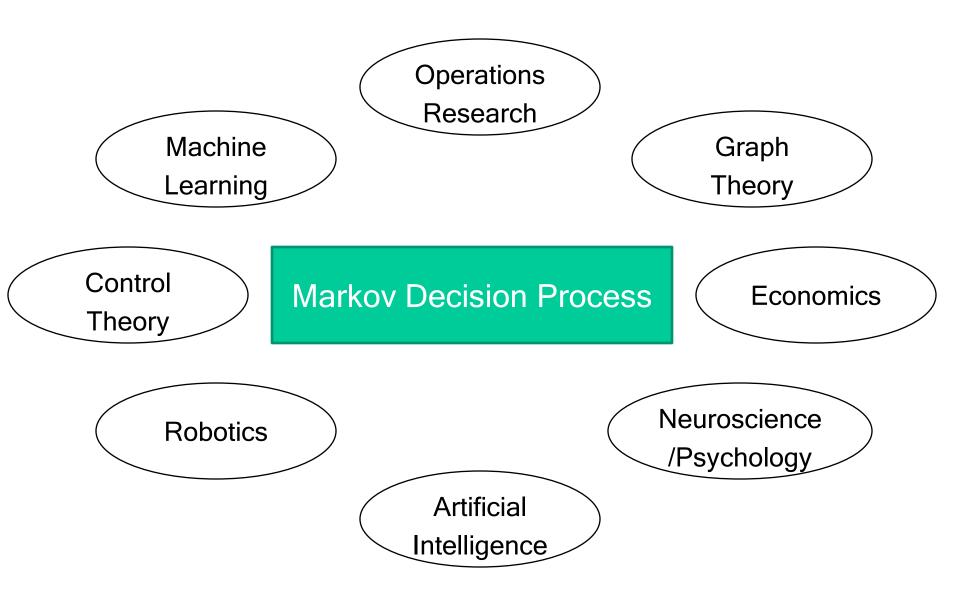
Markov Decision Processes

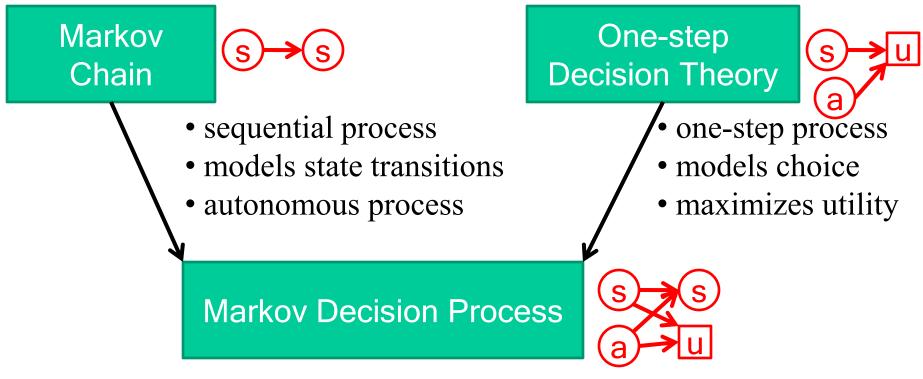
Mausam

CSE 515



model the sequential decision making of a rational agent.

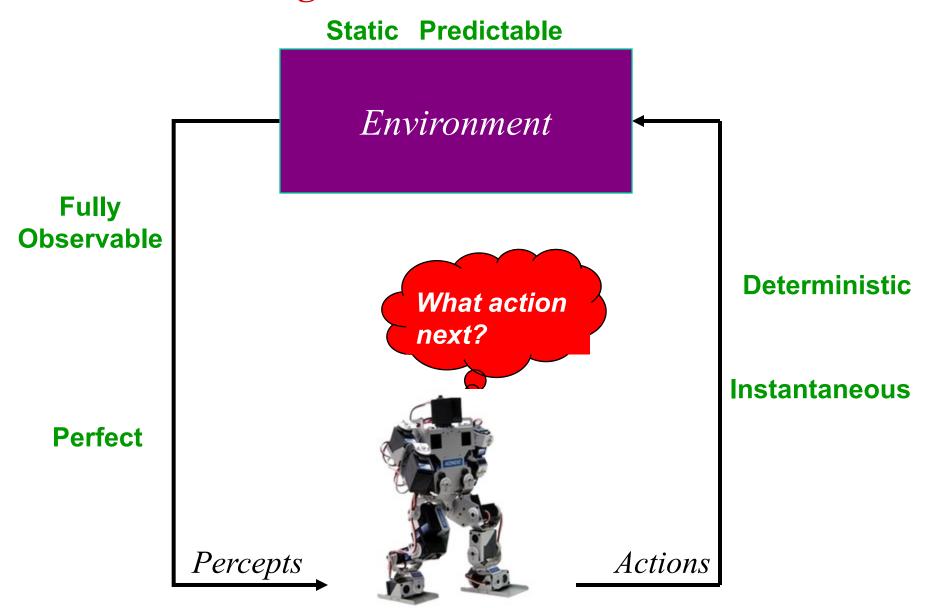
A Statistician's view to MDPs



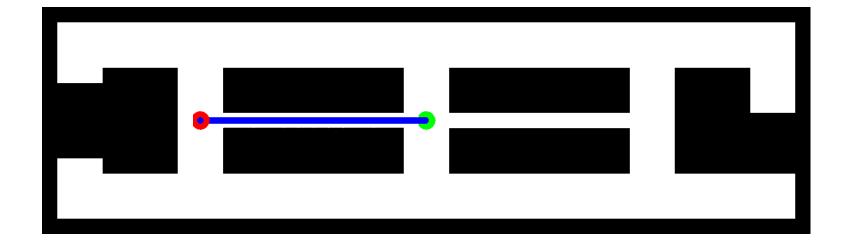
- Markov chain + choice
- Decision theory + sequentiality
- sequential process
- models state transitions
- models choice
- maximizes utility

A Planning View **Static vs. Dynamic** Predictable vs. Unpredictable Environment **Fully** VS. **Partially Deterministic Observable** VS. What action **Stochastic** next? **Perfect** Instantaneous VS. VS. **Durative** Noisy Percepts Actions

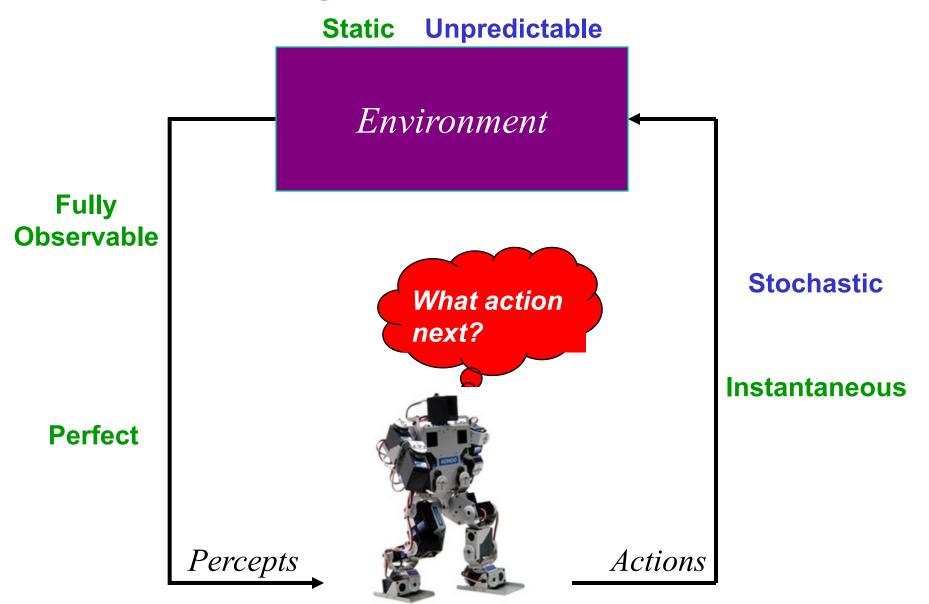
Classical Planning



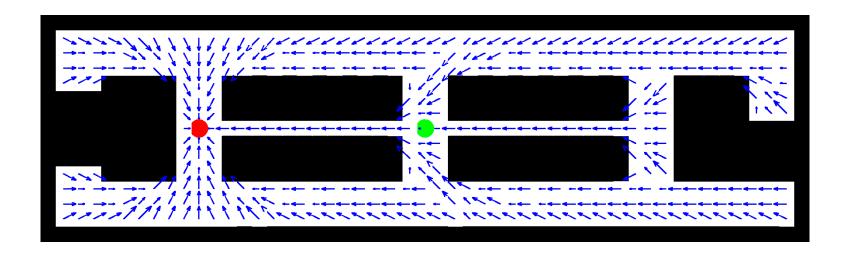
Deterministic, fully observable

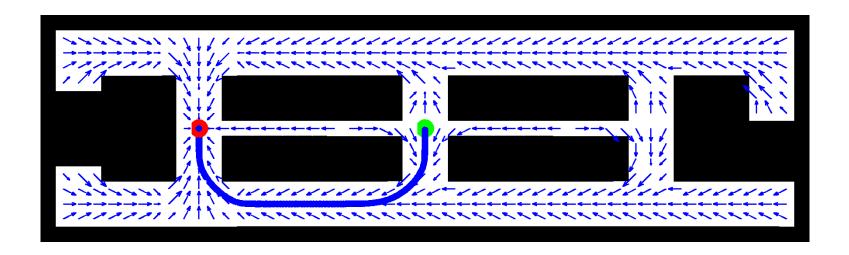


Stochastic Planning: MDPs



Stochastic, Fully Observable





Markov Decision Process (MDP)

S: A set of states actored **Factored MDP** A set of actions Pr(s'|s,a). transition model C(s,a,s'): cost model absorbing/ **G**: set of goals non-absorbing s₀: start state y: discount factor $\mathcal{R}(s,a,s')$: reward model

Objective of an MDP

- Find a policy $\pi: \mathcal{S} \to \mathcal{A}$
- which optimizes
 - minimizes discounted or expected cost to reach a goal expected reward
 maximizes or expected (reward cost)
 - maximizes undiscount. expected (reward-cost)
- given a ____ horizon
 - finite
 - infinite
 - indefinite
- assuming full observability

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
 - useful for infinite horizon problems
- Intuition (economics):
 - Money today is worth more than money tomorrow.
- Total reward: $r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$
- Total cost: $c_1 + \gamma c_2 + \gamma^2 c_3 + ...$

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP
 - $\langle S, A, Pr, C, G, s_0 \rangle$
 - Most often studied in planning, graph theory communities
- Infinite Horizon, Discounted Reward Maximization MDP
 - <S, A, Pr, R, γ>
 most popular
 - Most often studied in machine learning, economics, operations research communities
- Goal-directed, Finite Horizon, Prob. Maximization MDP
 - $\langle S, A, Pr, G, s_0, T \rangle$
 - Also studied in planning community
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP
 - $\langle S, A, Pr, G, R, s_0 \rangle$
 - Relatively recent model

Bellman Equations for MDP₁

- $\langle S, A, Pr, C, G, s_0 \rangle$
- Define J*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- J* should satisfy the following equation:

$$J^*(s) = 0 \text{ if } s \in \mathcal{G}$$

$$J^*(s) = \min_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, a) \left[\mathcal{C}(s, a, s') + J^*(s') \right]$$

Bellman Equations for MDP₂

- $<\mathcal{S}$, \mathcal{A} , \mathcal{P} r, \mathcal{R} , s_{0} , $\gamma>$
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, a) \left[\mathcal{R}(s, a, s') + \gamma V^*(s') \right]$$

Bellman Equations for MDP₃

- $<\mathcal{S}$, \mathcal{A} , \mathcal{P} r, \mathcal{G} , s_0 , T>
- Define P*(s,t) {optimal prob} as the maximum expected probability to reach a goal from this state starting at tth timestep.
- P* should satisfy the following equation:

$$P^*(s,t) = 1 \text{ if } s \in \mathcal{G}$$

$$P^*(s,T) = 0 \text{ if } s \notin \mathcal{G}$$

$$P^*(s,t) = \max_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a)P^*(s',t+1)$$

Bellman Backup (MDP₂)

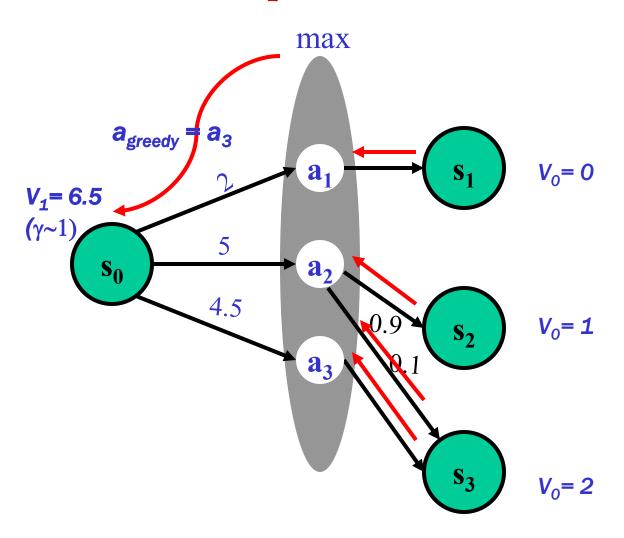
- Given an estimate of V* function (say V_n)
- Backup V_n function at state s
 - calculate a new estimate (V_{n+1}):

$$Q_{n+1}(s,a) = \sum_{s' \in \mathcal{S}} Pr(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V_n(s') \right]$$

$$V_{n+1}(s) = \max_{a \in Ap(s)} \left[Q_{n+1}(s,a) \right]$$

- Q_{n+1}(s,a): value/cost of the strategy:
 - execute action a in s, execute π_n subsequently
 - $\pi_n = \operatorname{argmax}_{a \in Ap(s)} Q_n(s,a)$

Bellman Backup

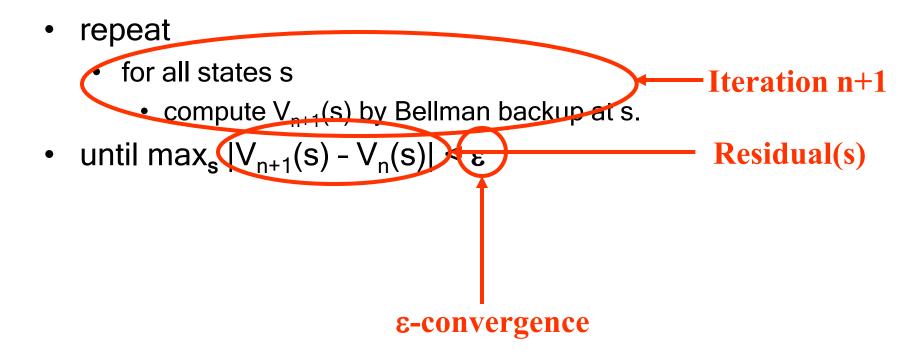


$$Q_1(s,a_1) = 2 + 0 \gamma$$

 $Q_1(s,a_2) = 5 + \gamma 0.9 \times 1$
 $+ \gamma 0.1 \times 2$
 $Q_1(s,a_3) = 4.5 + 2 \gamma$

Value iteration [Bellman'57]

assign an arbitrary assignment of V₀ to each state.



Comments

- Decision-theoretic Algorithm
- Dynamic Programming
- Fixed Point Computation
- Probabilistic version of Bellman-Ford Algorithm
 - for shortest path computation
 - MDP₁: Stochastic Shortest Path Problem
- Time Complexity
 - one iteration: $O(|\mathcal{S}|^2|\mathcal{A}|)$
 - number of iterations: poly(|S|, |A|, $1/(1-\gamma)$)
- Space Complexity: O(|S|)
- Factored MDPs
 - exponential space, exponential time

Convergence Properties

- $V_n \rightarrow V^*$ in the limit as $n \rightarrow \infty$
- ε-convergence: V_n function is within ε of V*
- Optimality: current policy is within 2εγ/(1–γ) of optimal
- Monotonicity
 - $V_0 \le_p V^* \Rightarrow V_n \le_p V^*$ (V_n monotonic from below)
 - $V_0 \ge_p V^* \Rightarrow V_n \ge_p V^*$ (V_n monotonic from above)
 - otherwise V_n non-monotonic

Policy Computation

$$\pi^*(s) = \underset{a \in Ap(s)}{\operatorname{argmax}} Q^*(s, a)$$

$$= \underset{a \in Ap(s)}{\operatorname{argmax}} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, a) \left[\mathcal{R}(s, a, s') + \gamma \mathcal{V}^*(s') \right]$$

Policy Evaluation

$$V_{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,\pi(s)) \left[\mathcal{R}(s,\pi(s),s') + \gamma V_{\pi}(s') \right]$$

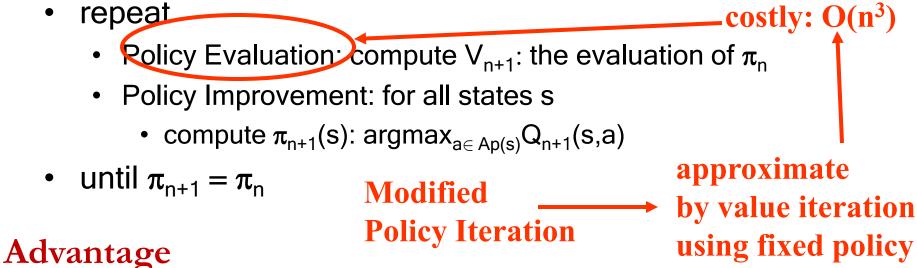
A system of linear equations in |S| variables.

Changing the Search Space

- Value Iteration
 - Search in value space
 - Compute the resulting policy
- Policy Iteration
 - Search in policy space
 - Compute the resulting value

Policy iteration [Howard'60]

• assign an arbitrary assignment of π_0 to each state.



- dvamage
 - searching in a finite (policy) space as opposed to uncountably infinite (value) space ⇒ convergence faster.
 - all other properties follow!

Modified Policy iteration

- assign an arbitrary assignment of π_0 to each state.
- repeat
 - Policy Evaluation: compute V_{n+1} the *approx*. evaluation of π_n
 - Policy Improvement: for all states s
 - compute $\pi_{n+1}(s)$: argmax_{$a \in Ap(s)$} $Q_{n+1}(s,a)$
- until $\pi_{n+1} = \pi_n$

Advantage

 probably the most competitive synchronous dynamic programming algorithm.

Asynchronous Value Iteration

- States may be backed up in any order
 - instead of an iteration by iteration
- As long as all states backed up infinitely often
 - Asynchronous Value Iteration converges to optimal

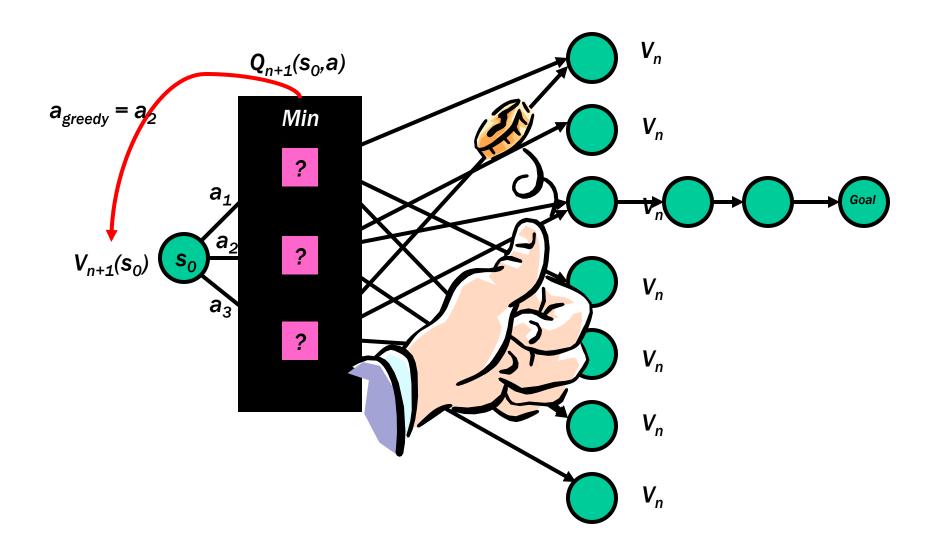
Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change
- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors

Asynch VI: Real Time Dynamic Programming [Barto, Bradtke, Singh'95]

- Trial: simulate greedy policy starting from start state;
 perform Bellman backup on visited states
- RTDP: repeat Trials until value function converges

RTDP Trial



Comments

- Properties
 - if all states are visited infinitely often then $V_n \to V^*$
- Advantages
 - Anytime: more probable states explored quickly
- Disadvantages
 - complete convergence can be slow!

Reinforcement Learning

Reinforcement Learning

- Still have an MDP
 - Still looking for policy π
- New twist: don't know Pr and/or R
 - i.e. don't know which states are good
 - and what actions do
- Must actually try out actions to learn

Model based methods

- Visit different states, perform different actions
- Estimate \mathcal{P} r and \mathcal{R}

 Once model built, do planning using V.I. or other methods

Con: require _huge_ amounts of data

Model free methods

Directly learn Q*(s,a) values

$$Q^*(s,a) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V^*(s') \right]$$

$$Q^*(s,a) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$

- sample = $\mathcal{R}(s,a,s') + \gamma \max_{a'} Q_n(s',a')$
- Nudge the old estimate towards the new sample
- $Q_{n+1}(s,a) \leftarrow (1-\alpha)Q_n(s,a) + \alpha[sample]$

Properties

- Converges to optimal if
 - If you explore enough
 - If you make learning rate (α) small enough
 - But not decrease it too quickly
 - $\sum_{i} \alpha(s,a,i) = \infty$
 - $\sum_{i} \alpha^2(s,a,i) < \infty$

where i is the number of visits to (s,a)

Model based vs. Model Free RL

Model based

- estimate $O(|S|^2|A|)$ parameters
- requires relatively larger data for learning
- can make use of background knowledge easily

Model free

- estimate O(|S||A|) parameters
- requires relatively less data for learning

Exploration vs. Exploitation

- Exploration: choose actions that visit new states in order to obtain more data for better learning.
- Exploitation: choose actions that maximize the reward given current learnt model.
- ε-greedy
 - Each time step flip a coin
 - With prob ε, take an action randomly
 - With prob 1-ε take the current greedy action
- Lower ε over time
 - increase exploitation as more learning has happened

Q-learning

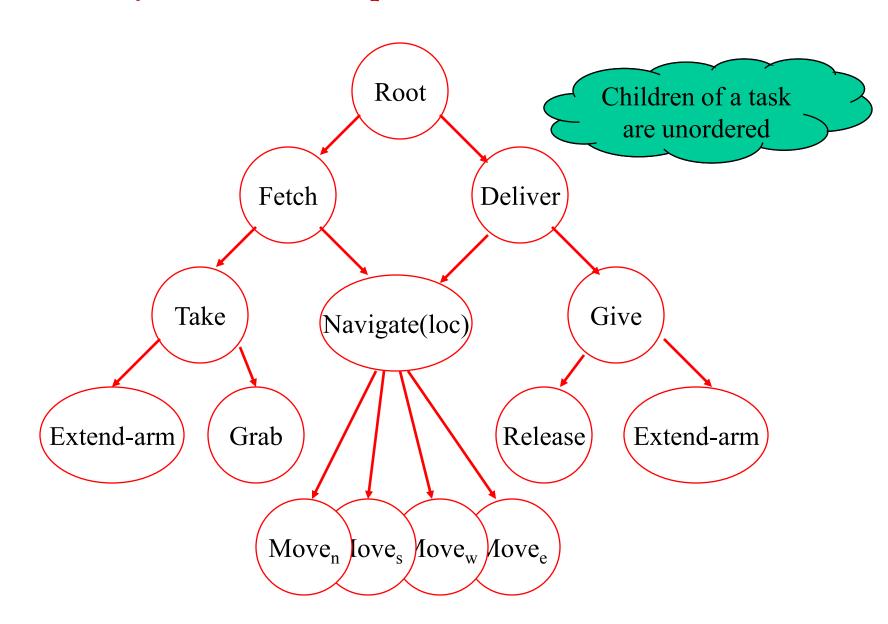
Problems

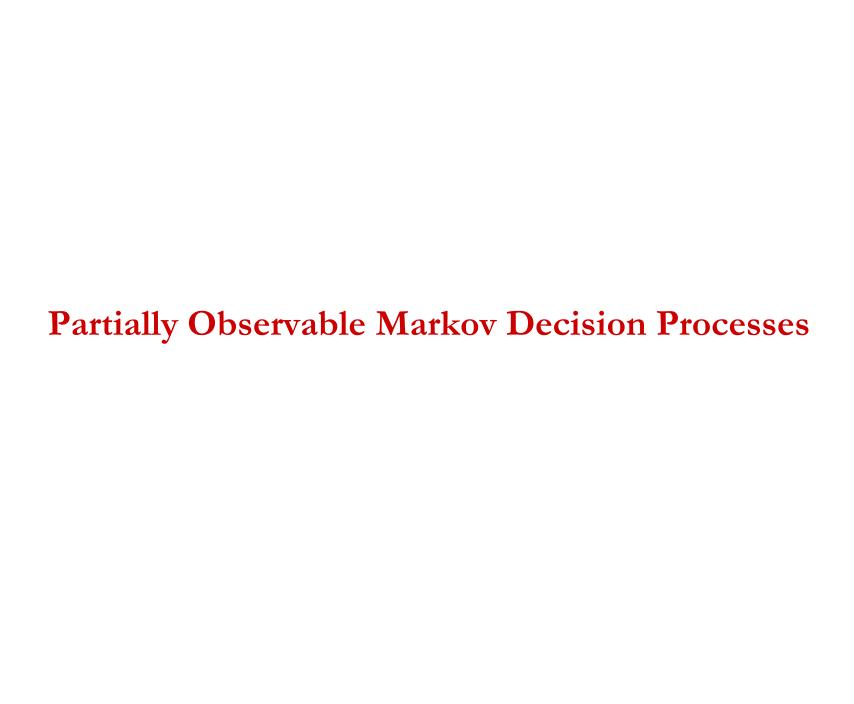
- Too many states to visit during learning
- Q(s,a) is still a BIG table
- We want to generalize from small set of training examples

Techniques

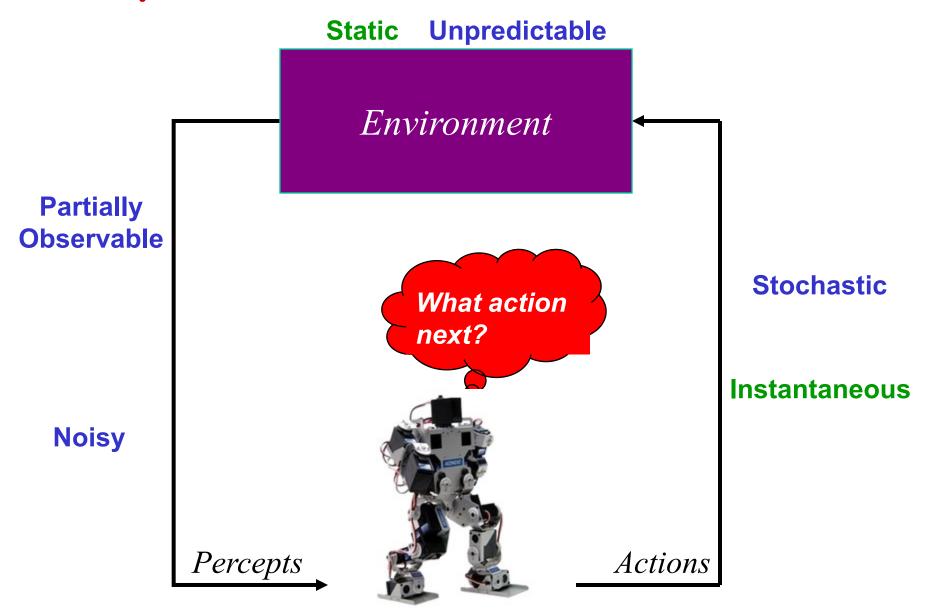
- Value function approximators
- Policy approximators
- Hierarchical Reinforcement Learning

Task Hierarchy: MAXQ Decomposition [Dietterich'00]

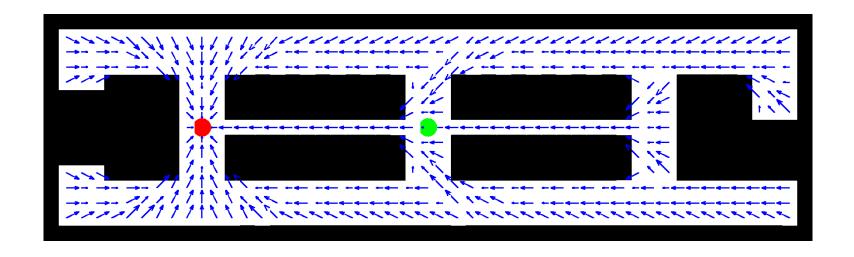


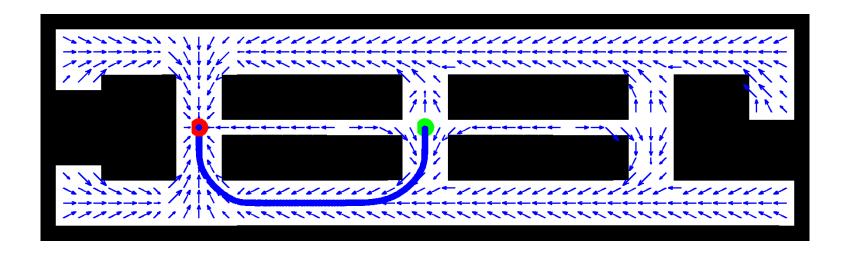


Partially Observable MDPs

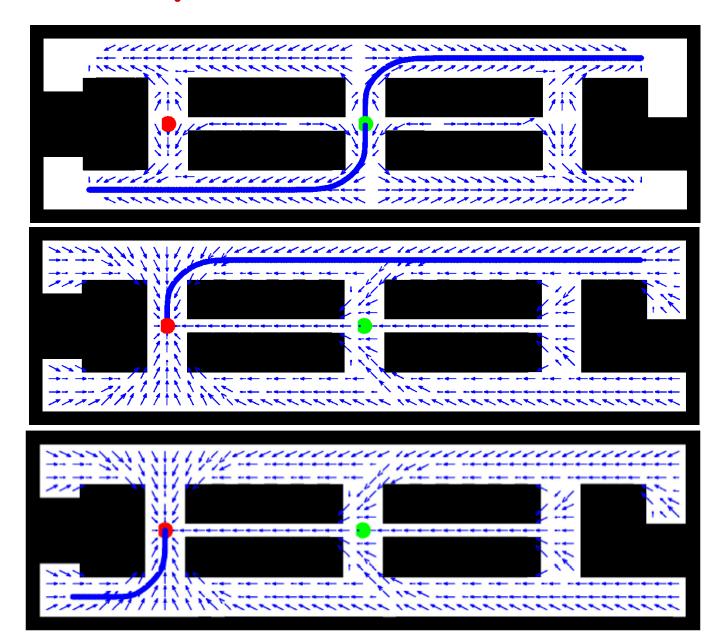


Stochastic, Fully Observable





Stochastic, Partially Observable



POMDPs

In POMDPs we apply the very same idea as in MDPs.

Since the state is not observable,
 the agent has to make its decisions based on the belief state which is a posterior distribution over states.

- Let b be the belief of the agent about the current state
- POMDPs compute a value function over belief space:

$$V_T(b) = \max_{a} \left[r(b,a) + \gamma \int V_{T-1}(b') p(b' \mid b,a) db' \right]$$

POMDPs

- Each belief is a probability distribution,
 - value fn is a function of an entire probability distribution.
- Problematic, since probability distributions are continuous.
- Also, we have to deal with huge complexity of belief spaces.

- For finite worlds with finite state, action, and observation spaces and finite horizons,
 - we can represent the value functions by piecewise linear functions.

Applications

- Robotic control
 - helicopter maneuvering, autonomous vehicles
 - Mars rover path planning, oversubscription planning
 - elevator planning
- Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control
- War planning, evacuation planning