
1 Introduction

1.1 Motivation

Most tasks require a person or an automated system to reason: to take the available information
and reach conclusions, both about what might be true in the world and about how to act.
For example, a doctor needs to take information about a patient — his symptoms, test results,
personal characteristics (gender, weight) — and reach conclusions about what diseases he may
have and what course of treatment to undertake. A mobile robot needs to synthesize data from
its sonars, cameras, and other sensors to conclude where in the environment it is and how to
move so as to reach its goal without hitting anything. A speech-recognition system needs to
take a noisy acoustic signal and infer the words spoken that gave rise to it.
In this book, we describe a general framework that can be used to allow a computer system

to answer questions of this type. In principle, one could write a special-purpose computer
program for every domain one encounters and every type of question that one may wish to
answer. The resulting system, although possibly quite successful at its particular task, is often
very brittle: If our application changes, significant changes may be required to the program.
Moreover, this general approach is quite limiting, in that it is hard to extract lessons from one
successful solution and apply it to one which is very different.
We focus on a different approach, based on the concept of a declarative representation. Indeclarative

representation this approach, we construct, within the computer, a model of the system about which we would
model like to reason. This model encodes our knowledge of how the system works in a computer-

readable form. This representation can be manipulated by various algorithms that can answer
questions based on the model. For example, a model for medical diagnosis might represent our
knowledge about different diseases and how they relate to a variety of symptoms and test results.
A reasoning algorithm can take this model, as well as observations relating to a particular patient,
and answer questions relating to the patient’s diagnosis. The key property of a declarative
representation is the separation of knowledge and reasoning. The representation has its
own clear semantics, separate from the algorithms that one can apply to it. Thus, we can
develop a general suite of algorithms that apply any model within a broad class, whether
in the domain of medical diagnosis or speech recognition. Conversely, we can improve
our model for a specific application domain without having to modify our reasoning
algorithms constantly.
Declarative representations, or model-based methods, are a fundamental component in many

fields, and models come in many flavors. Our focus in this book is on models for complex sys-
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tems that involve a significant amount of uncertainty. Uncertainty appears to be an inescapableuncertainty

aspect of most real-world applications. It is a consequence of several factors. We are often
uncertain about the true state of the system because our observations about it are partial: only
some aspects of the world are observed; for example, the patient’s true disease is often not
directly observable, and his future prognosis is never observed. Our observations are also noisy
— even those aspects that are observed are often observed with some error. The true state of
the world is rarely determined with certainty by our limited observations, as most relationships
are simply not deterministic, at least relative to our ability to model them. For example, there
are few (if any) diseases where we have a clear, universally true relationship between the disease
and its symptoms, and even fewer such relationships between the disease and its prognosis.
Indeed, while it is not clear whether the universe (quantum mechanics aside) is deterministic
when modeled at a sufficiently fine level of granularity, it is quite clear that it is not determin-
istic relative to our current understanding of it. To summarize, uncertainty arises because of
limitations in our ability to observe the world, limitations in our ability to model it, and possibly
even because of innate nondeterminism.
Because of this ubiquitous and fundamental uncertainty about the true state of world, we

need to allow our reasoning system to consider different possibilities. One approach is simply
to consider any state of the world that is possible. Unfortunately, it is only rarely the case
that we can completely eliminate a state as being impossible given our observations. In our
medical diagnosis example, there is usually a huge number of diseases that are possible given a
particular set of observations. Most of them, however, are highly unlikely. If we simply list all of
the possibilities, our answers will often be vacuous of meaningful content (e.g., “the patient can
have any of the following 573 diseases”). Thus, to obtain meaningful conclusions, we need
to reason not just about what is possible, but also about what is probable.
The calculus of probability theory (see section 2.1) provides us with a formal framework for

probability theory considering multiple possible outcomes and their likelihood. It defines a set of mutually exclusive
and exhaustive possibilities, and associates each of them with a probability — a number between
0 and 1, so that the total probability of all possibilities is 1. This framework allows us to consider
options that are unlikely, yet not impossible, without reducing our conclusions to content-free
lists of every possibility.

Furthermore, one finds that probabilistic models are very liberating. Where in a more
rigid formalism we might find it necessary to enumerate every possibility, here we can
often sweep a multitude of annoying exceptions and special cases under the “probabilistic
rug,” by introducing outcomes that roughly correspond to “something unusual happens.”
In fact, as we discussed, this type of approximation is often inevitable, as we can only rarely
(if ever) provide a deterministic specification of the behavior of a complex system. Probabilistic
models allow us to make this fact explicit, and therefore often provide a model which is more
faithful to reality.

1.2 Structured Probabilistic Models

This book describes a general-purpose framework for constructing and using probabilistic mod-
els of complex systems. We begin by providing some intuition for the principles underlying
this framework, and for the models it encompasses. This section requires some knowledge of
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basic concepts in probability theory; a reader unfamiliar with these concepts might wish to read
section 2.1 first.
Complex systems are characterized by the presence of multiple interrelated aspects, many of

which relate to the reasoning task. For example, in our medical diagnosis application, there
are multiple possible diseases that the patient might have, dozens or hundreds of symptoms
and diagnostic tests, personal characteristics that often form predisposing factors for disease,
and many more matters to consider. These domains can be characterized in terms of a set of
random variables, where the value of each variable defines an important property of the world.random variable

For example, a particular disease, such as Flu, may be one variable in our domain, which takes
on two values, for example, present or absent ; a symptom, such as Fever , may be a variable in
our domain, one that perhaps takes on continuous values. The set of possible variables and
their values is an important design decision, and it depends strongly on the questions we may
wish to answer about the domain.
Our task is to reason probabilistically about the values of one or more of the variables,

possibly given observations about some others. In order to do so using principled probabilistic
reasoning, we need to construct a joint distribution over the space of possible assignments tojoint probability

distribution some set of random variables X . This type of model allows us to answer a broad range of
interesting queries. For example, we can make the observation that a variable Xi takes on the
specific value xi, and ask, in the resulting posterior distribution, what the probability distributionposterior

distribution is over values of another variable Xj .

Example 1.1 Consider a very simple medical diagnosis setting, where we focus on two diseases — flu and
hayfever; these are not mutually exclusive, as a patient can have either, both, or none. Thus,
we might have two binary-valued random variables, Flu and Hayfever. We also have a 4-valued
random variable Season, which is correlated both with flu and hayfever. We may also have two
symptoms, Congestion and Muscle Pain, each of which is also binary-valued. Overall, our probability
space has 2 × 2 × 4 × 2 × 2 = 64 values, corresponding to the possible assignments to these five
variables. Given a joint distribution over this space, we can, for example, ask questions such as how
likely the patient is to have the flu given that it is fall, and that she has sinus congestion but no
muscle pain; as a probability expression, this query would be denoted

P (Flu = true | Season = fall, Congestion = true, Muscle Pain = false).

1.2.1 Probabilistic Graphical Models

Specifying a joint distribution over 64 possible values, as in example 1.1, already seems fairly
daunting. When we consider the fact that a typical medical- diagnosis problem has dozens or
even hundreds of relevant attributes, the problem appears completely intractable. This book
describes the framework of probabilistic graphical models, which provides a mechanism for
exploiting structure in complex distributions to describe them compactly, and in a way that
allows them to be constructed and utilized effectively.
Probabilistic graphical models use a graph-based representation as the basis for compactly

encoding a complex distribution over a high-dimensional space. In this graphical representation,
illustrated in figure 1.1, the nodes (or ovals) correspond to the variables in our domain, and the
edges correspond to direct probabilistic interactions between them. For example, figure 1.1a (top)
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Figure 1.1 Different perspectives on probabilistic graphical models: top — the graphical representa-
tion; middle — the independencies induced by the graph structure; bottom — the factorization induced
by the graph structure. (a) A sample Bayesian network. (b) A sample Markov network.

illustrates one possible graph structure for our flu example. In this graph, we see that there is
no direct interaction between Muscle Pain and Season, but both interact directly with Flu.
There is a dual perspective that one can use to interpret the structure of this graph. From

one perspective, the graph is a compact representation of a set of independencies that hold
in the distribution; these properties take the form X is independent of Y given Z , denoted
(X ⊥ Y | Z), for some subsets of variables X,Y ,Z . For example, our “target” distribution
P for the preceding example — the distribution encoding our beliefs about this particular
situation — may satisfy the conditional independence (Congestion ⊥ Season | Flu, Hayfever).
This statement asserts that

P (Congestion | Flu, Hayfever, Season) = P (Congestion | Flu, Hayfever);

that is, if we are interested in the distribution over the patient having congestion, and we know
whether he has the flu and whether he has hayfever, the season is no longer informative. Note
that this assertion does not imply that Season is independent of Congestion; only that all of the
information we may obtain from the season on the chances of having congestion we already
obtain by knowing whether the patient has the flu and has hayfever. Figure 1.1a (middle) shows
the set of independence assumptions associated with the graph in figure 1.1a (top).
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The other perspective is that the graph defines a skeleton for compactly representing a high-
dimensional distribution: Rather than encode the probability of every possible assignment to
all of the variables in our domain, we can “break up” the distribution into smaller factors, eachfactor

over a much smaller space of possibilities. We can then define the overall joint distribution
as a product of these factors. For example, figure 1.1(a-bottom) shows the factorization of
the distribution associated with the graph in figure 1.1 (top). It asserts, for example, that
the probability of the event “spring, no flu, hayfever, sinus congestion, muscle pain” can be
obtained by multiplying five numbers: P (Season = spring), P (Flu = false | Season = spring),
P (Hayfever = true | Season = spring), P (Congestion = true | Hayfever = true, Flu = false),
and P (Muscle Pain = true | Flu = false). This parameterization is significantly more compact,
requiring only 3+4+4+4+2 = 17 nonredundant parameters, as opposed to 63 nonredundant
parameters for the original joint distribution (the 64th parameter is fully determined by the
others, as the sum over all entries in the joint distribution must sum to 1). The graph structure
defines the factorization of a distribution P associated with it — the set of factors and the
variables that they encompass.

It turns out that these two perspectives — the graph as a representation of a set of
independencies, and the graph as a skeleton for factorizing a distribution — are, in a
deep sense, equivalent. The independence properties of the distribution are precisely
what allow it to be represented compactly in a factorized form. Conversely, a particular
factorization of the distribution guarantees that certain independencies hold.
We describe two families of graphical representations of distributions. One, called BayesianBayesian network

networks, uses a directed graph (where the edges have a source and a target), as shown in
figure 1.1a (top). The second, called Markov networks, uses an undirected graph, as illustrated inMarkov network

figure 1.1b (top). It too can be viewed as defining a set of independence assertions (figure 1.1b
[middle] or as encoding a compact factorization of the distribution (figure 1.1b [bottom]). Both
representations provide the duality of independencies and factorization, but they differ in the
set of independencies they can encode and in the factorization of the distribution that they
induce.

1.2.2 Representation, Inference, Learning

The graphical language exploits structure that appears present in many distributions that we
want to encode in practice: the property that variables tend to interact directly only with very
few others. Distributions that exhibit this type of structure can generally be encoded naturally
and compactly using a graphical model.
This framework has many advantages. First, it often allows the distribution to be written

down tractably, even in cases where the explicit representation of the joint distribution is
astronomically large. Importantly, the type of representation provided by this framework is
transparent, in that a human expert can understand and evaluate its semantics and properties.
This property is important for constructing models that provide an accurate reflection of our
understanding of a domain. Models that are opaque can easily give rise to unexplained, and
even undesirable, answers.
Second, as we show, the same structure often also allows the distribution to be used effectively

for inference — answering queries using the distribution as our model of the world. In particular,inference

we provide algorithms for computing the posterior probability of some variables given evidence
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on others. For example, we might observe that it is spring and the patient has muscle pain,
and we wish to know how likely he is to have the flu, a query that can formally be written as
P (Flu = true | Season = spring, Muscle Pain = true). These inference algorithms work directly
on the graph structure and are generally orders of magnitude faster than manipulating the joint
distribution explicitly.
Third, this framework facilitates the effective construction of these models, whether by a hu-

man expert or automatically, by learning from data a model that provides a good approximation
to our past experience. For example, we may have a set of patient records from a doctor’s office
and wish to learn a probabilistic model encoding a distribution consistent with our aggregate
experience. Probabilistic graphical models support a data-driven approach to model constructiondata-driven

approach that is very effective in practice. In this approach, a human expert provides some rough guide-
lines on how to model a given domain. For example, the human usually specifies the attributes
that the model should contain, often some of the main dependencies that it should encode, and
perhaps other aspects. The details, however, are usually filled in automatically, by fitting the
model to data. The models produced by this process are usually much better reflections of the
domain than models that are purely hand-constructed. Moreover, they can sometimes reveal
surprising connections between variables and provide novel insights about a domain.

These three components — representation, inference, and learning — are critical com-
ponents in constructing an intelligent system. We need a declarative representation that
is a reasonable encoding of our world model. We need to be able to use this representa-
tion effectively to answer a broad range of questions that are of interest. And we need to
be able to acquire this distribution, combining expert knowledge and accumulated data.
Probabilistic graphical models are one of a small handful of frameworks that support all
three capabilities for a broad range of problems.

1.3 Overview and Roadmap

1.3.1 Overview of Chapters

The framework of probabilistic graphical models is quite broad, and it encompasses both a
variety of different types of models and a range of methods relating to them. This book
describes several types of models. For each one, we describe the three fundamental cornerstones:
representation, inference, and learning.
We begin in part I, by describing the most basic type of graphical models, which are the focus

of most of the book. These models encode distributions over a fixed set X of random variables.
We describe how graphs can be used to encode distributions over such spaces, and what the
properties of such distributions are.
Specifically, in chapter 3, we describe the Bayesian network representation, based on directed

graphs. We describe how a Bayesian network can encode a probability distribution. We also
analyze the independence properties induced by the graph structure.
In chapter 4, we move to Markov networks, the other main category of probabilistic graphical

models. Here also we describe the independencies defined by the graph and the induced
factorization of the distribution. We also discuss the relationship between Markov networks and
Bayesian networks, and briefly describe a framework that unifies both.
In chapter 5, we delve a little deeper into the representation of the parameters in probabilistic
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models, focusing mostly on Bayesian networks, whose parameterization is more constrained. We
describe representations that capture some of the finer-grained structure of the distribution, and
show that, here also, capturing structure can provide significant gains.
In chapter 6, we turn to formalisms that extend the basic framework of probabilistic graphical

models to settings where the set of variables is no longer rigidly circumscribed in advance.
One such setting is a temporal one, where we wish to model a system whose state evolves
over time, requiring us to consider distributions over entire trajectories, We describe a compact
representation — a dynamic Bayesian network — that allows us to represent structured systems
that evolve over time. We then describe a family of extensions that introduce various forms
of higher level structure into the framework of probabilistic graphical models. Specifically, we
focus on domains containing objects (whether concrete or abstract), characterized by attributes,
and related to each other in various ways. Such domains can include repeated structure, since
different objects of the same type share the same probabilistic model. These languages provide
a significant extension to the expressive power of the standard graphical models.
In chapter 7, we take a deeper look at models that include continuous variables. Specifically,

we explore the properties of the multivariate Gaussian distribution and the representation of
such distributions as both directed and undirected graphical models. Although the class of
Gaussian distributions is a limited one and not suitable for all applications, it turns out to play
a critical role even when dealing with distributions that are not Gaussian.
In chapter 8, we take a deeper, more technical look at probabilistic models, defining a general

framework called the exponential family, that encompasses a broad range of distributions. This
chapter provides some basic concepts and tools that will turn out to play an important role in
later development.
We then turn, in part II, to a discussion of the inference task. In chapter 9, we describe

the basic ideas underlying exact inference in probabilistic graphical models. We first analyze
the fundamental difficulty of the exact inference task, separately from any particular inference
algorithm we might develop. We then present two basic algorithms for exact inference —
variable elimination and conditioning — both of which are equally applicable to both directed
and undirected models. Both of these algorithms can be viewed as operating over the graph
structure defined by the probabilistic model. They build on basic concepts, such as graph
properties and dynamic programming algorithms, to provide efficient solutions to the inference
task. We also provide an analysis of their computational cost in terms of the graph structure,
and we discuss where exact inference is feasible.
In chapter 10, we describe an alternative view of exact inference, leading to a somewhat

different algorithm. The benefit of this alternative algorithm is twofold. First, it uses dynamic
programming to avoid repeated computations in settings where we wish to answer more than a
single query using the same network. Second, it defines a natural algorithm that uses message
passing on a graph structure; this algorithm forms the basis for approximate inference algorithms
developed in later chapters.
Because exact inference is computationally intractable for many models of interest, we then

proceed to describe approximate inference algorithms, which trade off accuracy with computa-
tional cost. We present two main classes of such algorithms. In chapter 11, we describe a class
of methods that can be viewed from two very different perspectives: On one hand, they are
direct generalizations of the graph-based message-passing approach developed for the case of
exact inference in chapter 10. On the other hand, they can be viewed as solving an optimization
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problem: one where we approximate the distribution of interest using a simpler representation
that allows for feasible inference. The equivalence of these views provides important insights
and suggests a broad family of algorithms that one can apply to approximate inference.
In chapter 12, we describe a very different class of methods: particle-based methods, which

approximate a complex joint distribution by considering samples from it (also known as par-
ticles). We describe several methods from this general family. These methods are generally
based on core techniques from statistics, such as importance sampling and Markov-chain Monte
Carlo methods. Once again, the connection to this general class of methods suggests multiple
opportunities for new algorithms.
While the representation of probabilistic graphical models applies, to a great extent, to models

including both discrete and continuous-valued random variables, inference in models involving
continuous variables is significantly more challenging than the purely discrete case. In chapter 14,
we consider the task of inference in continuous and hybrid (continuous/discrete) networks, and
we discuss whether and how the exact and approximate inference methods developed in earlier
chapters can be applied in this setting.
The representation that we discussed in chapter 6 allows a compact encoding of networks

whose size can be unboundedly large. Such networks pose particular challenges to inference
algorithms. In this chapter, we discuss some special-purpose methods that have been developed
for the particular settings of networks that model dynamical systems.
We then turn, in part III, to the third of our main topics — learning probabilistic models from

data. We begin in chapter 16 by reviewing some of the fundamental concepts underlying the
general task of learning models from data. We then present the spectrum of learning problems
that we address in this part of the book. These problems vary along two main axes: the extent to
which we are given prior knowledge specifying the model, and whether the data from which we
learn contain complete observations of all of the relevant variables. In contrast to the inference
task, where the same algorithms apply equally to Bayesian networks and Markov networks, the
learning task is quite different for these two classes of models. We begin with studying the
learning task for Bayesian networks.
In chapter 17, we focus on the most basic learning task: learning parameters for a Bayesian

network with a given structure, from fully observable data. Although this setting may appear
somewhat restrictive, it turns out to form the basis for our entire development of Bayesian
network learning. As we show, the factorization of the distribution, which was central both to
representation and to inference, also plays a key role in making inference feasible.
We then move, in chapter 18, to the harder problem of learning both Bayesian network

structure and the parameters, still from fully observed data. The learning algorithms we present
trade off the accuracy with which the learned network represents the empirical distribution for
the complexity of the resulting structure. As we show, the type of independence assumptions
underlying the Bayesian network representation often hold, at least approximately, in real-world
distributions. Thus, these learning algorithms often result in reasonably compact structures that
capture much of the signal in the distribution.
In chapter 19, we address the Bayesian network learning task in a setting where we have

access only to partial observations of the relevant variables (for example, when the available
patient records have missing entries). This type of situation occurs often in real-world settings.
Unfortunately, the resulting learning task is considerably harder, and the resulting algorithms are
both more complex and less satisfactory in terms of their performance.
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We conclude the discussion of learning in chapter 20 by considering the problem of learning
Markov networks from data. It turns out that the learning tasks for Markov networks are
significantly harder than the corresponding problem for Bayesian networks. We explain the
difficulties and discuss the existing solutions.
Finally, in part IV, we turn to a different type of extension, where we consider the use of this

framework for other forms of reasoning. Specifically, we consider cases where we can act, or
intervene, in the world.
In chapter 21, we focus on the semantics of intervention and its relation to causality. We

present the notion of a causal model, which allows us to answer not only queries of the form “if
I observe X, what do I learn about Y,” but also intervention queries, of the form “if I manipulate
X, what effect does it have on Y.”
We then turn to the task of decision making under uncertainty. Here, we must consider not

only the distribution over different states of the world, but also the preferences of the agent
regarding these outcomes. In chapter 22, we discuss the notion of utility functions and how
they can encode an agent’s preferences about complex situations involving multiple variables.
As we show, the same ideas that we used to provide compact representations of probability
distribution can also be used for utility functions.
In chapter 23, we describe a unified representation for decision making, called influence

diagrams. Influence diagrams extend Bayesian networks by introducing actions and utilities. We
present algorithms that use influence diagrams for making decisions that optimize the agent’s
expected utility. These algorithms utilize many of the same ideas that formed the basis for exact
inference in Bayesian networks.
We conclude with a high-level synthesis of the techniques covered in this book, and with

some guidance on how to use them in tackling a new problem.

1.3.2 Reader’s Guide

As we mentioned, the topics described in this book relate to multiple fields, and techniques
from other disciplines — probability theory, computer science, information theory, optimization,
statistics, and more — are used in various places throughout it. While it is impossible to present
all of the relevant material within the scope of this book, we have attempted to make the book
somewhat self-contained by providing a very brief review of the key concepts from these related
disciplines in chapter 2.
Some of this material, specifically the review of probability theory and of graph-related con-

cepts, is very basic yet central to most of the development in this book. Readers who are less
familiar with these topics may wish to read these sections carefully, and even knowledgeable
readers may wish to briefly review them to gain familiarity with the notations used. Other
background material, covering such topics as information theory, optimization, and algorithmic
concepts, can be found in the appendix.
The chapters in the book are structured as follows. The main text in each chapter provides the

detailed technical development of the key ideas. Beyond the main text, most chapters contain
boxes that contain interesting material that augments these ideas. These boxes come in three
types: Skill boxes describe “hands-on” tricks and techniques, which, while often heuristic in
nature, are important for getting the basic algorithms described in the text to work in practice.
Case study boxes describe empirical case studies relating to the techniques described in the text.
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Figure 1.2 A reader’s guide to the structure and dependencies in this book

These case studies include both empirical results on how the algorithms perform in practice
and descriptions of applications of these algorithms to interesting domains, illustrating some of
the issues encountered in practice. Finally, concept boxes present particular instantiations of the
material described in the text, which have had significant impact in their own right.
This textbook is clearly too long to be used in its entirety in a one-semester class. Figure 1.2

tries to delineate some coherent subsets of the book that can be used for teaching and other
purposes. The small, labeled boxes represent “units” of material on particular topics. Arrows
between the boxes represent dependencies between these units. The first enclosing box (solid
line) represents material that is fundamental to everything else, and that should be read by
anyone using this book. One can then use the dependencies between the boxes to expand or
reduce the depth of the coverage on any given topic. The material in the larger box (dashed
line) forms a good basis for a one-semester (or even one-quarter) overview class. Some of the
sections in the book are marked with an asterisk, denoting the fact that they contain more
technically advanced material. In most cases, these sections are self-contained, and they can be
skipped without harming the reader’s ability to understand the rest of the text.
We have attempted in this book to present a synthesis of ideas, most of which have been

developed over many years by multiple researchers. To avoid futile attempts to divide up the
credit precisely, we have omitted all bibliographical references from the technical presentation
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in the chapters. Rather, each chapter ends with a section called “Relevant Literature,” which
describes the historical evolution of the material in the chapter, acknowledges the papers and
books that developed the key concepts, and provides some additional readings on material
relevant to the chapter. We encourage the reader who is interested in a topic to follow up on
some of these additional readings, since there are many interesting developments that we could
not cover in this book.
Finally, each chapter includes a set of exercises that explore in additional depth some of the

material described in the text and present some extensions to it. The exercises are annotated
with an asterisk for exercises that are somewhat more difficult, and with two asterisks for ones
that are truly challenging.
Additional material related to this book, including slides and figures, solutions to some of the

exercises, and errata, can be found online at http://pgm.stanford.edu.

1.3.3 Connection to Other Disciplines

The ideas we describe in this book are connected to many fields. From probability theory, we
inherit the basic concept of a probability distribution, as well as many of the operations we
can use to manipulate it. From computer science, we exploit the key idea of using a graph
as a data structure, as well as a variety of algorithms for manipulating graphs and other data
structures. These algorithmic ideas and the ability to manipulate probability distributions using
discrete data structures are some of the key elements that make the probabilistic manipulations
tractable. Decision theory extends these basic ideas to the task of decision making under
uncertainty and provides the formal foundation for this task.
From computer science, and specifically from artificial intelligence, these models inherit the

idea of using a declarative representation of the world to separate procedural reasoning from
our domain knowledge. This idea is of key importance to the generality of this framework and
its applicability to such a broad range of tasks.
Various ideas from other disciplines also arise in this field. Statistics plays an important role

both in certain aspects of the representation and in some of the work on learning models from
data. Optimization plays a role in providing algorithms both for approximate inference and for
learning models from data. Bayesian networks first arose, albeit in a restricted way, in the setting
of modeling genetic inheritance in human family trees; in fact, restricted version of some of the
exact inference algorithms we discuss were first developed in this context. Similarly, undirected
graphical models first arose in physics as a model for systems of electrons, and some of the
basic concepts that underlie recent work on approximate inference developed from that setting.
Information theory plays a dual role in its interaction with this field. Information-theoretic

concepts such as entropy and information arise naturally in various settings in this framework,
such as evaluating the quality of a learned model. Thus, tools from this discipline are a key
component in our analytic toolkit. On the other side, the recent successes in coding theory,
based on the relationship between inference in probabilistic models and the task of decoding
messages sent over a noisy channel, have led to a resurgence of work on approximate inference
in graphical models. The resulting developments have revolutionized both the development of
error-correcting codes and the theory and practice of approximate message-passing algorithms
in graphical models.
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1.3.3.1 What Have We Gained?

Although the framework we describe here shares common elements with a broad range of
other topics, it has a coherent common core: the use of structure to allow a compact repre-
sentation, effective reasoning, and feasible learning of general-purpose, factored, probabilistic
models. These elements provide us with a general infrastructure for reasoning and learning
about complex domains.
As we discussed earlier, by using a declarative representation, we essentially separate out the

description of the model for the particular application, and the general-purpose algorithms used
for inference and learning. Thus, this framework provides a general algorithmic toolkit that can
be applied to many different domains.
Indeed, probabilistic graphical models have made a significant impact on a broad spectrum

of real-world applications. For example, these models have been used for medical and fault
diagnosis, for modeling human genetic inheritance of disease, for segmenting and denoising
images, for decoding messages sent over a noisy channel, for revealing genetic regulatory pro-
cesses, for robot localization and mapping, and more. Throughout this book, we will describe
how probabilistic graphical models were used to address these applications and what issues
arise in the application of these models in practice.
In addition to practical applications, these models provide a formal framework for a variety

of fundamental problems. For example, the notion of conditional independence and its explicit
graph-based representation provide a clear formal semantics for irrelevance of information. This
framework also provides a general methodology for handling data fusion — we can introduce
sensor variables that are noisy versions of the true measured quantity, and use Bayesian condi-
tioning to combine the different measurements. The use of a probabilistic model allows us to
provide a formal measure for model quality, in terms of a numerical fit of the model to observed
data; this measure underlies much of our work on learning models from data. The temporal
models we define provide a formal framework for defining a general trend toward persistence of
state over time, in a way that does not raise inconsistencies when change does occur.
In general, part of the rich development in this field is due to the close and continuous

interaction between theory and practice. In this field, unlike many others, the distance between
theory and practice is quite small, and there is a constant flow of ideas and problems between
them. Problems or ideas arise in practical applications and are analyzed and subsequently
developed in more theoretical papers. Algorithms for which no theoretical analysis exists are
tried out in practice, and the profile of where they succeed and fail often provides the basis for
subsequent analysis. This rich synergy leads to a continuous and vibrant development, and it is
a key factor in the success of this area.

1.4 Historical Notes

The foundations of probability theory go back to the sixteenth century, when Gerolamo Cardano
began a formal analysis of games of chance, followed by additional key developments by Pierre
de Fermat and Blaise Pascal in the seventeenth century. The initial development involved
only discrete probability spaces, and the analysis methods were purely combinatorial. The
foundations of modern probability theory, with its measure-theoretic underpinnings, were laid
by Andrey Kolmogorov in the 1930s.
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Particularly central to the topics of this book is the so-called Bayes theorem, shown in the
eighteenth century by the Reverend Thomas Bayes (Bayes 1763). This theorem allows us to use
a model that tells us the conditional probability of event a given event b (say, a symptom given
a disease) in order to compute the contrapositive: the conditional probability of event b given
event a (the disease given the symptom). This type of reasoning is central to the use of graphical
models, and it explains the choice of the name Bayesian network.
The notion of representing the interactions between variables in a multidimensional distribu-

tion using a graph structure originates in several communities, with very different motivations.
In the area of statistical physics, this idea can be traced back to Gibbs (1902), who used an
undirected graph to represent the distribution over a system of interacting particles. In the
area of genetics, this idea dates back to the work on path analysis of Sewal Wright (Wright
1921, 1934). Wright proposed the use of a directed graph to study inheritance in natural species.
This idea, although largely rejected by statisticians at the time, was subsequently adopted by
economists and social scientists (Wold 1954; Blalock, Jr. 1971). In the field of statistics, the idea
of analyzing interactions between variables was first proposed by Bartlett (1935), in the study
of contingency tables, also known as log-linear models. This idea became more accepted by the
statistics community in the 1960s and 70s (Vorobev 1962; Goodman 1970; Haberman 1974).
In the field of computer science, probabilistic methods lie primarily in the realm of Artificial

Intelligence (AI). The AI community first encountered these methods in the endeavor of building
expert systems, computerized systems designed to perform difficult tasks, such as oil-well locationexpert systems

or medical diagnosis, at an expert level. Researchers in this field quickly realized the need for
methods that allow the integration of multiple pieces of evidence, and that provide support
for making decisions under uncertainty. Some early systems (de Bombal et al. 1972; Gorry and
Barnett 1968; Warner et al. 1961) used probabilistic methods, based on the very restricted naive
Bayes model. This model restricts itself to a small set of possible hypotheses (e.g., diseases) and
assumes that the different evidence variables (e.g., symptoms or test results) are independent
given each hypothesis. These systems were surprisingly successful, performing (within their area
of expertise) at a level comparable to or better than that of experts. For example, the system
of de Bombal et al. (1972) averaged over 90 percent correct diagnoses of acute abdominal pain,
whereas expert physicians were averaging around 65 percent.
Despite these successes, this approach fell into disfavor in the AI community, owing to a com-

bination of several factors. One was the belief, prevalent at the time, that artificial intelligence
should be based on similar methods to human intelligence, combined with a strong impression
that people do not manipulate numbers when reasoning. A second issue was the belief that the
strong independence assumptions made in the existing expert systems were fundamental to the
approach. Thus, the lack of a flexible, scalable mechanism to represent interactions between
variables in a distribution was a key factor in the rejection of the probabilistic framework.
The rejection of probabilistic methods was accompanied by the invention of a range of

alternative formalisms for reasoning under uncertainty, and the construction of expert systems
based on these formalisms (notably Prospector by Duda, Gaschnig, and Hart 1979 and Mycin by
Buchanan and Shortliffe 1984). Most of these formalisms used the production rule framework,
where each rule is augmented with some number(s) defining a measure of “confidence” in
its validity. These frameworks largely lacked formal semantics, and many exhibited significant
problems in key reasoning patterns. Other frameworks for handling uncertainty proposed at
the time included fuzzy logic, possibility theory, and Dempster-Shafer belief functions. For a
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discussion of some of these alternative frameworks see Shafer and Pearl (1990); Horvitz et al.
(1988); Halpern (2003).
The widespread acceptance of probabilistic methods began in the late 1980s, driven forward

by two major factors. The first was a series of seminal theoretical developments. The most
influential among these was the development of the Bayesian network framework by Judea Pearl
and his colleagues in a series of paper that culminated in Pearl’s highly influential textbook
Probabilistic Reasoning in Intelligent Systems (Pearl 1988). In parallel, the key paper by S.L.
Lauritzen and D.J. Spiegelhalter 1988 set forth the foundations for efficient reasoning using
probabilistic graphical models. The second major factor was the construction of large-scale,
highly successful expert systems based on this framework that avoided the unrealistically strong
assumptions made by early probabilistic expert systems. The most visible of these applications
was the Pathfinder expert system, constructed by Heckerman and colleagues (Heckerman et al.
1992; Heckerman and Nathwani 1992b), which used a Bayesian network for diagnosis of pathology
samples.
At this time, although work on other approaches to uncertain reasoning continues, proba-

bilistic methods in general, and probabilistic graphical models in particular, have gained almost
universal acceptance in a wide range of communities. They are in common use in fields as
diverse as medical diagnosis, fault diagnosis, analysis of genetic and genomic data, communica-
tion and coding, analysis of marketing data, speech recognition, natural language understanding,
and many more. Several other books cover aspects of this growing area; examples include Pearl
(1988); Lauritzen (1996); Jensen (1996); Castillo et al. (1997a); Jordan (1998); Cowell et al. (1999);
Neapolitan (2003); Korb and Nicholson (2003). The Artificial Intelligence textbook of Russell and
Norvig (2003) places this field within the broader endeavor of constructing an intelligent agent.


