Markov Decision Processes

Mausam
CSE 515

Neuroscience
/Psychology

Artificial
Intelligence

model the sequential decision making of a rational agent.

A Statistician’s view to MDPs

One-step @_> 0

Decision Theory

* sequential process
* models state transitions
* autonomous process

* one-step process
* models choice
* maximizes utility

L S
Markov Decision Process
u
e Markov chain + choice * sequential process

e Decision theory + sequentiality * models state transitions
* models choice
* maximizes utility

A Planning View

Fully
VS.
Partially
Observable

Perfect
VS.
Noisy

Static vs. Dynamic

Predictable vs. Unpredictable

Percepts
>

What action
next?

Actions

Deterministic
VS.
Stochastic

Instantaneous
VS.
Durative

Classical Planning

Fully
Observable

Perfect

Static Predictable

What action

Percepts
>

Actions

Deterministic

Instantaneous

Deterministic, fully observable

Stochastic Planning: MDPs
Static Unpredictable

Fully
Observable
What action Stochastic
Instantaneous
Perfect

Actions

Percepts
>

Stochastic, Fully Observable

—_— e

G Tt mea— e -l/ S e ar T ——— -——
—— o g o O om — P T T e e e e e - -
/b/
e o &

— -

- —t— e e e — — — — — — — —— — —

—— ——
¥ ¥

N

—— t—d— A—d— —d— —d— g \-—4— —— et S l— = — = d—

—_—— — Pt il NONE —— e e — — — — — -\ NS — o — — - .—

/'/'/'/'/// \ \\§\\\\\K\\‘\\‘\\\ A

Satatatata™ah ' /////////////////////////////////////

— iy i — —— — — -.— .-— o g g e i — — —

PalP ol ol alPadP ol d / \‘\‘\‘\'\‘\'\‘\‘\‘\‘\‘\‘\‘\._‘\‘\‘\‘\‘\‘\‘\‘\‘\'\‘\'\‘\‘\._‘\‘\‘\‘\‘\'\‘\

-—

—

t
t
—
-~
\ ——— —e—
\ AN //

e ta e A ™A ™

———

Pl ol all ol odb ol 4

Decision Process (MDP)
factored
@set of states D ctore Factored MDP
set of action

Pr(s |s al\transition model
ost model

. absorbing/
G: set ot goals > non-absorbing
* S, start state
* y: discount factor

KR(s,a,s’): reward model/

Objective of an MDP

 Findapolicyn:S— A

* which optimizes
* Minimizes (Jiscounted) €XpPected cost to reach a goal
* maximizes or expected reward
* maximizes lundiscount,) expected (reward-cost)

« givena___ horizon
* finite
* infinite
* indefinite

« assuming full observability

Role of Discount Factor (y)

Keep the total reward/total cost finite
« useful for infinite horizon problems

* Intuition (economics):
 Money today is worth more than money tomorrow.

- 2
Total reward: ry +yr, + yr; + ...
Total cost: ¢y + yc, + y2c,y + ...

Examples of MDPs

* Goal-directed, Indefinite Horizon, Cost Minimization MDP
¢ <S! A1 Pr’ c! g! SO>
* Most often studied in planning, graph theory communities

=_Infinite Horizon, Discounted Reward Maximization MDP>*~——__
* <5 APOR, most popular

* Most often studied in machine learning, economics, operations
research communities

 Goal-directed, Finite Horizon, Prob. Maximization MDP
* <S! A1 Pr, g! SO! T>
« Also studied in planning community

* Oversubscription Planning: Non absorbing goals, Reward Max. MDP
¢ <S! A! Pra g: R: SO>
« Relatively recent model

Bellman Equations for MDP,

° <S! A! Pr! C! G7 SO>

* Define J*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« J* should satisfy the following equation:

0 s€¢g

min > Pr(s|s,a) {C(s,a,s’) + J*(s")

CLEAp(S) S’ES

Bellman Equations for MDP,

° <S! As Pr! R! SO, y>

» Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

« V* should satisfy the following equation:

Bellman Equations for MDP,

° <S, A, Pr, g, SO’ T>

« Define P*(s,t) {optimal prob} as the maximum
expected probability to reach a goal from this
state starting at t'" timestep.

« P* should satisfy the following equation:

1if s€g
Oif s£G

max »_ Pr(s'|s,a)P*(s',t + 1)
acEAp(s) JeS

Bellman Backup (MDP,)

» Given an estimate of V* function (say V)

» Backup V, function at state s
* calculate a new estimate (V,,q) :

> Pr(s'|s,a) R(s,a,s") +17n(s")

s'eS

ax ,
max [Quy1(s,)]

* Q,.,4(s,a) : value/cost of the strategy:
« execute action a in s, execute i, subsequently
* Ty = argmaXaEAp(s)Qn(S’a)

Bellman Backup

Q(s,a;) =2+ 0y

Q(s,a,) =5+70.9x 1
+v0.1x 2

Q,(s,a3)=4.5+2y

max

Value iteration [Bellman’57]

 assign an arbitrary assignment of V, to each state.

* repeat
for all states s
ompute V

 until max{V,.(s) - V(s

Iteration n+1

Residual(s)

g-convergence

Comments

* Decision-theoretic Algorithm
* Dynamic Programming
* Fixed Point Computation

* Probabilistic version of Bellman-Ford Algorithm

» for shortest path computation
« MDP, : Stochastic Shortest Path Problem

A Time Complexity

« one iteration: O(|S|?3|.A|)

« number of iterations: poly(|S], | A, 1/(1-y))
A Space Complexity: O(|S))
A Factored MDPs

» exponential space, exponential time

Convergence Properties

V, — V*in the limit as n—oo
g-convergence: V, function is within g of V*
Optimality: current policy is within 2gy/(1—y) of optimal

Monotonicity
« V, OV =V, G V* (V, monotonic from below)
« V, OV =V, QG V*(V, monotonic from above)
» otherwise V, nhon-monotonic

Policy Computation

argmax Q*(s,a
CLEAp(S)Q ()

argmax Y Pr(s'ls,a) PZ(S,CL,S,) +yV*(s")

CLEAp(S) SIES

Policy Evaluation

A system of linear equations in |S] variables.

Changing the Search Space

* Value lteration
« Search in value space
« Compute the resulting policy

* Policy lteration
« Search in policy space
« Compute the resulting value

Policy iteration [Howard’60]

 assign an arbitrary assignment of n, to each state.

repeat - costly: O(n3)
. licy Evalua@compute V,.1: the evaluation of &, T

» Policy Improvement: for all states s
* compute m,.,(S): argmax,c aps)Qn+1(S,3)

. _ i approximate
until &, =, Mo.diﬁed : > b?rlzlalue iteration
Advantage Policy Iteration using fixed policy

« searching in a finite (policy) space as opposed to
uncountably infinite (value) space = convergence faster.

« all other properties follow!

Modified Policy iteration

 assign an arbitrary assignment of n, to each state.

e repeat
 Policy Evaluation: compute V., the approx. evaluation of &,
« Policy Improvement: for all states s
* compute m,,(S): argmax, ap)Qn+1(S,a)

d Untl| nn+—| — ﬂ:n
Advantage

 probably the most competitive synchronous dynamic
programming algorithm.

Asynchronous Value Iteration

A States may be backed up in any order
* instead of an iteration by iteration

A As long as all states backed up infinitely often
« Asynchronous Value Iteration converges to optimal

Asynch VI: Prioritized Sweeping

A Why backup a state if values of successors same?

A Prefer backing a state
« whose successors had most change

A Priority Queue of (state, expected change in value)
A Backup in the order of priority

A After backing a state update priority queue
 for all predecessors

Asynch VI: Real Time Dynamic Programming
[Barto, Bradtke, Singh’95]

 Trial: simulate greedy policy starting from start state;
perform Bellman backup on visited states

 RTDP: repeat Trials until value function converges

RTDP Trial

Comments

* Properties
- if all states are visited infinitely often then V, — V*

« Advantages
« Anytime: more probable states explored quickly

« Disadvantages
« complete convergence can be slow!

Reinforcement Learning

Reinforcement Learning

A Still have an MDP
« Still looking for policy w

A New twist: don’t know Pr and/or R

* i.e. don’t know which states are good
e and what actions do

A Must actually try out actions to learn

Model based methods

A Visit different states, perform different actions
A Estimate Prand R

A Once model built, do planning using V.I. or
other methods

A Con: require _huge_amounts of data

Model free methods

A Directly learn Q*(s,a) values

Q*(s,a) = Y. Pr(s]s,a) |R(s,a,s") +V*(s)

s'eS

QR*(s,a) = > Pr(sls,a) [’R(S,a,s') + ymaz ,Q* (s, a)

s'eS

A sample = R(s,a,s’) + ymax_,Q,(s’,a’)
A Nudge the old estimate towards the new sample
A Q. .(s,a)a (1-a)Q,(s,a) + a[sample]

Properties

A Converges to optimal if
* |f you explore enough
* |f you make learning rate (a) small enough
» But not decrease it too quickly

° ZiOL(S,a,i) =
* > .0%(s,a,i) <™
where i is the number of visits to (s,a)

Model based vs. Model Free RL

A Model based
« estimate O(|S|?|.A|) parameters
 requires relatively larger data for learning
« can make use of background knowledge easily

A Model free
 estimate O(|S||A|) parameters

 requires relatively less data for learning

Exploration vs. Exploitation

A Exploration: choose actions that visit new states in
order to obtain more data for better learning.

A Exploitation: choose actions that maximize the
reward given current learnt model.

A e-greedy
« Each time step flip a coin
« With prob ¢, take an action randomly
« With prob 1-¢ take the current greedy action
A Lower ¢ over time
* Increase exploitation as more learning has happened

Q-learning

A Problems

« Too many states to visit during learning
* Q(s,a) is still a BIG table

A We want to generalize from small set of training examples

A Techniques
» Value function approximators
» Policy approximators
» Hierarchical Reinforcement Learning

Task Hierarchy: MAXQ Decomposition [Dietterich’00]

Partially Observable Markov Decision Processes

Partially Observable MDPs
Static Unpredictable

Partially
Observable
What action Stochastic
Instantaneous
Noisy

Actions

Percepts
>

Stochastic, Fully Observable

—_— e

G Tt mea— e -l/ S e ar T ——— -——
—— o g o O om — P T T e e e e e - -
/b/
e o &

— -

- —t— e e e — — — — — — — —— — —

—— ——
¥ ¥

N

—— t—d— A—d— —d— —d— g \-—4— —— et S l— = — = d—

—_—— — Pt il NONE —— e e — — — — — -\ NS — o — — - .—

/'/'/'/'/// \ \\§\\\\\K\\‘\\‘\\\ A

Satatatata™ah ' /////////////////////////////////////

— iy i — —— — — -.— .-— o g g e i — — —

PalP ol ol alPadP ol d / \‘\‘\‘\'\‘\'\‘\‘\‘\‘\‘\‘\‘\._‘\‘\‘\‘\‘\‘\‘\‘\‘\'\‘\'\‘\‘\._‘\‘\‘\‘\‘\'\‘\

-—

—

t
t
—
-~
\ ——— —e—
\ AN //

e ta e A ™A ™

———

Pl ol all ol odb ol 4

Stochastic, Partially Observable

Pl V- ol o g o R S e e S T T e e

P
| o s o N e e e e s e e ataA TR MM A M MM MM N T Sttt NN,

—_—— ——

TN

—— - ——

—— e e W o e e sl S W W t A G WS

T,

— NN e e = NN —-

o7
) A e R T R T R R T TR R o T T, T o T T, T, T, o, T, o, o, T, R T T T

""'\q.""\"‘"n"‘"\.\‘\\ .L/ Pl ol e el P S i

&
R P 8 &

—— e A — — PR e A A A A A A o A A —

i — - — —— - o i i - — -

. T T S T = e i i a—

:_"-. —_—— e ——————— e TR e e m——— -— -—

e M M e M M M R e e e e R N M e R R e R e e W e W W e W e W

POMDPs

A In POMDPs we apply the very same idea as in MDPs.

A Since the state is not observable,

the agent has to make its decisions based on the belief state
which is a posterior distribution over states.

A Let b be the belief of the agent about the current state

A POMDPs compute a value function over belief space:

Vr(b) max [r(b,a) +of Vp_1(Wp¥ | b, a) dV
a

POMDPs

A Each belief is a probability distribution,

 value fn is a function of an entire probability distribution.
A Problematic, since probability distributions are continuous.

A Also, we have to deal with huge complexity of belief spaces.

A For finite worlds with finite state, action, and observation
spaces and finite horizons,

« we can represent the value functions by piecewise linear
functions.

Applications

A Robotic control
 helicopter maneuvering, autonomous vehicles
« Mars rover - path planning, oversubscription planning
* elevator planning
A Game playing - backgammon, tetris, checkers
A Neuroscience
A Computational Finance, Sequential Auctions
A Assisting elderly in simple tasks
A Spoken dialog management
A Communication Networks - switching, routing, flow control
A War planning, evacuation planning

