Uncertainty

Jeffrey Heer University of Washington
(with significant material from Michael Correll)
“I estimate that we catch 25% of our 100x errors, and 5% of our 5x errors.”

Anonymous Data Science Team Manager
Topics

What Does Uncertainty Mean?

Uncertainty Visualization
Avoid Prematurely Suppressing Uncertainty
Visual Encodings of Uncertainty
Frequency Framing & Hypothetical Outcomes

What Can Go Wrong?
Inferential Integrity
Graphical Inference & Model Checks

GOAL: Try not to fool yourself!
What Does Uncertainty Mean?
Things “Uncertainty” Can Mean

Doubt
Risk
Variability
Error
Lack of Knowledge
Hedging
...

A Bar Chart

Sales of Widgets for Stores A and B

Widgets Sold

A
B
Measurement Uncertainty

Sales of Widgets for Stores A and B

Widgets Sold

A

B

0

20

40

60

80
Forecast Uncertainty

Sales of Widgets for Quarters 1 and 2

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Widgets Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>
Decision Uncertainty

We Should Close Store A

Widgets Sold

A

B

0

20

40

60

80
Uncertainty Sources

Measurement Uncertainty
“We’re not sure what the data are”

Model Uncertainty
“We’re not sure how the data fit together”

Forecast Uncertainty
“We’re not sure what will happen to the data next”

Decision Uncertainty
“We’re not sure what to do with the data”
Should I Bring an Umbrella?
Decision Uncertainty

“50% Chance of Rain”
Types of Error

- False Positive
- False Negative
The Boy Who Cried Wolf

Type I: False Positive

.jms

Type II: False Negative

 OkHttpClient
Here's my trick.

Type

- False Positive
- False Negative
Model Uncertainty

“50% Chance of Rain”
Model Uncertainty

Right Now
Overcast. Feels like 32°

Next Hour
Overcast for the hour.

Next 24 Hours
Mostly cloudy throughout the day.

Next 7 Days
Light rain throughout the week, with temperatures rising to 64°F on Sunday.
What Does Uncertainty Mean?

Any one of a number of potentially interconnected quantitative, qualitative, or factors that affect the quality, reliability, or utility of your data or data-driven decisions. Anything that can cause you to be unsure about your data or how to use it.
What Does Uncertainty Mean?

Any one of a number of potentially interconnected quantitative, qualitative, or factors that affect the quality, reliability, or utility of your data or data-driven decisions. Anything that can cause you to be unsure about your data or how to use it.

LOTS OF THINGS
Uncertainty Visualization
There are different **types** and **sources** of uncertainty.

We can **quantify** or **model** our uncertainty.

The visual presentation of uncertainty can **clash** with cognitive and perceptual biases.
Avoid Prematurely Suppressing Uncertainty
The mean treatment effect is higher than the placebo. Is this difference in means statistically significant?
Guess the p-value...

Error bars depict 95% Conf. Interval
Guess the p-value...

Error bars depict 95% Conf. Interval
Guess the p-value...

Error bars depict standard error
Misplaced Emphasis?
Misplaced Emphasis?
For inference tasks, focus on the **uncertainty**, not the point estimate!
Confidence Intervals

What does a 95% confidence interval indicate?
One interpretation is: there is a 95% chance that the population mean is within the interval.

Wrong!
Rather, given an infinite number of independent experiments, 95% of the confidence intervals generated will contain the true population mean. “Confidence” concerns the procedure, not the data. (Though see Bayesian credible intervals…)
Confidence Intervals

Simulation statistics

- Cl coverage (%)
 - μ missed: 3
 - μ included: 115

95% confidence intervals

- Proportion of Cls that include population mean
- Cls sampling distribution
95% CIs for regression model parameters. Here, we compare fitted parameters from 3 different models. Not all predictors are included in all models. Visual comparison: does the CI overlap 0?
Alternatives to Error Bars

Gradient Plot

Violin Plot
Distribution Visualizations

Strip Plot

Jittered Plot

Box Plot

Dot Plot
Distribution Visualizations

Histogram
bin size = 2

Density Plot
kde, \(\sigma = 0.5 \)

Violin Plot
kde, \(\sigma = 0.5 \)
Identical boxplots, different distributions

Boxplots are great. They show medians and ranges and enable comparison of different groups. However, boxplots can be misleading. Different datasets can have the same descriptive statistics (left), but quite different underlying distributions (middle). Therefore, it is crucial to visualize the distribution in addition to descriptive statistics. Violin plots with integrated boxplots are great for this.
Now in 2D! Heatmaps, Contours
Kernel Density Estimation (KDE)

Enables violin plots, heat maps, contour plots...
Kernel Density Estimation

For a set of input data points...
Kernel Density Estimation

Represent each point with a “kernel” distribution
Kernel Density Estimation
Sum the kernels to form a density estimate
Kernel Density Estimation
Sized by bandwidth (standard deviation)
Visual Encodings of Uncertainty
Uncertainty Vis Pipeline

1) Quantify uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
Uncertainty Vis Pipeline

1) Quantify uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
Uncertainty Vis Pipeline

1) Quantify uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
4) Unify the Data Map and Uncertainty Map
How to Unify?

Data Map

Uncertainty Map
Juxtaposition

Data Map

Uncertainty Map
Superposition
Superposition

Bivariate Map
Uncertainty Vis Pipeline

1) Quantify uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
4) Unify the Data Map and Uncertainty Map
Uncertainty Vis Pipeline

1) Quantify uncertainty
2) Choose a free **visual variable**
3) Encode uncertainty with the variable
4) Unify the Data Map and Uncertainty Map
Semiotics of Uncertainty

Ceci n’est pas une pipe.
Semiotics of Uncertainty
Semiotics of Uncertainty

Fuzziness Juxtaposition
Fuzziness Superposition
Size Juxtaposition
Size Superposition
Value Suppressing Uncertainty Palettes
Bivariate Map
Value Suppressing Uncertainty Palettes

Value Suppressing Uncertainty Palettes

Encoding Uncertainty

Some visual variables (like fuzziness and value) have a **semiotic connection** to uncertainty.

However, intuitive variables may not always be accurately interpreted!
Frequency Framing & Hypothetical Outcomes
Size or likelihood of hurricane?
Is New Orleans safe?

[Cox et al. 2013]

[Cox et al. 2013]
Predicted Bus Arrival Times

Make uncertainty concrete via hypothetical outcomes.

[Kay et al. 2016]
Support decision making relative to risk tolerance.

18/20 = 90% chance the bus comes at ~8 min or later

[Kay et al. 2016]
Predicted Bus Arrival Times

Better estimates, decisions with time. Even worst performers improve. Good uncertainty displays possible!

[Kay et al. 2016]
How to Present Probabilities

Less Intuitive

- **Probability**: $P(A) = 0.6$
- **Percentage**: 60% chance of A
- **Natural Frequency**: 3 out of 5 times, A happens.

More Intuitive

[Ottley et al. 2016]
Quantile Dot Plots

Less Error

More Error

Kay et al. 2016
Hypothetical Outcome Plots
Hypothetical Outcome Plots

If job growth had been accelerating...

...the jobs report could look like this:
Hypothetical Outcomes

If the economy actually added 150,000 jobs last month, it would be possible to see any of these headlines:

The jobs number is just an estimate, and it comes with uncertainty.

Job Growth Plummets Amid Prospect Of New Slump
- Under 55,000 jobs
 - 4% chance

Disappointing Jobs Report Raises Economic Worries
- 55,000 to 110,000
 - 19% chance

Slower Job Creation Disappoints Economists
- 110,000 to 140,000
 - 19% chance

Job Growth Steady, New Report Says
- 160,000 to 190,000
 - 19% chance

Job Creation Accelerates In Sign Of Economy Improving
- 190,000 to 245,000
 - 19% chance

Job Growth Robust, Pointing To Economy Surging
- 245,000+
 - 4% chance

[NYTimes, 2014]
The NY Times Needle

Vote margin

Clinton +0.6

FORECAST, in pct. points

[NYTimes, 2016]
How Should I Visualize Uncertainty?

Choose an appropriate visual variable based on the domain, literacy, and expertise of your audience. Be mindful that any display of uncertainty inherently increases the complexity of your visualization, and that there is a preference/performance gap.
How Should I Visualize Uncertainty?

Choose an appropriate visual variable based on the domain, literacy, and expertise of your audience. Be mindful that any display of uncertainty inherently increases the complexity of your visualization, and that there is a preference/performance gap.

IT DEPENDS
What Can Go Wrong?
Inferential Integrity
Which Stock To Buy?

Company A

Company B
Neither!

Company A

Company B

A1

=RAND()
What Swag Should We Send? [Zgraggen et al. ’18]

(a) 2006: pen ($4)
(b) 2007 key chain ($2)
(c) 2016: USB drive ($4)

Recurring Donor?
What Swag Should We Send? [Zgraggen et al. ’18]

(a) 2006: pen ($4)
(b) 2007 key chain ($2)
(c) 2016: USB drive ($4)

Figure 1. A user inspects several graphs and wrongly flags (c) as an insight because it looks different than (a) and (b). All were generated from the same uniform distribution and are the “same”. By viewing lots of visualizations, the chances increase of seeing an apparent insight that is actually the product of random noise.
JELLY BEANS CAUSE ACNE!
SCIENTISTS! INVESTIGATE!

WE FOUND NO LINK BETWEEN JELLY BEANS AND ACNE (P > 0.05).

THAT SETTLES THAT.
I HEAR IT'S ONLY A CERTAIN COLOR THAT CAUSES IT.

SCIENTISTS!
BUT PARMESAN!
JELLY BEANS CAUSE ACNE!

SCIENTISTS! INVESTIGATE!

BUT WE'RE PLANTING MARIGOLDS...

...FINE.

WE FOUND NO LINK BETWEEN JELLY BEANS AND ACNE (P > 0.05).

THAT SETTLES THAT.

I HEAR, IT'S ONLY A CERTAIN COLOR THAT CAUSES IT.

SCIENTISTS!

BUT MARIGOLDS!

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN MARIGOLD JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).
JELLY BEANS CAUSE ACNE!

WE FOUND NO LINK BETWEEN JELLY BEANS AND ACNE (P > 0.05).

THAT SETTLES THAT.

I HEAR IT'S ONLY A CERTAIN COLOR THAT CAUSES IT.

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN GREEN JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05).
WE FOUND A LINK BETWEEN PEACH JELLY BEANS AND ACNE (P < 0.05).
WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05).
WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

BUT WE'RE PLAYING PINEAPPLE!

FINISH!
JELLY BEANS CAUSE ACNE!

SCIENTISTS INVESTIGATE!

BUT WE'RE PLAYING MONOPOLY!

...FINISH!

WE FOUND NO LINK BETWEEN JELLY BEANS AND ACNE (P > 0.05).

THAT SETTLES THAT.

I HEAR IT'S ONLY A CERTAIN COLOR THAT CAUSES IT.

SCIENTISTS!

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05).

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P < 0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN PEARL JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

News
GREEN JELLY BEANS LINKED TO ACNE!
95% CONFIDENCE

ONLY 5% CHANCE OF COINCIDENCE!
Multiple Comparisons Problem
Aggregated vs. Disaggregated Views [Nguyen et al. ‘20]
Example: Is the U.S. cooling?

Starts at 1918. Summer temps only. Raw average over weather stations.

But here is the mean latitude of US weather stations, per year...

tamino.wordpress.com/2018/08/08/usa-temperature-can-i-sucker-you/
Example: Is the U.S. cooling? (No.)

Include more historical data.
Include all four seasons.
Correct spatial averages to account for changes in weather station locations.
Simpson’s Paradox!
Some Causes of Inferential Failure

Premature Suppression of Uncertainty
False Discovery due to Random Fluctuation
Incomplete or Biased Data
Confounding Variables
Graphical Inference & Model Checks
Visual Lineups
Choropleth maps of cancer deaths in Texas. One plot shows a real data set. The others are simulated under the null hypothesis of spatial independence.

Can you spot the real data? If so, you have some evidence of spatial dependence in the data.

Choropleth maps of cancer deaths in Texas. One plot shows a real data set. The others are simulated under the null hypothesis of spatial independence. Can you spot the real data? If so, you have some evidence of spatial dependence in the data.
Graphical Inference

Compare data to replicated data under a model
Can we articulate a possible data generating process?
If we model that, how does it compare to our data?

Choose a model for comparison
Permute (shuffle) relationship between variables, or
Choose a meaningful “null” model

Perform visual comparison
In the “lineup” protocol, we compare the real data against a number of generated variants.
Can we spot the difference?
Distance vs. angle for 3 point shots by the LA Lakers.

One plot is the real data. The others are generated according to a null hypothesis of quadratic relationship.
Distance vs. angle for 3 point shots by the LA Lakers.

One plot is the real data. The others are generated according to a null hypothesis of quadratic relationship.
Plot:
mpg by origin

What might our implicit model be?
Model:
mpg ~ 1

Blue points are predictions from a null model based on the mean and stdev of the miles per gallon.
Model:
mpg ~ cyl

Blue points are predictions from a model with cylinder count as a predictor.

more cylinders → more fuel consumption → worse mileage

Might this explain the differences across regions?
Plot:
mpg by hp

What might our implicit model be?
Model:
mpg ~ hp

Linear model, similar to a standard regression. Blue points are model predictions.

Negative mileage?!
Model:
mpg ~ hp

Linear model, similar to a standard regression.
Bands show CI levels.

Negative mileage?!
Model:

$\text{mpg} \sim \log(\text{hp})$

family = lognormal

A log-normal model better fits the data and does not "hallucinate" negative values.
Model:

mpg ~ log(hp)

family = lognormal

A log-normal model better fits the data and does not "hallucinate" negative values.
Tools for Model Checks

R provides the needed modeling and visualization tools.
For example:
• `brms` to fit (Bayesian) models
• `tidybayes` to sample and plot predicted values
• `gganimate` to create animated HOPs

To get started, I recommend the `tidybayes` vignettes:
https://mjskay.github.io/tidybayes/

Model checks can be complicated to create and interpret. This is a promising area for innovation!
What might “random” look like?
What process generated the data?
What Can Go Wrong?

Uncertainty can be difficult to understand, and require a statistical background and high numeracy. Additionally, cognitive and perceptual biases can result in people making poor or error-prone decisions from uncertain data.
What Can Go Wrong?

Uncertainty can be difficult to understand, and require a statistical background and high numeracy. Additionally, cognitive and perceptual biases can result in people making poor or error-prone decisions from uncertain data.
Summary

What Does Uncertainty Mean?
LOTS OF THINGS

How Should I Visualize It?
IT DEPENDS

What Can Go Wrong?
A LOT