BASICS OF PROBABILITY



Sample spaces, events and probabilities

Begin with a set {)—the sample space
e.g., 6 possible rolls of a die.
w € () is a sample point/possible world /atomic event

A probability space or probability model is a sample space
with an assignment P(w) for every w € () s.t.

0< Plw) <1

2,Pw) =1
eg., P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6.

An event A is any subset of ()
P(A) = 2Zqea P(w)
E.g., P(dieroll <4)=P(1)+ P2+ P(3)=1/64+1/6+1/6=1/2



Random variables

A random variable is a function from sample points to some range, e.g., the
reals or Booleans

e.g., Odd(1)=true.
P induces a probability distribution for any r.v. X:
P<X :Iz) — Z{M:X(w)—a?,;}P(w)
e.g., P(Odd=true) = P(1)+ P(3)+ P(5)=1/6+1/64+1/6=1/2



Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables A and B:
event o = set of sample points where A(w) = true
event —a = set of sample points where A(w) = false
event o /\ b = points where A(w)=1true and B(w)=true

Often in applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
e.g., A=true, B= false, or a /\ —b.
Proposition = disjunction of atomic events in which it is true
eg., (aVb)=(-aAb)V(aA-b)V(aAD)
= P(aVb)=P(-aAb)+ PlaN-b)+ PlaAb)



Why use probability?

The definitions imply that certain logically related events must have related
probabilities

E.g., PlaVvb)=Pla)+ P(b) — P(a \ND)

True

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.



Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do | have a cavity?)
Cavity =true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of (sunny, rain, cloudy, snow)
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., I'emp=21.6; also allow, e.g., T'emp < 22.0.

Arbitrary Boolean combinations of basic propositions



Prior probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity=true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)
P(Weather, Cavity) = a 4 x 2 matrix of values:

Weather = |sunny rain cloudy snow
Cavity=true [0.144 0.02 0.016 0.02
Clavity = false|0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points



Probability for continuous variables

Express distribution as a parameterized function of value:
P(X =ux) = U]18,26](x) = uniform density between 18 and 26

1

0.125-

18 dx 26

Here I is a density; integrates to 1.
P(X =20.5) = 0.125 really means

lim P(20.5 < X < 20.5 + dur) /dw = 0.125



Gaussian density
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Conditional probability

Conditional or posterior probabilities
e.g., P(cavity|toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity"

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,

but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache,49ersWin) = P(cavity|toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional probability

Definition of conditional probability:

P(a AD)
P(b)

P(alb) = if P(b) 0

Product rule gives an alternative formulation:
P(a Ab) = P(a|lb)P(b) = P(bla)P(a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)
(View as a 4 x 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(Xy,...,X,) =P(Xy,...,. X, 1) P(X,| Xq,..., X, 1)

=P(Xy,.... X, o) P(X, 1| X1,..., X, 2) P(X,| X4, ...

=II'_ P(X;| X1,..., X;)
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Inference by enumeration

Start with the joint distribution:
toothache — toothache

catch| — catch] catch| — catch

cavity | .108| .012 .072| .008
- cavity | .016 | .064 144 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = 2o P(w)

wwkEo



Inference by enumeration

Start with the joint distribution:

toothache - toothache

catch| — catch] catch| — catch
cavity | .108| .012 .072| .008
— cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = 2o P(w)

wwkEo@

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:
toothache — toothache

catch| — catch} catch| = catch
cavity | .108| .012 | .072| .008
- cavity | .016| .064 | .144| .576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LipuupoP(w)
P(cavityVtoothache) = 0.1084-0.0124-0.0724+0.008+0.016+0.064 = 0.28

wwE=
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Inference by enumeration

Start with the joint distribution:
toothache

— toothache

catch| — catch] catch| — catch

cavity | .108

— cavity | .016 144 | 576

Can also compute conditional probabilities:

P(—cavity A toothache)

P(toothache)
0.016 + 0.064

P(—cavity|toothache) =

=04
0.108 4+ 0.012 + 0.016 + 0.064
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Normalization

toothache - toothache

catch| — catchj catch| — catch
cavity ||.108][|.012] | .072] .008
- cavity [1.016[[.064] | .144] 576

Denominator can be viewed as a normalization constant o

P(Cavity|toothache) = a P(Cavity, toothache)
a |P(Cavity, toothache, catch) + P(Cavity, toothache, ~catch))

a [(0.108,0.016) 4 (0.012, 0.064)]

a (0.12,0.08) = (0.6, 0.4)

General idea: compute distribution on query variable

by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X — Y — E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y[E=e)=aP(Y,E=e) = aX,P(Y,E=e¢,H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries???
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Independence

A and B are independent iff

P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)=P(A)P(B)

Cavity
decomposesinto \Toothache Catch

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity)P(W eather)

Cavity
Toothache Catch

Weather

32 entries reduced to 12; for n independent biased coins, 2" — n
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’'t depend
on whether | have a toothache:
(1) P(catchl|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catchl|toothache, —cavity) = P(catch|—cavity)

C'atch is conditionally independent of T'oothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)

= P(Toothache|Catch,Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

le., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in 7 to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes’ theorem

Product rule P(a N b) = Plalb)P(b) = P(bla)P(a)

= Bayes' theorem: P(alb) = P<b£(>£<a>
or in distribution form
P(Y]X) = P<XI‘,}8£<Y> = aP(X|Y)P(Y)

Useful for assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

E.g., let M be meningitis, S be stiff neck:

P(sim)P(m) 0.8 x 0.0001
P(s) B 0.1

P(Cause|E f fect) =

P(m|s) = = 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ theorem and conditional independence

P(Cavity|toothache A catch)
= a P(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty, ..., Effect,) = P(Cause)lL,P(Ef fect;|Cause)

j t A A B N

Total number of parameters is linear in n
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