
CSE 515, Statistical methods in CS, Spring 2013: Assignment 1

Due: Friday, 26th April, 11:59am

HMMs and CRFs

For this assignment, you will turn-in a write-up answering the questions below and all your code via
catalyst dropbox https://catalyst.uw.edu/collectit/dropbox/dvij/26655.

Task description. The task we will consider in this assignment is optical character recognition (OCR).
The dataset we provide consists of a sequence of words, one character per row.1 The very first character of
each word was capitalized in the original data and has been omitted for simplicity. The format of the data
is described in generate hmm plots.m, so please look through that file before continuing. This file provides
sample code structure to generate plots.

1 Programming: Learning/Inference in HMMs/CRFs [80 points]

In this problem you will implement maximum likelihood estimation and the forward-backward algorithm for
Hidden Markov Models (HMMs) and Conditional Random Fields (CRFs).

1. Generative Models [40 points]
We will start with generative models that model the joint distribution of the observations (character
images) and class labels (character names): HMMs and Naive Bayes fall into this category. Let Xt

denote the t-th letter in a word and Ok
t the value of the k-th pixel for the t-th character.

(a) Parameter Estimation (MLE/MAP) in HMMs: For this first part, you will set the param-
eters of the HMM using maximum likelihood and maximum a posteriori estimation using several
values of pseudo-count/hyperparameter α. The result should be a stationary model (one that
does not depend on t), i.e., you should have a single distribution p(X1), a single CPT p(Xt|Xt−1)
and 64 CPTs p(Ok

t |Xt) (one for each pixel).

Your task is to fill in the missing code in the files hmm learn.m. Note that hmm learn.m goes over
the specifics of what parameters you need to learn. Because we will be comparing HMM to Naive
Bayes later, hmm learn.m should also fit a probability model p(Xt) which serves as the class prior
for Naive Bayes.

To help debug your code and generate results, generate hmm plots.m will plot the transition
model that you learn, and the observation model for the letter ‘a’. You should see that the
transition model “makes sense”, e.g. p(Xt = u | Xt−1 = q) should be high, and that the
observation model looks like a blurry version of the desired letter.

(b) The Forward Backward Algorithm: In this part, you will implement the forward-backward
algorithm for HMMs and compare its performance to a Naive Bayes approach which classifies
each character independently of all others. You have two programming tasks for this sub-part.

i. [15 points] hmm fb.m - In this file, you will implement the forward-backward algorithm to
compute marginal probabilities P (Xt | O1, . . . , OT ). The input to this function is the trained
model from hmm learn.m and the pixel data corresponding to a single word (not the entire
test set). See the file generate hmm plots.m to see how hmm fb.m is used.

1This dataset is a modified version of the dataset at http://www.seas.upenn.edu/~taskar/ocr/, which has been subsampled
and slightly altered to simplify the processing.
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ii. [5 points] generate hmm plots.m - Run this file to train the HMM model and evaluate it
on the test data. Naive Bayes will serve as a baseline, but one critical line of code is missing
in this file. Remember that Naive Bayes computes,

P (Xt | Ot) ∝ P (Ot | Xt)P (Xt),

and that P (Xt) was computed in hmm learn.m, and P (Ot | Xt) was computed in hmm fb.m.
You need to fill in this line before the code will run.

What to include in the write up: Try several values of the smoothing/pseudo-counts: α =
0, 1, 2, 4, 8 and include the plots for the resulting observation model for ‘a’ and the transition model
in the write-up. Describe in 1-2 sentences the effect of smoothing. Include a plot of accuracy on the
test set vs. smoothing parameter α for HMM and NB. Next, discuss (3-4 sentences) how the two
algorithms differ in performance, what their performance and errors are, and how/why they differ.

2. Discriminative Models [40 points]
Now, we move to discriminative models that only model the conditional likelihood of the observations
given the class labels. Logistic Regression and CRFs fall in this category. Note that since we don’t
model the distribution over observations, it is easy to “featurize” these models: Work with features of
the observations rather than the raw observations themselves. In this assignment, we will implement
a simple featurization - we will consider features of the form f(O, i) ∈ R64×26

f(O, i)l,m =

{
mth pixel of O if i = l

0 otherwise
.

For numerical stability, we will discard features whose sum over the dataset is small (the number of
occurrences). The file process data.m does this for you to construct goodFeatures, a logical 64 × 26
matrix storing the indices of the features that have non-negligible counts over the dataset.

Note that parameter estimation in these models is not closed form, but rather a convex optimization
problem that needs to be solved numerically. We will use the minFunc package to perform numerical
optimization (the package is included in the codebase given to you and just requires you to compute
objective and gradient). Make sure that minFunc and its subfolders compiled and autoDif are in
your MATLAB path when you are working on this part of the assignment (you will need to unzip
minFunc 2012.zip and run the script addpaths.m).

(a) Logistic Regresssion: In this part, you will train a multiclass logistic regression model to classify
images of single characters. The model is given by

P (Xt = i|Ot, θ) =
exp (〈θ, f(Ot, i)〉)∑
j exp (〈θ, f(Ot, j)〉)

.

The file logreg learn.m provides skeleton code for learning a logistic regression model. The
objective is log-likelihood normalized by the total number of letters (not words), and regularized
using L2 norm:

1

n
logP (D|θ) +

λ

2
||θ||22

.

You will need implement the function infer likelihood to perform inference in the logistic
regression model (compute log-likelihood of the observed class label given the features, and the
gradient of this log-likelihood with respect to the model parameters {θ}.

(b) Conditional Random Fields (CRFs): Here you will train a CRF for the same task. Note
that now the examples in the dataset are words (sequences of character labels and images). The
CRF will use features of the form f(Xt, Xt+1) ∈ R26×26 to capture correlations between adjacent
characters in a word (in addition to the ones used by logistic regression):
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f(i, j)l,m =

{
1 if i = l, j = m

0 otherwise

Under a CRF, the probability of observing a given sequence of characters X1:T given corresponding
images O1:T is

P (X1:T |O1:T ) ∝ exp

(
T∑

t=1

〈θn, f(Ot, Xt)〉+

T−1∑
t=1

〈θe, f(Xt, Xt+1)〉

)

The file crf learn.m provides skeleton code for learning a CRF model. You will need to fill
in the functions infer likelihood, crf infer in the file crf learn.m to perform inference in
the CRF (compute log-likelihood of the observed sequence of class images given the sequence of
character images) , and the gradient of this log-likelihood with respect to the model parameters
θn, θe.

What to include in the write up: Try several values of the regularization (the range λ = [10−4, .1] seems
good for this dataset) and include the plots for the resulting node potential for ‘a’ and the edge potential in
the write-up. Describe in 1-2 sentences the effect of smoothing. Include a plot of accuracy on the test set
vs. smoothing parameter λ for CRF and log-reg (the file generate crf plots.m does generates these plots
once you complete the inference code).

2 HMM Inference Written Questions [20 points]

1. In this question, you will derive how to compute the marginal probability of two adjacent states for
HMMs, P (xj−1, xj | o1, . . . , oT ).

(a) [10 points] Prove that forward-backward as defined in class notes provides an easy way to
compute P (xi−1, xi, o1..T ) from α and β as follows:

P (xj−1, xj , o1..T ) = αj−1(xj−1)P (xj | xj−1)P (oj | xj)βj(xj),

where
αj−1(xj−1) = P (xj−1, o1..j−1), βj = P (oj+1..T | xj).

You must state explicitly which conditional independence properties of HMMs you use in each
step of your proof. (For example, one useful conditional independence property of HMMs is that
Xj ⊥ O1..j−1 | Xj−1.)

Reminder: Directed Separation Theorem – Variables X and Y are independent given Z if there
is no active trail between X and Y when Z variables are observed. The same theorem applies for
sets of variables A,B: if there are no active trails between any pairs of variables (X ∈ A, Y ∈ B)
when Z are observed, then (A ⊥ B | Z).

(b) [2 points] Given that you have run forward-backward already, what is the complexity (in Big-O
notation) of computing a single conditional P (xi−1, xi | o1..T ). Use K to represent the number of
possible values of a hidden state.

2. Suppose we have a regular HMM of length T over variables X1, . . . , XT , O1, . . . , OT , but we observe
only the even Os, that is: O2, O4, . . . , OT (assuming T is even). We want to compute P (O1) using
variable elimination.

(a) [4 points] Write down a variable elimination ordering that achieves linear time complexity in T .

(b) [4 points] Now write down a variable elimination ordering that achieves exponential time com-
plexity in T .
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