CSE 515: Statistical Methods in Computer Science Winter 2018

Homework Assignment 1
Due: January 30, 2018 at 12:01 am

Total points: 100

Deliverables: hw1.pdf containing typeset solutions to Problems 1-2.

Source code containing your implementation for Problem 3.

README file explaining how to compile and run the source code on Linux or Windows.

Guidelines: All files must be submitted by Dropbox. You can brainstorm with others, but please solve the
problems and write up the answers and code by yourself. You may use textbooks (Koller & Friedman,
Russell & Norvig, etc.), lecture notes, and standard programming references (e.g., online Java API
documentation). Please do NOT use any other resources or references (e.g., example code, online
problem solutions, etc.) without asking.

1.

1.1.

1.2.

1.3.

2.1

Probability Theory

(5 points) A fire alarm rings when it detects fire. We can connect multiple alarms one after another
to improve the overall system reliability, and we evacuate people if any of the alarms rings. Here we
know the reliability (chance to ring when fire exists) is 0.96 for a two-alarm system. How many alarms
shall we connect if we are going to build a system that has at least 0.9999 reliability? Assume the
alarms are identical and independent.

(10 points) Cinemas A and B are competing among 1,000 customers. Assume each customer
independently chooses between them with equal probability. How many seats should cinema A have,
so that the probability is less than 1% for a customer being unable to buy a ticket because the seats
are sold out.

(10 points) When sending one of three letters (4, B, C) through a telephone line, the probability of
receiving a correct letter is a, and 1_Tafor receiving each of the wrong letters. Now we know the
probabilities are py, p2, b3 (p1 + P2 + p3 = 1), respectively, for sending AAAA, BBBB, CCCC. What

is the probability of sending AAAA if we have received ABCA? Assume sending and receiving a letter
at different steps are independent events.

Bayesian Analysis of the Uniform Distribution

(10 points) Consider the uniform distribution Unif (0,8). The maximum likelihood estimate is § =
max D, but this is unsuitable for predicting future data since it puts zero probability mass outside the
training data. In this exercise, we will perform a Bayesian analysis of the uniform distribution. The
conjugate prior is the Pareto distribution, p(6) = Pareto(0|b, K), the pdf of which is defined in the
following form:
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2.2,

Pareto(6|b,K) = KbX6~¥+V1 4,

Given a Pareto prior, the joint distribution of 6 and D = (xq, ..., xy) is

K
p(D: 0) = W 192max(b,max(D))

Let m = max(D). The evidence (the probability that all N samples came from the same uniform
distribution is
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Derive the posterior p(6|D), and show that it can be expressed as a Pareto distribution.

(15 points) Suppose you arrive in a new city and see a taxi number 100. How many taxis are there in
this city? Let us assume taxis are numbered sequentially as integers starting from 0, up to some
unknown upper bound 8. (We number taxis from 0 for simplicity; we can also count from 1 without
changing the analysis.) Hence the likelihood function is p(x) = U(0, 8), the uniform distribution. The
goal is to estimate 6. We will use the Bayesian analysis from the previous question.

(a) Suppose we see one taxi numbered 100, so D = {100}, m = 100, N = 1. Using an (improper) non-
informative prior on 6 of the form p(8) = Pa(60|0,0) o 1/6, what is the posterior p(6|D)?

(b) Rather than trying to compute a point estimate of the number of taxis, we can compute the
predictive density over the next taxicab number using

p(D'ID, a) = j p(D'|6)p(61D, )d6 = p(D'|B),

where a = (b, K) are the hyperparameters, § = (c, N + K) are the updated hyperparameters. Now
consider the case D = {m}, and D' = {x}. Write down an expression for p(x|D, @). As above, use a
non-informative prior b = K = 0.

. The EM Algorithm

3.1.

(50 points) Implement the EM algorithm for mixtures of Gaussians in your choice of programming
language. (C, C++, Java, Perl, Python, and OCaml are all fine. Please ask about any others.) Assume
that means, covariances, and cluster priors are all unknown. For simplicity, you can assume that
covariance matrices are diagonal (i.e., all you need to estimate is the variance of each variable).
Initialize the cluster priors to a uniform distribution and the standard deviations to a fixed fraction of
the range of each variable. Your algorithm should run until the relative change in the log likelihood of
the training data falls below some threshold (e.g.,stop when log likelihood improves by<0.1%). The
program should be run on the command line with the following arguments:

Jgaussmix <# of clusters> <data file> <model file>
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It should read in data files in the following format:
<# of examples> <# of features>
<ex.1, feature 1> <ex.1, feature 2> ... <ex.1, feature n> <ex.1, label>

<ex.2, feature 1> <ex.2, feature 2> ... <ex.2, feature n> <ex.2, label>

And output a model file in the following format:
<# of clusters> <# of features>
<clust1.prior> <clust1.mean1> <clust1.mean2> ... <clust1.var1> ...

<clust2.prior> <clust2.mean1> <clust2.mean2> ... <clust2.var1> ...

Train and evaluate your model on the vehicle silhouette dataset, available from the course Web page.
Each data point represents a vehicle, with features representing geometrical properties of the
silhouette. We provide a single default train/test split to test generalization, and you can use the test
data labels only for evaluation. The full dataset and more information can be found in the UCI
repository (and linked from the course Web page). Start by using 4 clusters, since the dataset includes
four different vehicles. Evaluate your models on the test data.

Two recommendations:

e To avoid underflows, work with logs of probabilities, not probabilities.
e To compute the log of a sum of exponentials, use the “log-sum-exp” trick:

log Z exp(xi) = Xmax t log Z exp(X; — Xmax)
i i
Answer the following questions with both numerical results and discussion.
(a) Plot train and test set likelihood vs. iteration. How many iterations does EM take to converge?

(b) Experiment with two different methods for initializing the mean of each Gaussian in each cluster:
random values (e.g., uniformly distributed from some reasonable range) and random examples
(i.e., for each cluster, pick a random training example and use its feature values as the means for
that cluster). Does one method work better than the other or do the two work approximately the
same? Why do you think this is? (Use whichever version works best for the remaining questions.)

(c) Run the algorithm 10 times with different random seeds. How much does the log likelihood change
from run to run?

(d) Infer the most likely cluster for each point in the training data. How does the true clustering label
compare to your inference?

(e) Graph the training and test set log likelihoods, varying the number of clusters from 1 to 10. Discuss
how the training set log likelihood varies and why. Discuss how the test set log likelihood varies,
how it compares to the training set log likelihood, and why. Finally, comment on how train and test
set performance with the “true” number of clusters (4) compares to more and fewer clusters and
why.



