
CSE 515: Statistical Methods in Computer Science Winter 2017

Homework Assignment 4
Due: March 9, 2017 at 11am

Total points: 100
Deliverables: hw4.pdf containing typeset solutions to Problems 1-6.

Guidelines: All files must be submitted by Dropbox. You can brainstorm with others, but please solve
the problems and write up the answers and code by yourself. You may use textbooks (Koller & Friedman,
Russell & Norvig, etc.), lecture notes. Please do NOT use any other resources or references (e.g., example
code, online problem solutions, etc.) without asking.

1 Sampling-based Inference

1. In class we have shown that a distribution in detailed balance is stationary and that the Gibbs sampling
transition probability is in detailed balance with the posterior probability P (X|e). (Thus, showing
that the posterior is a stationary distribution of Gibbs sampling).

Remember that a distribution π(X) is a stationary distribution for a Markov chain defined by a
transition probability T if it satisfies:

π(X = x′) =
∑

x∈V al(X)

π(X = x)T (x→ x′)

Show directly from the definition of a stationary distribution (without using the detailed balance
equation) that the posterior distribution P (X|e) is a stationary distribution of Gibbs sampling.

2. TheMetropolis-Hastings algorithm is a member of the MCMC family; as such, it is designed to generate
samples x (eventually) according to target probabilities π(X). (Typically we are interested in sampling
from π(x) = P (x|e)).
Metropolis-Hastings operates in two stages. First, it samples a new state x′ from a proposal distribution
q(x→ x′), given the current state x. Then, it probabilistically accepts or rejects x′ according to the
acceptance probability

α(x→ x′) = min

(
1,
π(x′)q(x′ → x)

π(x)q(x→ x′)

)
If the proposal is rejected, the state remains at x.

(a) Consider the case where π(x) = P (x|e). Explain why the fact that we can’t sample directly from
P (x|e) (this is what we are trying to estimate using the MCMC in the first place) does not pose
a problem when computing α(x→ x′).

(b) Consider an ordinary Gibbs sampling step for a specific variable Xi. Show that this step, consid-
ered as a proposal, is guaranteed to be accepted by Metropolis-Hastings. (Hence, Gibbs sampling
is a special case of Metropolis-Hastings).

(c) Show that the two-step process above, viewed as a transition probability is in detailed balance
with π.

2 Partially Observed Data

3. Consider learning the following Bayesian network: A → B → C with the following data table, where
entries ’?1’ and ’?2’ are missing at random:

1 of 3



CSE 515: Statistical Methods in Computer Science
Winter 2017

Homework Assignment 4
Due: March 9, 2017 at 11am

A B C
T T F
T ?2 F
T F F
?1 F T
F T T
F T F
F F F

(a) Use the data to estimate initial parameters for this network, using maximum likelihood estimation
over the observed data for simplicity.

(b) Perform two iterations of the EM algorithm (by hand): estimate the values of the missing data, re-
estimate the parameters, re-estimate the values of the missing data and re-estimate the parameters
once more. Show your calculations.

4. Consider the problem of applying EM to parameter estimation for a variableX whose local probabilistic
model is a noisy-or. Assume that X has parents Y1, . . . , Yk, so that our task for X is to estimate the
noise parameters λ0, . . . , λk. Explain how we can use the EM algorithm to accomplish this task by
utilizing the structural decomposition of the noisy-or node. That is, construct an equivalent network
with hidden variables and derive the expectation and maximization steps.

3 Structure Learning

5. Consider learning the structure of a Bayesian network for some given ordering, ≺, of the variables
X1, . . . , Xn. (This can be done efficiently as described in section 18.5.2.1 of Koller & Friedman). Now
assume that we want to perform a search over the space of orderings; that is, we are searching for a
network (with bounded in-degree k) that has the highest score. We do this by defining the score of
an ordering as the score of the (bounded in-degree) network with the maximum score consistent with
that ordering, and the we search for the ordering with the highest score. We bound the in-degree so
that we have smaller and smoother search space.

We will define our search operators o to be swapping two adjacent variables in the ordering. Starting
from some given ordering, ≺, we evaluate a decomposable structure score of all successor orderings,
≺′, where a successor ordering is found by applying o to ≺ once (see figure 1).

1,2,3,4

1,3,2,42,1,3,4 1,2,4,3

2,3,1,41,2,3,4 2,1,4,3

Figure 1: Partial search tree example for orderings over variables X1, X2, X3, X4. Successors
to ≺= (1, 2, 3, 4) and ≺′= (2, 1, 3, 4) shown.

We now choose a particular successor, ≺′. Provide an algorithm for computing as efficiently as possible
the scores for all successors of the new ordering ≺′, given that we have already computed the scores
for all successors of ≺.
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Note: A structure score score(G : D) is decomposable if the score of the structure G can be written as

score(G : D) =
∑
i

FamScore(Xi|PaGXi
: D)

where the family score FamScore(X|U : D) is a score measuring how well a set of variables U serves
as parents of X in the dataset D.

6. Show that adding edges to a Bayesian network increases the likelihood.
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