
CSE 515, Statistical methods in CS, Spring 2013: Assignment 3

Due: Friday, 24th May, 11:59am

For this assignment, you will turn-in a write-up answering the questions below and all your code via
catalyst dropbox https://catalyst.uw.edu/collectit/assignment/dvij/26655/111633.

1 Programming: Loopy Belief Propagation [80 points]

Task description. The task we will consider in this assignment is binary image denoising. Given a noise-
corrupted version of a binary image, you are required to recover the original image. The dataset we provide
consists of a set of corrupted images in grayscale.

You will model the denoising problem as an inference problem in a CRF (figure 2) where the observations
are the noisy pixels pi given to you and the random variables are the true binary pixels Yi ∈ {0, 1}. The
CRF is structured as a grid where every nodes are pixels (the set of nodes is denoted V) and there are edges
between every pixel and its neighboring pixels -above,below,right left (the set of edges is denoted E). The
node log-potentials are defined to be

θi;0 = θn00pi + θn01

θi;1 = θn10pi + θn11

where pi is the value of the i-th pixel in the corrupted image and θn is a 2×2 matrix. The edge log-potentials
are the same for all edges and given by

θij;kl = θekl k, l ∈ {0, 1}.

The final joint probability distribution over the labels y is

P (Y) ∝ exp

∑
i∈V

 ∑
k∈{0,1}

θi;kI [Yi = k]

+
∑

(i,j)∈E

 ∑
k,l∈{0,1}

I [Yi = k] I [Yj = l] θij;kl

You are given the parameters of the model θn, θe and a script that converts these into the node and edge

potentials for the entire network. You are required to implement the function bp in the script test bp.m

that takes the node and edge potentials and performs loopy belief propagation on the CRF to compute
(approximations to) the node and edge marginals bi, bij . This script will visualize your results and compute
reconstruction errors. In figure 1, you can see an example of output from the script.

We have provided a file Data.mat which has a set of binary images and corresponding noisy versions
pre-created for you. If you have the matlab image processing toolbox, you can generate additional datasets
using the script create binimages.m.

What to include in the write up: Include 5 examples of the images (original, noisy, reconstruc-
tred) produced by the script test bp.m. Also play with the values of the parameters (p.F in the script
corresponding to θn, p.G corresponding to θe) and see if you can improve results significantly. Report the
mean reconstruction error over the entire dataset (setting Ntest = Data.N in test bp.m) for each choice of
parameters.

1

Figure 1: Reconstructed (left), Noisy (center), Original (right)
.

Y1

Yn+1

Y2

Yn+2

Y3

Yn+3

Y4

Yn+4

Yn

Y2n

Ynm−n+1 Ynm−n+2 Ynm−n+3 Ynm−n+4 Ynm

Figure 2: Grid-Structured CRF

2 Expectation Maximization for image segmentation [80 points]

Task description. In this part of the assignment, you will implement an algorithm for unsupervised im-
age segmentation. The algorithm will perform clustering of pixels using the EM algorithm with a Gaussian
mixture model, to produce clusters of similar pixels which produces a segmentation of the image. You are
given a processed version of the Berkeley image segmentation dataset
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html, which con-
tains color images with ground-truth human generated segmentations. The images have been processed into
a matlab data structure with 5 real-valued features for each pixel (3 corresponding to color and 2 to posi-
tion) in the files Data.mat. The file GroundTruth.mat contains ground truth human segmentations for each
image.

You are required to implement a clustering algorithm to generate a segmentation of the image (where
the clusters corresponds to image segments). You will use a Gaussian mixture model to represent the data

p(x) =

K∑
k=1

πkN (x;µk,Σ) =

K∑
k=1

πk
exp

(
− (x−µk)T (Σ)−1(x−µk)

2

)
√

(2π)
5

det (Σ)
.

where K is the number of clusters, µk are the cluster means, and Σ is a (uniform) cluster variance.
We can turn this into a model with a hidden variable z corresponding to the cluster index:

p(x, z = k) = p(x|z = k)p(z = k)

p(x|z = k) = N (x;µk,Σ)

p(z = k) = πk.

Marginalizing out z, we get the initial mixture distribution over x. This allows us to treat the problem
of clustering pixels in an image (or equivalently segmenting the image into clusters) as a problem of learning

2

the parameters of the above model where the variable z is hidden and x is a feature vector representation
of each pixel in the image (5 dimensional in this problem). You will need to implement an EM-algorithm
to maximize the likelihood of the observed data (feature vectors for every pixel in an image) wrt the model
parameters {µk, πk}. You can set Σ to be a fixed diagonal matrix (you do not need to learn it):

Σ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 S

m 0
0 0 0 0 S

m

where m is in the range [1, 40] and S =

√
Number of pixels

Number of clusters . Finally, to get the clustering out of this, you

will compute

P (zi = k|xi) =
πkN (xi, µk,Σ)∑
j πjN (xi, µj ,Σ)

.

for each pixel i, and assign the pixel i to the cluster arg maxk P (zi = k|xi). The file TestEM.m will run your
EM algorithm on every image in the dataset, and compute accuracy metrics (boundary recall, the fraction
of cluster boundaries that occur within a distance of 2 pixels of the human-segmentations) averaged over the
dataset.

What to include in the write up: Include examples of the image segmentations produced by your
algorithm on some of the dataset images (original,human segmentation,ground segmentation) produced by
the script TestEM.m. Also run your algorithm for different values of m (m = 1, 10, 20, 30, 40) and K =
10, 15, 20. Report the resulting boundary recall and precision (computed by TestEM.m) averaged over the
entire dataset for each case. Also write about any qualitative differences in the results arising from changing
parameters and why you think these differences occur.

3

	Programming: Loopy Belief Propagation 80 [80 points]
	Expectation Maximization for image segmentation 80 [80 points]

