
Markov Decision Processes

Mausam

CSE 515

Markov Decision Process

Operations

Research

Artificial

Intelligence

Machine

Learning

Graph

Theory

Robotics
Neuroscience

/Psychology

Control

Theory
Economics

model the sequential decision making of a rational agent.

A Statistician’s view to MDPs

Markov

Chain

One-step

Decision Theory

Markov Decision Process

• sequential process

• models state transitions

• autonomous process

• one-step process

• models choice

• maximizes utility

• Markov chain + choice

• Decision theory + sequentiality

• sequential process

• models state transitions

• models choice

• maximizes utility

s s s u

s s

u

a

a

A Planning View

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Fully

vs.

Partially

Observable

Perfect

vs.

Noisy

Deterministic
vs.

Stochastic

Instantaneous
vs.

Durative

Predictable vs. Unpredictable

Classical Planning

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Predictable

Instantaneous

Deterministic

Deterministic, fully observable

Stochastic Planning: MDPs

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Stochastic

Instantaneous

Unpredictable

Stochastic, Fully Observable

Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• Pr(s’|s,a): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state

• : discount factor

• R(s,a,s’): reward model

factored
Factored MDP

absorbing/

non-absorbing

Objective of an MDP

• Find a policy : S→ A

• which optimizes

• minimizes expected cost to reach a goal

• maximizes expected reward

• maximizes expected (reward-cost)

• given a ____ horizon

• finite

• infinite

• indefinite

• assuming full observability

discounted

or

undiscount.

Role of Discount Factor ()

• Keep the total reward/total cost finite

• useful for infinite horizon problems

• Intuition (economics):

• Money today is worth more than money tomorrow.

• Total reward: r1 + r2 + 2r3 + …

• Total cost: c1 + c2 + 2c3 + …

Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP

• <S, A, Pr, C, G, s0>

• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP

• <S, A, Pr, R, >

• Most often studied in machine learning, economics, operations
research communities

• Goal-directed, Finite Horizon, Prob. Maximization MDP

• <S, A, Pr, G, s0, T>

• Also studied in planning community

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP

• <S, A, Pr, G, R, s0>

• Relatively recent model

most popular

Bellman Equations for MDP1

• <S, A, Pr, C, G, s0>

• Define J*(s) {optimal cost} as the minimum

expected cost to reach a goal from this state.

• J* should satisfy the following equation:

Bellman Equations for MDP2

• <S, A, Pr, R, s0, >

• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:

Bellman Equations for MDP3

• <S, A, Pr, G, s0, T>

• Define P*(s,t) {optimal prob} as the maximum

expected probability to reach a goal from this

state starting at tth timestep.

• P* should satisfy the following equation:

Bellman Backup (MDP2)

• Given an estimate of V* function (say Vn)

• Backup Vn function at state s

• calculate a new estimate (Vn+1) :

• Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a)

V

R V

ax

Bellman Backup

V0= 0

V0= 1

V0= 2

Q1(s,a1) = 2 + 0 

Q1(s,a2) = 5 +  0.9£ 1

+  0.1£ 2

Q1(s,a3) = 4.5 + 2 

max

V1= 6.5

(~1)

agreedy = a3

5
a2

a1

a3

s0

s1

s2

s3

Value iteration [Bellman’57]

• assign an arbitrary assignment of V0 to each state.

• repeat

• for all states s

• compute Vn+1(s) by Bellman backup at s.

• until maxs |Vn+1(s) – Vn(s)| < 

Iteration n+1

Residual(s)

-convergence

Comments

• Decision-theoretic Algorithm

• Dynamic Programming

• Fixed Point Computation

• Probabilistic version of Bellman-Ford Algorithm
• for shortest path computation

• MDP1 : Stochastic Shortest Path Problem

ÁTime Complexity

• one iteration: O(|S|2|A|)

• number of iterations: poly(|S|, |A|, 1/(1-))

ÁSpace Complexity: O(|S|)

ÁFactored MDPs

• exponential space, exponential time

Convergence Properties

• Vn → V* in the limit as n→1

• -convergence: Vn function is within  of V*

• Optimality: current policy is within 2/(1-) of optimal

• Monotonicity
• V0Òp V* ⇒ VnÒp V* (Vn monotonic from below)

• V0Óp V* ⇒ VnÓp V* (Vn monotonic from above)

• otherwise Vn non-monotonic

Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

ax

ax R V

R VV

Changing the Search Space

• Value Iteration

• Search in value space

• Compute the resulting policy

• Policy Iteration

• Search in policy space

• Compute the resulting value

Policy iteration [Howard’60]

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1: the evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• searching in a finite (policy) space as opposed to

uncountably infinite (value) space ⇒ convergence faster.

• all other properties follow!

costly: O(n3)

approximate

by value iteration

using fixed policy

Modified

Policy Iteration

Modified Policy iteration

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1 the approx. evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• probably the most competitive synchronous dynamic

programming algorithm.

Asynchronous Value Iteration

ÁStates may be backed up in any order

• instead of an iteration by iteration

ÁAs long as all states backed up infinitely often

• Asynchronous Value Iteration converges to optimal

Asynch VI: Prioritized Sweeping

ÁWhy backup a state if values of successors same?

ÁPrefer backing a state

• whose successors had most change

ÁPriority Queue of (state, expected change in value)

ÁBackup in the order of priority

ÁAfter backing a state update priority queue

• for all predecessors

Asynch VI: Real Time Dynamic Programming

[Barto, Bradtke, Singh’95]

• Trial: simulate greedy policy starting from start state;

perform Bellman backup on visited states

• RTDP: repeat Trials until value function converges

Min

?

?s0

Vn

Vn

Vn

Vn

Vn

Vn

Vn

Qn+1(s0,a)

Vn+1(s0)

agreedy = a2

RTDP Trial

Goala1

a2

a3

?

Comments

• Properties

• if all states are visited infinitely often then Vn → V*

• Advantages

• Anytime: more probable states explored quickly

• Disadvantages

• complete convergence can be slow!

Reinforcement Learning

Reinforcement Learning

ÁStill have an MDP

• Still looking for policy 

ÁNew twist: don’t know Pr and/or R

• i.e. don’t know which states are good

• and what actions do

ÁMust actually try out actions to learn

Model based methods

ÁVisit different states, perform different actions

ÁEstimate Pr and R

ÁOnce model built, do planning using V.I. or

other methods

ÁCon: require _huge_ amounts of data

Model free methods

ÁDirectly learn Q*(s,a) values

Ásample = R(s,a,s’) + maxa’Qn(s’,a’)

ÁNudge the old estimate towards the new sample

ÁQn+1(s,a) ă (1-)Qn(s,a) + [sample]

Properties

ÁConverges to optimal if

• If you explore enough

• If you make learning rate () small enough

• But not decrease it too quickly

• ∑i(s,a,i) = ∞

• ∑i
2(s,a,i) < ∞

where i is the number of visits to (s,a)

Model based vs. Model Free RL

ÁModel based

• estimate O(|S|2|A|) parameters

• requires relatively larger data for learning

• can make use of background knowledge easily

ÁModel free

• estimate O(|S||A|) parameters

• requires relatively less data for learning

Exploration vs. Exploitation

ÁExploration: choose actions that visit new states in

order to obtain more data for better learning.

ÁExploitation: choose actions that maximize the

reward given current learnt model.

Á-greedy

• Each time step flip a coin

• With prob , take an action randomly

• With prob 1- take the current greedy action

ÁLower  over time

• increase exploitation as more learning has happened

Q-learning

ÁProblems

• Too many states to visit during learning

• Q(s,a) is still a BIG table

ÁWe want to generalize from small set of training examples

ÁTechniques

• Value function approximators

• Policy approximators

• Hierarchical Reinforcement Learning

Task Hierarchy: MAXQ Decomposition [Dietterich’00]

Root

Take GiveNavigate(loc)

DeliverFetch

Extend-arm Extend-armGrab Release

MoveeMovewMovesMoven

Children of a task Children of a task

are unordered

Partially Observable Markov Decision Processes

Partially Observable MDPs

What action

next?

Percepts Actions

Environment

Static

Partially

Observable

Noisy

Stochastic

Instantaneous

Unpredictable

Stochastic, Fully Observable

Stochastic, Partially Observable

POMDPs

Á In POMDPs we apply the very same idea as in MDPs.

ÁSince the state is not observable,

the agent has to make its decisions based on the belief state

which is a posterior distribution over states.

ÁLet b be the belief of the agent about the current state

ÁPOMDPs compute a value function over belief space:

ɔa b, a
a

POMDPs

ÁEach belief is a probability distribution,

• value fn is a function of an entire probability distribution.

ÁProblematic, since probability distributions are continuous.

ÁAlso, we have to deal with huge complexity of belief spaces.

ÁFor finite worlds with finite state, action, and observation

spaces and finite horizons,

• we can represent the value functions by piecewise linear

functions.

Applications

ÁRobotic control

• helicopter maneuvering, autonomous vehicles

• Mars rover - path planning, oversubscription planning

• elevator planning

ÁGame playing - backgammon, tetris, checkers

ÁNeuroscience

ÁComputational Finance, Sequential Auctions

ÁAssisting elderly in simple tasks

ÁSpoken dialog management

ÁCommunication Networks – switching, routing, flow control

ÁWar planning, evacuation planning

