =\frac{1}{Z\left(T_{i \rightarrow j}\right)} \prod_{(u, v) \in E_{i \rightarrow j}} e^{\theta x_{u} x_{v}} \\
& =\frac{1}{Z\left(T_{i \rightarrow j}\right)} e^{\theta x_{i} x_{k}} e^{\theta x_{i} x_{l}}\left\{\prod_{(u, v) \in E_{k \rightarrow i}} e^{\theta x_{u} x_{v}}\right\}\left\{\prod_{(u, v) \in E_{l \rightarrow i}} e^{\theta x_{u} x_{v}}\right\} \\
& \propto e^{\theta x_{u} x_{v}} e^{\theta x_{i} x_{l}}\left\{\prod_{(u, v) \in E_{k \rightarrow i}} e^{\theta x_{u} x_{v}}\right\}\left\{\prod_{(u, v) \in E_{l \rightarrow i}} e^{\theta x_{u} x_{v}}\right\} \\
& \propto e^{\theta x_{i} x_{k}} e^{\theta x_{i} x_{l}} \mu_{k \rightarrow i}\left(x_{V_{k \rightarrow i}}\right) \mu_{l \rightarrow i}\left(x_{V_{l \rightarrow i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\nu_{i \rightarrow j}\left(x_{i}\right) & =\sum_{x_{V_{i \rightarrow j} \backslash i}} \mu_{i \rightarrow j}\left(x_{V_{i \rightarrow j}}\right) \\
& \propto \sum_{x_{V_{i \rightarrow j} \backslash i}} e^{\theta x_{i} x_{k}} e^{\theta x_{i} x_{l}} \mu_{k \rightarrow i}\left(x_{V_{k \rightarrow i}}\right) \mu_{l \rightarrow i}\left(x_{V_{l \rightarrow i}}\right) \\
& \propto\left\{\sum_{x_{V_{k} \rightarrow i}} e^{\theta x_{i} x_{k}} \mu_{k \rightarrow i}\left(x_{V_{k \rightarrow i}}\right)\right\}\left\{\sum_{x_{V_{l \rightarrow i}}} e^{\theta x_{i} x_{l}} \mu_{l \rightarrow i}\left(x_{V_{l \rightarrow i}}\right)\right\} \\
& =\left\{\sum_{x_{k}} e^{\theta x_{i} x_{k}} \sum_{x_{V_{k \rightarrow i} \backslash\{k\}}} \mu_{k \rightarrow i}\left(x_{V_{k \rightarrow i}}\right)\right\}\left\{\sum_{x_{l}} e^{\theta x_{i} x_{l}} \sum_{x_{V_{l \rightarrow i} \backslash\{l\}}} \mu_{l \rightarrow i}\left(x_{V_{l \rightarrow i}}\right)\right\} \\
& \propto\left\{\sum_{x_{k}} e^{\theta x_{i} x_{k}} \nu_{k \rightarrow i}\left(x_{k}\right)\right\}\left\{\sum_{x_{l}} e^{\theta x_{i} x_{l}} \nu_{l \rightarrow i}\left(x_{l}\right)\right\}
\end{aligned}
$$

with uniform initialization $\nu_{i \rightarrow j}\left(x_{i}\right)=\frac{1}{|\mathcal{X}|}$ for all leaves i

- sum-product algorithm (for our example)

$$
\begin{aligned}
\nu_{i \rightarrow j}\left(x_{i}\right) & \propto \prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} e^{\theta x_{i} x_{k}} \nu_{k \rightarrow i}\left(x_{k}\right)\right\} \\
\nu_{i}\left(x_{i}\right) & \equiv \prod_{k \in \partial i}\left\{\sum_{x_{k}} e^{\theta x_{i} x_{k}} \nu_{k \rightarrow i}\left(x_{k}\right)\right\} \\
\mu_{T}\left(x_{i}\right) & =\frac{\nu_{i}\left(x_{i}\right)}{\sum_{x_{i}} \nu_{i}\left(x_{i}\right)}
\end{aligned}
$$

- what if we want all the marginals?
- choose an arbitrary root ϕ
- compute all the messages towards the root $(|E|$ messages $)$
- then compute all the messages outwards from the root ($|E|$ messages)
- then compute all the marginals (n marginals)
- how many operations are required?
- naive implementation requires $O\left(|\mathcal{X}|^{2} \sum_{i} d_{i}^{2}\right)$ per iteration
\star if i has degree d_{i}, then computing $\nu_{i \rightarrow j}$ requires $d_{i}|\mathcal{X}|^{2}$ operations
$\star d_{i}$ messages start at each node i, each require $d_{i}|\mathcal{X}|^{2}$ operations
\star total computation for $2|E|$ messages is $\sum_{i}\left\{d_{i} \cdot\left(d_{i}|\mathcal{X}|^{2}\right)\right\}$
- however, we can compute all marginals in $O\left(n|\mathcal{X}|^{2}\right)$ operations
- let $D=\{(i, j),(j, i) \mid(i, j) \in E\}$ be the directed version of E (cf. $|D|=2|E|$)
- (sequential) sum-product algorithm

1. initialize $\nu_{i \rightarrow j}\left(x_{i}\right)=1 /|\mathcal{X}|$ for all leaves i
2. recursively over $(i, j) \in D$ compute (from leaves)

$$
\nu_{i \rightarrow j}\left(x_{i}\right)=\prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}\left(x_{k}\right)\right\}
$$

3. for each $i \in V$ compute marginal

$$
\begin{aligned}
\nu_{i}\left(x_{i}\right) & =\prod_{k \in \partial i}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}\left(x_{k}\right)\right\} \\
\mu_{T}\left(x_{i}\right) & =\frac{\nu_{i}\left(x_{i}\right)}{\sum_{x_{i}} \nu_{i}\left(x_{i}\right)}
\end{aligned}
$$

- (parallel) sum-product algorithm

1. initialize $\nu_{i \rightarrow j}^{(0)}\left(x_{i}\right)=1 /|\mathcal{X}|$ for all $(i, j) \in D$
2. for $t \in\left\{0,1, \ldots, t_{\max }\right\}$
for all $(i, j) \in D$ compute

$$
\nu_{i \rightarrow j}^{(t+1)}\left(x_{i}\right)=\prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}^{(t)}\left(x_{k}\right)\right\}
$$

3. for each $i \in V$ compute marginal

$$
\begin{aligned}
\nu_{i}\left(x_{i}\right) & =\prod_{k \in \partial i}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}^{\left(t_{\max }+1\right)}\left(x_{k}\right)\right\} \\
\mu_{T}\left(x_{i}\right) & =\frac{\nu_{i}\left(x_{i}\right)}{\sum_{x_{i}} \nu_{i}\left(x_{i}\right)}
\end{aligned}
$$

- also called belief propagation
- when $t_{\text {max }}$ is larger than the diameter of the tree (the length of the longest path), this converges to the correct marginal [Exercise 4.1]
- more operations than the sequential version $\left(O\left(n|\mathcal{X}|^{2} \cdot \operatorname{diam}(T)\right)\right)$
- a naive implementation requires $O\left(|\mathcal{X}|^{2} \cdot \operatorname{diam}(T) \cdot \sum d_{i}^{2}\right)$
- naturally extends to general graphs but no proof of exactness

Sum-product algorithm on general graphs

- (loopy) belief propagation

1. initialize $\nu_{i \rightarrow j}\left(x_{i}\right)=1 /|\mathcal{X}|$ for all $(i, j) \in D$
2. for $t \in\left\{0,1, \ldots, t_{\max }\right\}$
for all $(i, j) \in D$ compute

$$
\nu_{i \rightarrow j}^{(t+1)}\left(x_{i}\right)=\prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}^{(t)}\left(x_{k}\right)\right\}
$$

3. for each $i \in V$ compute marginal

$$
\begin{aligned}
\nu_{i}\left(x_{i}\right) & =\prod_{k \in \partial i}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}^{\left(t_{\max }+1\right)}\left(x_{k}\right)\right\} \\
\mu_{T}\left(x_{i}\right) & =\frac{\nu_{i}\left(x_{i}\right)}{\sum_{x_{i}} \nu_{i}\left(x_{i}\right)}
\end{aligned}
$$

- computes 'approximate' marginals in $O\left(n|\mathcal{X}|^{2} \cdot t_{\text {max }}\right)$ operations
- generally it does not converge; even if it does, it might be incorrect
- folklore about loopy BP
- works better when G has few short loops
- works better when $\psi_{i j}\left(x_{i}, x_{j}\right)=\psi_{i j, 1}\left(x_{i}\right) \psi_{i j, 2}\left(x_{j}\right)+\operatorname{small}\left(x_{i}, x_{j}\right)$
- nonconvex variational principle

Exercise: partition function on trees

- using the recursion for messages:

$$
\begin{aligned}
\nu_{i \rightarrow j}\left(x_{i}\right) & =\prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}\left(x_{k}\right)\right\} \\
\nu_{i}\left(x_{i}\right) & =\prod_{k \in \partial i}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}\left(x_{k}\right)\right\}
\end{aligned}
$$

it follows that we can easily compute the partition function as

$$
Z(T)=\sum_{x_{i}} \nu_{i}\left(x_{i}\right)
$$

- alternatively, if we had a black box that computes marginals for any tree, then we can use it to compute partition functions efficiently

$$
\begin{aligned}
Z\left(T_{i \rightarrow j}\right) & =\sum_{x_{i} \in \mathcal{X}} \prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k} \in \mathcal{X}} \psi_{i k}\left(x_{i}, x_{k}\right) \cdot Z\left(T_{k \rightarrow i}\right) \cdot \mu_{k \rightarrow i}\left(x_{k}\right)\right\} \\
Z(T) & =\sum_{x_{i} \in \mathcal{X}} \prod_{k \in \partial i}\left\{\sum_{x_{k} \in \mathcal{X}} \psi_{i k}\left(x_{i}, x_{k}\right) \cdot Z\left(T_{k \rightarrow i}\right) \cdot \mu_{k \rightarrow i}\left(x_{k}\right)\right\}
\end{aligned}
$$

- this recursive algorithm naturally extends to general graphs

Why would one want to compute the partition function? Suppose you observe

$$
x=(+1,+1,+1,+1,+1,+1,+1,+1,+1)
$$

and you know this comes from either of

$$
\mu(x)=\frac{1}{Z(T)} \prod_{(i, j) \in E} \psi\left(x_{i}, x_{j}\right)
$$

(e.g. coloring)
which one has highest likelihood?

Exercise: sampling on the tree

- if we have a black-box for computing marginals on any tree, we can use it to sample from any distribution on a tree

Sampling(Tree $\left.T=(V, E), \psi=\left\{\psi_{i j}\right\}_{(i j) \in E}\right)$	
1:	Choose a root $o \in V ;$
2:	Sample $X_{o} \sim \mu_{o}(\cdot) ;$
2:	Recursively over $i \in V$ (from root to leaves):
3:	Compute $\mu_{i \mid \pi(i)}\left(x_{i} \mid x_{\pi(i)}\right) ;$
4:	Sample $X_{i} \sim \mu_{i \mid \pi(i)}\left(\cdot \mid x_{\pi(i)}\right) ;$

$\pi(i)$ is the parent of node i in the rooted tree T_{o}

- we use the black-box to compute the conditional distribution

Tree decomposition

- when we don't have a tree we can create an equivalent tree graph
- by enlarging the alphabet $\mathcal{X} \rightarrow \mathcal{X}^{k}$
- Treewidth $(G) \equiv$ Minimum such k
- it is NP-hard to determine the treewidth of a graph
- problem: in general Treewidth $(G)=\Theta(n)$

Tree decomposition of $G=(V, E)$

A tree $T=\left(V_{T}, E_{T}\right)$ and a mapping $V: V_{T} \rightarrow \operatorname{SUBSETS}(V)$ s.t.:

- For each $i \in V$ there exists at least one $u \in V_{T}$ with $i \in V(u)$.
- For each $(i, j) \in E$ there exists at least one $u \in V_{T}$ with $i, j \in V(u)$.
- If $i \in V\left(u_{1}\right)$ and $i \in V\left(u_{2}\right)$, then $i \in V(w)$ for any w on the path between u_{1} and u_{2} in T.

