4. Sum-product algorithm

@ Elimination algorithm
@ Sum-product algorithm on a line

@ Sum-product algorithm on a tree

Sum-product algorithm

41

Inference tasks on graphical models

consider an undirected graphical model (a.k.a. Markov random field)
@ = 5[] vetwd
nlxr) = 7 c\Le

where C is the set of all maximal cliques in G
we want to

o calculate marginals: p(z4) = va\A w(x)

@ calculating conditional distributions

w(ra, zp)

realen) = 7o)

calculation maximum a posteriori estimates: arg max; p(Z)

calculating the partition function Z

sample from this distribution

Sum-product algorithm

42

Elimination algorithm for calculating marginals
Elimination algorithm is exact but can require O(|X|IV1) operations

p(x) o Pra(xr, x2)V13(x1, 23)Ves (T2, T5)V345(23, 24, 25)

@ we want to compute p(x1)
@ brute force marginalization:

plz) oc > a(wn, wo)Yis(w, 13) s (w2, T5) a5 (23, 24, 25)

T2,T3,T4,T5€X

e requires O(|C| - |X|) operations, where big-O denotes that it is upper
bounded by ¢|C||X|® for some constant ¢ and |C| is # of cliques
Sum-product algorithm 4-3

@ consider an elimination ordering (5,4, 3, 2)

p(x1) o > tna(wr, wa)tus(wr, w3)os (w2, w5) a5 (23, 24, 5)

Z2,T3,T4,L5E€X

= > Yoz, z)ts(w, ws) Y vos(ra, 75) s (s, 24, 5)

x2,r3,L4EX r5€X

~
=ms(r2,23,24)

= Z Y1a(w1, v2)13(w1, v3)ms (w2, 3, 74)

Z2,23,L4€X

= > Yu(@n,z)tis(r,xs) Y ms(ra, 13, 14)

T9,x3€X r4eX

-~

=My (:ltg,a:g)

= Z Yra(x1, v2)Y13(x1, w3)ma(xe, 23)

x2,x3€X

= Z Y121, 22) Z Yi3(w1, w3)ma(re, v3)

ToEX r3eX

=ma(z1,22)
Sum-product algorithm 4-4

pze) o > hia(ar,wa) Y tis(w1, w3)malws, x3)

Ta€X T3EX
=m3(x1,22)
= > tra(ar, ma)ms(1, 72)
TEX
= ma(r1)

@ normalize mo(+) to get pu(z1)

. mg(xl)
M) = S)

@ computational complexity depends on the elimination ordering

@ how do we know which ordering is better?

Sum-product algorithm 4-5

Computational complexity of elimination algorithm

plr) o > Pua(wr, wo)vis(w,) tas (w2, 25)Vaas (23, 74, T5)

Z2,%3,T4,T5E€X

> da(wn, wa)us(xr, w) D Pos(w2, w5)Ysas (23, 24, 75)

To,x3,L4EX r5€X

=ms5(Ss), Ss={w2,x3,24}, Ys={1)25,%345 }

Z 1oz, x2)13(x1, 23) Z ms(x2, 3, T4)

xo,x3EX T EX

ETI‘L4(S4)7 S4:{I2,Z3},‘1’4:{’!TL5}

= > tua(w,w2) Y Prs(wr, ws)ma(wa, v3)

T2 EX r3eX

=m3(S3), Sz={x1,x2}, Ys={113,ma}

= Z P12(x1, x9)ms(z1, x2) = ma(r1)

To€EX

=m2(S2), So={z1}, Yo={1)12,m3}

Total complexity: 3", O(|%,| - |X[* ISy = O(|V| - max; |¥;| - | x| HmazilSil)
Sum-product algorithm 4-6

Induced graph

elimination algorithm as transformation of graphs

(N L

e induced graph G(G,I) for a graph G and an elimination ordering I
» is the union of (the edges of) all the transformed graphs
» or equivalently, start from G and for each i € I connect all pairs in S;

e theorem: every maximal clique in G(G, I) corresponds to a domain
of a message S; U {i} for some i

@ size of the largest clique in G(G, 1) is 1 + max; | S|

o different orderings I's give different cliques, resulting in varying

complexit
Sum—promjet algorithm 4-7

@ theorem: finding optimal elimination ordering is NP-hard
@ any suggestions?
@ greedy heuristic gives I = (4,5,3,2,1)

o for Bayesian networks
> the same algorithm works with conditional probabilities instead of
compatibility functions
» complexity analysis can be done on moralized undirected graph
> intermediate messages do not correspond to a conditional distribution

Sum-product algorithm 4-8

Elimination algorithm

e input: {?.}.cc, alphabet X', subset A C V, elimination ordering I
@ output: marginal u(x4)

1. initialize active set ¥ to be the set of input compatibility functions
2. for node i in I that is not in A do

let .S; be the set of nodes, not including 4, that share a
compatibility function with %

let W; be the set of compatibility functions in W involving x;
compute mz(sz) = Zzz Hq/;e\lli 1/1(% xSi)

remove elements of ¥; from ¥

add m; to ¥

end

3. normalize p(za) = [[yeq ¥(a) / D2, [lypew ¥(2a)

Sum-product algorithm 4-9

Role of the messages m;(xg,)

@ messages capture local information about what one side of the edge
needs to know about the other side of the edge

@ this intuition is exactly correct when the graph is a tree

@ we provide a heuristic (called sum-product algorithm or belief
propagation) that is accurate when the graph is a tree

@ but also provides surprisingly good approximate solutions, even when
the underlying graph has loops

miws) = > {ialwi,za)3l Ta2a)}

T €EX

Sum-product algorithm 4-10

Role of the messages

mi(z;) = > Yia(®i,Ta)Va(Ta, a)i p(@i, op)YB(Tp, 2B)

Ta, T EX,T o, TR

{ X {wm(mz,meA(ma,xA)}}{ > {wlb(ml,xb)Zwsm,ws)}}

Tq €X T, EX

Sum-product algorithm

Belief Propagation for approximate inference

e given a pairwise MRF: p(z) = % [j)er vij(@i, z5)
@ compute marginal: p(z;) foralli eV

@ message update: set of 2|E| messages on each (directed) edge
{Visj(%i)} i j)e, where viyj : X — R™ encoding our belief (or
approximate P(z;))

1
> VD @) = Teeony { Zop 2 @) i @i m) |
» O(d;|X|?) computations
@ decision:

v () = 11 { Zu,gii(iﬂk)%k(mi,xk)}

keoi Tk

Sum-product algorithm 4-12

Sum-product algorithm on a line

v3—4(x3) v5sa(z5)

—l 44—
0—0—0---0--—-0—0—0

1 o T3 T4 xT5 L6 Ty

Remove node ¢ and recursively compute marginals on sub-graphs

n—1

H d)z i+1 ﬂ?z, xz+l)
pz) = > pl@)

[\
o< > (@, w2)Y(@ioe, io1) (@i, 2P, Tir1) Y(@it1, Tiva) - P(@n—1, Tn)
FIn\{i} e ;:joint dist. on a sub-graph ; ;
(i—1)—»i:oint dist. ub-grap! H(it1)—i

o Y Vensi(@io) $@imn, @)@ miea) Vg (@)
Fi-1rTitl marginal dist. on a subrgaph

V(ifl)%i(mifl)z Z H(i— 1)%1(331,---7952‘71)

Ti—2

M

Viit1)—i(Tiy1) = Lty —i (Tit1, - oy Tn)
Sum-product algorithm Tit2,Tn 4-13

vi(z;) = Z V(i—l)—n(ﬁ?z‘—ﬁw(fﬁi—hwi)¢($i,$i+1)V(i+1)—>i($i+1)
LTi—1,Ti+1
vi(;)

H) =)

definitions: of joint distribution and marginal on sub-graphs

1
Pi—1)—i(T15 -, Tim1) = 7 H Y(2g, Thy1)
(i=1)=i i)
V(i—l)—)i(xi—l) = Z M(i—l)—>¢($17---7$¢—1)
T1y.--3L5—2
1
M(i+1)—>i(9€z‘+17-~,$n) = 7z H Y(rg_1,)
(D)= peniya)
V(i+1)—>i($z'+1) = Z M(z‘+1)—>z’($z‘+1w--7$n)
L4255 Tn

Sum-product algorithm 4-14

how can we compute the messages v, recursively?

Wisit1(z1,. .., @)

Viit1(2:)

V1—2 (xl)

V23 (-T2)

X

Pic1—i(Z1, - Ti—1) (i1, 21)
Z Mimsit1 (21, .-, ;)
L1y Ti—1
Z Pici—i (X1, i) (Ti—1, 1)
T1yeyTio1
Z Vic1oi(zi1)(zi—1, z;)
Ti—1
1/|X|

1
> miﬁ(m,xz)

how many operations are required?

e O(n|X|?) operations to compute one marginal p(x;)

what if we want all the marginals?

e compute all the messages forward and backward O(n |X|?)
e then compute all the marginals in O(n|X|?) operations

Sum-product algorithm

Computing partition function is as easy as computing

marginals
recall
1
Him1)=i (T Tit) = V(Tk, Tht1)
(=121 pefi—2)
V(z'—l)—n;(l“z'—l) = Z H(i—1)—>z‘($17--.,$i—1)
L1yeeyTi—2

computing the partition function from the messages

Zisiivl) = Z H (X, Tht1)

T1,5T5 kE[i—1]

= Z Z(i—1)—i V(i—1)—i(Ti-1) Y(Ti-1, 7;)

T4, Tq—1
Zr =1
Ly = Z

how many operations do we need?
e O niX‘ 2 operations
rithm

Sum-product a 4-16

Sum-product algorithm for hidden Markov models

@ hidden Markov model

Sequence of rv.'s {(X1,Y1); (X2, Y2);...; (X0, Yo)}

hidden state {X;} Markov Chain P{z} = P{x;} H P{zit1|zi}

n
{Y;} noisy observations P{y|z} = HIP’{nyz}

N N P PN
o xrs3 T4 x5 Te 7
2 3 Ya Ys Ye Y7

(equivalent directed form)

O
Y1 l
T4 xIs Te X7
Y4 Ys Yo Y7

Sum-product algorithm 4-17

@ time homogeneous hidden Markov models

Sequence of r.v.'s {(X1,Y1); (X2, Y2);...5 (X0, Yo)}

n—1

{X;} Markov Chain P{z} = qo(x1) H q(zi, xiq1)
i=1

n
{Y;} noisy observations P{y|z} = HT(%‘, Yi)

1=1

1 n—1 n
n(w,y) = EH¢i(iai+l H (i yi) s
i=1 i=1

Vi(xi, xig1) = q(Ts, Tigr) Vi(wi, yi) = (T4, i) -

Sum-product algorithm

4-18

@ we want to compute marginals of the following graphical model on a
line (go uniform)

O O O O O
I U] I3 X4 xIs Te X7
Y1 2 Y3 Y4 Ys Yo yr
Bayes th n -
ayes thm
py () = Plaly} Y= H q(@i, Tit1) HT(%‘, Yi) -
i=1 i=1
1 n—1 n
1% (33‘) = /N Q(xﬁxjrl T;L‘ay
Yy Z(y) Z];E 7 (3 g 1 (3

1 n—1
= —— [vilwi i)

Z(y) -1
Vi(wi, wip1) = q(zg, wiq1) (s, y) (fori <n —1)
Q%Lfl(xnfla xn) = Q(xnfla xn) T(xnfla ynfl) T($n, yn) .

Sum-product algorithm 4-19

@ apply sum-product algorithm to compute marginals in O(n|X|?) time
Vi (@) o > gl @) r(@i1, vic1) Ve n—i(@ie1)
Ti—1€X

V(z‘+1)—>i(90i) & Z Q(-TiaxiJrl)T(l'iayi)V(i+2)—>(i+1)($i+1)'
Tit1€EX

known as forward-backward algorithm

> a special case of the sum-product algorithm

» BCJR algorithm for convolutional codes ([Bahl, Cocke, Jelinek and
Raviv 1974])

» cannot find the maximum likelihood estimate (cf. Viterbi algorithm)

> this requires max-product algorithm

implement sum-product algorithm for HMM [Exercise 4.3]

@ consider an extension of inference on HMM [Exercise 4.4]

Sum-product algorithm 4-20

Exercise 4.3

S&P 500 index over a period of time
For each week, measure the price movement relative to the previous
week: +1 indicates up and —1 indicates down

a hidden Markov model in which x; denotes the economic state (good
or bad) of week ¢ and y; denotes the price movement (up or down)

@ x441 = x¢ with probability 0.8

Py, x,(yr = +1]z; = "good’) = Py, x, (yr = —1[x; = "bad’) = ¢

Sum-product algorithm 4-21

Example: Neuron firing patterns

Hypothesis

Assemblies of neurones activate in a coordinate way in correspondence to
specific cognitive functions. Performing of the function corresponds
sequence of these activity states.

Approach

Firing process <> Observed variables
Activity states <> Hidden variables

Sum-product algorithm

ﬂﬂ ﬂﬂ

Go Cue Movement

v Onset

Center Hold Target Onset

Units

single subject
ensemble neural spikes

— horizontal eye position
— vertical eye position

Eye E

E
Arm L

m— 200 MS

baseline — planning — moving

automatically detect (as opposed to manually specify) baseline, plan,
and perimovement epochs of neural activity

» detect target movement in advance
» goal: neural prosthesis to help patients with spinal cord injury or

neurodegenerative disease and significantly impaired motor control

[C. Kemere, G. Santhanam, B. M. Yu, A. Afshar, S.I. Ryu, T. H. Meng and
Wym-oreduct algdithm <o cinl 1AN-92441 SAES (90N02\] 4-23

)

Planning

Q [
Baseline (—)

Planning
Left

Moving
Right

» discrete time 10ms
> P($t+1|$t) = Aijx

Planning

B Baseline Right
[N (N |] 1
[1 1 (I I B | 1 1
e i
(I NN | I [N I rmi
[LI
[ILIRN
1 mmer romer 1
[| [
IIIIIII [T I T T
L1 1 1 A1 1
L
k
1
-§ Threshold
=
£ v
-
L
i
v
0 A
Target Movement
Onset Cue

P(# spikes for measurement k = d|z; = i) e”"“vikg’i

AL i P(xi=s)
» likelihood: S Fei=s)

Sum-product algorithm

Belief propagation for factor graphs

6

+factor g (21, x5, T6)
T3 a

d T2 ¥

p(x) = 7 T ulraa)

acF

Sum-product algorithm 4-25

@ variable nodes i, j, etc.; factor nodes a, b, etc.

o set of messages {Vi—a}(ia)cr and {Va—i}(ai)er
@ messages from variables to factors

Visa(xi) = H Up—i(x;)
bedi\{a}
@ messages from factors to variables
Va%z l'z = Z T;Z)a x[‘)a H Vjﬁa($j)
Loa\{i} jeda\{i}
@ marginal distribution at variables
= [#osi(s)
beoi

@ this includes belief propagation (=sum-product algorithm) on
(general) Markov random fields

@ exact on factor trees

Sum-product algorithm

4-26

Example: decoding LDPC codes
@ LDPC code is defined by a factor graph model

variable nodes factor nodes
Yoz, x5, 2) = L(xs B xj G xr = 0)
x; € {0,1} @'n ! !
OB
)

> block length n =4
» number of factors m =2
> allowed messages = {0000,0111,1010,1101}

@ decoding using belief propagation (for BSC with € = 0.3)

1
py(@) = - TPy ix @il [] H(@waa = 0)
eV ackF

@ use (parallel) sum-product algorithm to find p(z;) and let

&; = arg max p(z;)

Sum—proﬂuépmémiﬂﬁﬁ bit error rate 4-27

Decoding by sum-product algorithm
Yy Pyilzi)

[0.5
0 _@_0.5} [0.5]
0.7 10.5)
10.3] 05\ [0.5]
0 2 11]0.5]
1 70.3] @_ [0.5]
5 10.5)

0.7]

[0.5]
10.5]

——(x3)[0.5
0.7 0.5 b

10.3] - [0.5]
/ _0.5_

0 F—= @'0.5
07 _0.5}

0.3]
1 ~
D (1) = P(yilas) [Tocon (o} (i)
~ 1
7D @) = Yoy Tjeon 1y Vimra (@) (@200 = 0)

Sum-product algorithm

4-28

Decoding by sum-product algorithm

Yy Plyila:) i
0.7
0 — _0.3} [0.5]
0.7 0.5
0.3 . [0.5]
L 0.3
Q_J/ ° | Lo3]
1 0.3 &: [0.5]
0.7 Q.3 0.5
S 0)
’ [0.5]
0 —(x3 0.7 10.5]
0.7 0.3 b |
0.3] - 0.5
0.5
0 e
0.3] :
t+1 ~(t
T (5) = P(yili) Tocon oy Pooi (%)
~(t+1
P (@0) = X i Tjeoa iy Vimva (@)L (@00 = 0)

Sum-product algorithm

Decoding by sum-product algorithm

03]

Yy Pyilw:)
0 =
0.7
10.3]
1 [T\
10.7]
— (3
0 froam\X [
10.3]
0 T [
10.3]

(t+1)

Vica (@) = P(yil2) [Toeon 0 Py ()

St+D)

0.3

0.7
0.3

|

[0.42] 0.3 x 0.7+ 0.3 x 0.7
_0.58} - {0.3 x 0.3+ 0.7 x 0.7
[0.58
_0.42}
[0.42
_0.58}

0.7
0.3

[0.3
0.7

o (@i) = Zxaa\{i} ngaa\{i} Vjsa(2)[(S2oa = 0)

Sum-product algorithm

4-28

Decoding by sum-product algorithm

Yy Plyilz)
0.7
0 f@"'% [0.42
0.7 10.58
103, 0.5] _ [03 .7% 0'58]
QA0 5| 042
1 [foaT\ 2 | ~ [0.42
07 37 3% 058 |0.58
- 0. 0.7x 042
0.7
0 F—(=x3)[07 0.3
0.7 0.3 b)
0.3] - 0.3
0.7
1O
0.3] .
t+1 ~(t
D (@) = Pyila:) [Loconqa) (i)
~(t+1
Vlg—)i)(xl) = Zxaa\{z‘} Hana\{i} Viza(2j)l (@00 = 0)

Sum-product algorithm

Decoding by sum-product algorithm

Yy Pylxi)
0.7
0 f@.w} 0.5
0.7 \ 0.5
0.3 - [0.58
e 0.5 . 042}
0 0.
1 03] @ '0-5}
0.7 Y 105
S 0.
0.7
0 [—=(x3)[07 0.3
0.7 0.3 b |-
10.3] - 0.37
/ 10.63
0 [o) o
10.3] Lo
t+1 ~(t
v (@) = Pluilad) Tueon gy Phovil@?)
~(t+1
B @) = S Tjcon iy Vimra(@)) (@700 = 0)

Sum-product algorithm 4-28

Decoding by sum-product algorithm
flzi) Yy Plyilz)

0.7}
0.7 0.3
_0'3} 0 [0.7] @\
03] [0.5 a
g 0
0.58 ___
1 o3 @
0.42 .
- 0.7 ~
S 0.
[0.7 4
. 0 —(x3)]|0.7
-0“5} 0.7 0.3 b
10.3] -
[0.58
»o.42} O o\ {8;}
10.3] '

D)

D)

Sum-product algorithm

[0.5]
10.5]
[0.58
10.42
[0.5]
10.5]

[0.7]
10.3]

[0.37

D () = Pyiled) Tyeon o 70 (@)

10.63

|

ai (Ti) = Zxaa\{i} Hjeaa\{i} Vj—a(2;)l(©194 = 0)

4-28

Sum-product algorithm on trees
a motivating example: influenza virus
complete sequence of the gene of the 1918 influenza virus

Leningadst
Teraaso
iogiacs
Secams
vl

Human

Swine

Avian

[A.H. Reid, T.G. Fanning, J.V. Hultin, and J.K. Taubenberger,

Proc. Natl. Acad. Sci. 96 (1999) 1651-1656]
Sum-product algorithm 4-29

@ challenges in phylogeny
» phylogeny reconstruction: given DNA sequences at vertices (only at
leaves), infer the underlying tree T' = (V, E).
» phylogeny evaluation: given a tree T' = (V| F) evaluate the
probability of observed DNA sequences at vertices (only at leaves).

@ Bayesian network model for phylogeny evaluation

T = (V, D) directed graph, DNA sequences = = (z;);c € XV
uT(a:) = qO($o> H Qi,j(xiv xj))
(4.9)€D
¢i,j(zi,x;) = Probability that the descendent is z; if ancestor is ;.

Sum-product algorithm 4-30

e simplified model: X = {+1,—1}

QO(xo) = 5
1—q ifz;=uay
Q(xivxj) = { . ’ '
if v; # x;
1
MRF representation: q(z;, ;) o %% with 0 = 510g . q

probability of certain tree of
mutations x:

pr(x (H 69%%]

(’L,j)EE

e problem: for given T', compute marginal pp(z;)

@ we prove the correctness of sum-product algorithm for this model, but
the same proof holds for any general pairwise MRF (and also for
general MRF and FG)

Sum-product algorithm 4-31

o define graphical model on sub-trees

1
/
- A/
J
Tii
Ti—»i = (Vj=i,Ej—i) = Subtree rooted at j and excluding ¢
1 Oz T,
pisi(rv,) = ——— [
2(Ti1) (w,v)EE;
visi(zy) = Z Mj_’i(xvj%i)
TV 5 i\{4}

Sum-product algorithm 4-32

Tklai - (VhEl) Tk "
2—1

Ty T i
3

the messages from neighbors k1, k2, ks, k4 are sufficient to compute the marginal p(z;)

ur (iUz) o Z H eGacu Ty

Ty {i} (u,v)EE

= Z ﬁ{eewwke H e@xuxv}

Ty Ty, TV Ty, =1 (u,v)EE,

4
— | | 2 : {69111k1{ | | eézumv}

E=1 g\ (g} (w0)€By

x H{Zeezlke Z Mkiﬁlxv)}

Ty TVe\{ke}

Vip—i(Thy)
Sum-product algorithm 4-33

@ recursion on sub-trees to compute the messages v

Hi—j (mVi—u’)

X

Sum-product algorithm

Z(Ti~j)

Z(Tij)

i
/""
” o

1

1

eGquv einzl

eexizk egzizl

J
/I

)

N\

[1

Tisj

e@zuzv

(u,v)EE;j

erixk e@wixl {

H eexuwv}{ H eewuwv}

(u,v)EE) (u,v)EE_;
H Gfruy }{ H eBzuzU}
(u,v)EER 44 (w,v)EE;;

B—i (T,)i (v, ;)

4-34

vimi(i) = Y pios(@vis,)

Vi j\i
040 iTE Ox;x;
x e i (v i (wvi ;)
TV j\i
Ox,;x) Ox,;x;
x e i (v,) e iz,
Vi Vi
= { C Hk—i kaH”L }{ € ! /J/l—n(le*”)}
Tk TV i \{k} TV \ {1}
Ox;xp Ox,;x;
e e Vk—i(Tk) e ()

- 1
= 3]

Sum-product algorithm 4-35

with uniform initialization v;_;(x;) for all leaves 4

@ sum-product algorithm (for our example)

Viesj(x;) o H {Zeew’m’”/kai(mk)}

keoi\j Tk

viw) = [T { e i)}
keodt wk
Vz(xz)
D, Vilwi)
@ what if we want all the marginals?
» choose an arbitrary root ¢
» compute all the messages towards the root (|E| messages)
» then compute all the messages outwards from the root (| E| messages)
» then compute all the marginals (n marginals)
@ how many operations are required?
> naive implementation requires O(|X|? ", d?) per iteration
* if i has degree d;, then computing v;_,; requires d;|X'|? operations
* d; messages start at each node 4, each require d;|X|* operations
* total computation for 2| E| messages is . {di . (di\X|2)}

pr(x;) =

» however, we can compute all marginals in O(n |X|?) operations

Sum-product algorithm 4-36

o let D ={(i,7),(4,4)|(3,7) € E} be the directed version of E (cf.
D] = 2|El)
o (sequential) sum-product algorithm
1. initialize v;_,;(x;) = 1/|X] for all leaves i
2. recursively over (i,5) € D compute (from leaves)

vinj(z) = H {Zwik(xiwkﬁ/k—n(xk)}
k€di\j @k

3. for each i € V' compute marginal

vi(w;) = H{Z¢ik(¢i7xk)l/k—>i($k)}

keoi Tk
vi(1;)

prle) =)

Sum-product algorithm 4-37

o (parallel) sum-product algorithm
1. initialize v*) (z;) = 1/|X] for all (¢,5) € D

Z*}]

2. fOI’tE{O,l,--- m'}x}
for all (i,7) € D compute

zxi(tjjl)(xi) =]I {Z%k(%@k)”ﬁi(%)}
keoi\j Tk

3. for each ¢ € V' compute marginal

v = TT{ D vat o}

kedi
vi(zi)

>z, VilTi)

@ also called belief propagation

@ when tpax is larger than the diameter of the tree (the length of the
longest path), this converges to the correct marginal [Exercise 4.1]

@ more operations than the sequential version (O(n|X|? - diam(T)))
» a naive implementation requires O(|X|? - diam(T) - Y d?)

pr(r) =

@ naturally extends to general graphs but no proof of exactness

Sum-product algorithm 4-38

Sum-product algorithm on general graphs
o (loopy) belief propagation
1. initialize v, (x;) = 1/|X| for all (¢,5) € D
2. fort € {0,1,... tmax}
for all (i,5) € D compute

@) =TT ewten e o }

kedi\j Tk

3. for each ¢ € V compute marginal

vitz:) =[] {Zd’l’f eyt)(xk)}
keoi T
vi(;)

prie) =)

@ computes ‘approximate’ marginals in O(n|X|? - tmax) operations
o generally it does not converge; even if it does, it might be incorrect
o folklore about loopy BP
» works better when GG has few short loops
» works better when 1/}ij (l’i7l’j) = 1/Jij71(zi)1/1ij,2(xj) + small(xi,mj)
> nonconvex variational principle
Sum-product algorithm 4-39

Exercise: partition function on trees

@ using the recursion for messages:

viei() =][{Zwik(a?i,a?k)vkm(wk)}

kedi\j Tk

vi(w;) = H{Zwik(mi,mk)vkw(mk)}

kedi wxp

it follows that we can easily compute the partition function as
Z(T) = vi(x)
a3

@ alternatively, if we had a black box that computes marginals for any tree,
then we can use it to compute partition functions efficiently

2Tny) = Y TT { X valaied) - 2@ - moilan) |

xr, €X k‘Gai\j TR EX
2r) = 3 TL{ S vulenan) - Z2(T) - moilwn) |
T, €EX k€Edi xREX

@ this recursive algorithm naturally extends to general graphs
Sum-product algorithm 4-40

Why would one want to compute the partition function?
Suppose you observe

r=(+1,+1,+1,+1,+1,+1,+1,4+1,+1)

and you know this comes from either of

(e.g. coloring)

which one has highest likelihood?

Sum-product algorithm 4-41

Exercise: sampling on the tree

o if we have a black-box for computing marginals on any tree, we can
use it to sample from any distribution on a tree
SAMPLING(Tree T'= (V, E), ¥ = {¢ij} i)eE)
1: Choose a root 0 € V;
Sample X, ~ (-);
Recursively over i € V' (from root to leaves):
Compute fi;r(s) (Ti|Tx(i));
Sample Xi ~ Nz|7r(z)(: |xﬂ(z)),
7(1) is the parent of node 7 in the rooted tree T,
@ we use the black-box to compute the conditional distribution

pr (v, lx) o< abij(za) pisi(Tv,,)
pr(xile;) o< Yij(izy) pisj(z:)
Sum-product algorithm 4-42

Tree decomposition

when we don’t have a tree we can create an equivalent tree graph
by enlarging the alphabet X — X%

Treewidth(G) = Minimum such k

it is NP-hard to determine the treewidth of a graph

problem: in general Treewidth(G) = O(n)

Sum-product algorithm 4-43

Tree decomposition of G = (V, E)

A tree T = (Vp, Er) and a mapping V : Vi -SUBSETS(V) s.t.
@ For each i € V there exists at least one u € Vp with i € V(u).
@ For each (i,) € E there exists at least one u € Vp with i,j € V(u).

o Ifi € V(up) and i € V(ug), then i € V(w) for any w on the path
between w7 and ug in T

Sum-product algorithm 4-44

