
CSE 515: Statistical Methods in Computer Science

Homework #3

Due at noon on February 25th

Guidelines: You can brainstorm with others, but please solve the problems and write
up the answers by yourself. You may use textbooks (Koller & Friedman, Russel & Norvig,
etc.) and lecture notes from class. Please do NOT use any other resources or references
(e.g., example code, online problem solutions, etc.) without asking.

Submission instructions: Submit this assignment by email to Chloé Kiddon (chloe@cs).
Attachments should include: A PDF containing written answers and your complete imple-
mentation for the programming portion. Typed answers are highly preferred, but if this is
a hardship, then handwritten answers are fine as long as they are completely legible.

1. Let B be a Bayesian network over a set of n random variables X and F be the set of
factors corresponding to the CPDs of B. Suppose that we then construct a clique tree
T by choosing a variable elimination ordering ≺ and finding the maximal cliques in
the induced graph IF ,≺. Our task is to optimize the message passing that takes place
as we calibrate T . For simplicity you may assume |V al(X)| = d for all X ∈ X for the
following question.

Recall that the message passing operation works by multiplying the incoming messages
(except for one) with the product of the factors assigned to the clique, and then elimi-
nating all the variables not in the scope of the outgoing message. For example, in the
figure below, suppose the pictured clique (called C2) contains initial factors φ1(A,B),
φ2(B,C), and φ3(C,D) and it receives message δ1→2(A,D) from C1. Then an out-
going message δ2→3(B,D) is generated by multiplying all initial factors and incoming
messages, and then summing out over all variables except B and D.

1

Now we wish to improve upon the efficiency of our message passing, but at the cost
of the exactness of our algorithm. We would like to force the incoming message into
the following factored form: δ̃1→2(A,D) = δ̃11→2(A)δ̃21→2(D). Similarly, we would like
to force the outgoing message into the following form: δ̃2→3(B,D) = δ̃12→3(B)δ̃22→3(D).

(a) Show how the outgoing message δ̃2→3(B,D) can be computed more efficiently
using this representation. Specifically, you should show precisely how the factored
messages δ̃11→2(A) and δ̃21→2(D) are used along with the initial factors in C2 to
compute δ̃2→3(B,D). Also show how this is asymptotically more efficient than
standard message passing.

(b) Briefly but precisely describe the algorithm underlying this example (no need for
pseudo-code), assuming that incoming messages may be forced into the following
factored form δ̃i→j(Si,j) =

∏
k δ̃

k
i→j(A

k
i,j), where Ak

i,j is a disjoint partition of Si,j.
Describe how factored messages are computed and how they are used to compute
outgoing messages. Briefly explain why the factored messages are not exact.

2. Assume that we have constructed a clique tree T for a given Bayesian network graph
G, and that each of the cliques in T contains at most k nodes. Now the user decides
to add a single edge to the Bayesian network, resulting in a network G ′. (The edge can
be added between any pair of nodes in the network, as long as it maintains acyclicity.)
What is the tightest bound you can provide on the maximum clique size in a clique
tree T ′ for G ′? Justify your response by explaining how to construct such a clique tree.
(Node: You do not need to provide the optimal clique tree T ′. The question asks for
the tightest clique tree that you can construct, using only the fact that T is a clique
tree for G. Hint: Construct an example.)

3. Apply the variable elimination algorithm to the network below to compute the proba-
bility of Cold given Sneeze and TakeMedicine (i.e., P(C = true | S = true, T = true)).
(Please show the order in which you eliminate variables and some sample intermediate
calculations, but you don’t need to include every single number from every step.)

2

4. Use your implementation of belief propagation as you answer the following questions.

(a) Briefly describe how you implemented belief propagation (e.g., data structures,
code organization, etc.).

(b) Run your algorithm on the Sprinkler network (sprinkler.bif). What is the marginal
probability of WetGrass according to belief propagation? What is the true marginal
probability of WetGrass (you can easily compute this by hand)? Explain why
these numbers are different.

(c) Suppose X is a variable with k states and f neighboring factors. Explain how to
compute all outgoing belief propagation messages with complexity O(kf). Does
your method work even when the incoming messages have zeros? (NOTE: You
are free to use a less efficient method in your actual implementation.)

3

Programming Project: Belief Propagation
The bulk of this assignment is implementing belief propagation. You may write your

implementation of belief propagation in C, C++, Java, Python, or Matlab.

Your implementation must meet the following input/output specifications in order to
keep grading tractable:

• You must include two scripts along with your code: one to compile the code on tricycle
(if necessary), and one to run the code on tricycle once it has been compiled.

• The compile script should run in a directory consisting of just your submitted files
(including any additional libraries your code needs to compile/run).

• The run script must accept one command-line argument, the name of the Bayesian
network in .bif (Bayesian Interchange Format) file, and must write all marginal prob-
abilities to the file “result.txt” in the current directory. (You are free to print any
diagnostic output you wish to standard output or other files.)

• The “result.txt” file produced must contain a list of variables and their marginal dis-
tributions. Variables must appear in the order in which they were introduced in the
.bif file. Example:

A 0.9 0.1
B 0.72 0.28
C 0.001 0.999
D 1.0 0

The belief propagation algorithm you implement should follow the description given
in class, and also described here: http://www.comm.utoronto.ca/ frank/papers/KFL01.pdf.
NOTE: In order to have comparable answers, please use a simple message passing schedule
in which all variable messages are sent and then all factor messages are sent in each iteration.
(Mixing up the order of everything can lead to interesting, but different, results.)

In order to make this assignment less onerous, we provide a skeleton in C++ that handles
some of the input and output. You are free to use any portions of that skeleton that you
find helpful, or discard it entirely and come up with something else. We also provide several
example input/output pairs to help you check your implementation.

4

Appendix
We recommend you use the VFML library, which provides routines for reading .bif files,

and provides data structures and functions for traversing the graph, retrieving values from
conditional probability tables, etc. The documentation for the library may be found at
http://www.cs.washington.edu/dm/vfml/. The “Getting Started” link describes how to down-
load the library. It is also included in the hw3-dist.zip download with the skeleton code.

Here are some suggestions if you do end up using VFML. Documentation for the Bayesian
network routines is found by following Modules→ “Belief Net Section” → BeliefNet.h. The
ExamplePtr class is used for holding values of the nodes. Spend a little time understanding
Examples. You can create an ExamplePtr by using BNGetExampleSpec to get an Exam-
pleSpecPtr, which you give as a parameter to ExampleNew. Probably the best routine
for retrieving CPT values from the nodes will be BNNodeGetCP, which takes an Exam-
plePtr that defines the value of the parents of the node and the state of the node that you
want to ask the probability of. Note that the ID of a node (from BNNodeGetID) is the same
as the attribute number in the Example (for instance, when using ExampleSetDiscreteAt-
tributeValue). Similarly, to find out the number of nodes in the network and names of the
nodes, etc, you use the ExampleSpecPtr associated with the network, and routines like
ExampleSpecGetNumAttributes and ExampleSpecLookupAttributeName.

It could also be useful to look at the code for BNLikelihoodSampleNTimes (in BeliefNet.c)
to get an idea about traversing the graph, retrieving CPT values, etc.

5

