CSE 512 - Data Visualization
Scalable Visualization
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The Varieties of “Big Data”



Tall Data

| ots of records

Large DBs have petabytes or more
(but median DB still fits in RAM!)

How to manage?
Parallel data processing
Reduction: Filter, aggregate
Sample or approximate

Not just about systems. Consider
perceptual / cognitive scalability.



Tall Data Wide data

Lots of variables (100s-1000s...)
Select relevant subset

Dimensionality reduction

Statistical methods can suggest

and order related variables

Requires human judgment




Tall Data Wide data

Diverse data




Tall Data Wide data

Diverse data




How can we visualize and
interact with billion+ record
databases in real-time?



Two Challenges:
1. Effective visual encoding
2. Real-time interaction



Perceptual and interactive
scalability should be limited by the
chosen resolution of the visualized

data, not the number of records.



Scalable Plotting Techniques
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How to Visualize a Billion+ Records
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Binned Aggregation |

Decouple the visual complexity from the raw data through aggregation.



Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete "buckets”

Categories: Already discrete (but watch out for high cardinality)
Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection
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Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete "buckets”

Categories: Already discrete (but watch out for high cardinality)
Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection
2. Aggregate Count, Sum, Average, Min, Max, ...
3. Smooth Optional: smooth aggregates [wickham '13]

4. Plot Visualize the aggregate values



Binned Plots by Data Type
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Examples
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Example: Binned Scatter Plots

Scatterplot
Matrix
Techniques
for Large N
[Carretal '8/]




NBA Shooting 2011-12
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Time Series



Time Series: 1M samples, 1 sample/second
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Time Series: 1M samples, 1 sample/second

T Value < >
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Time Series: 1M samples, 1 sample/second

T Value < >
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Time Series: 1M samples, 1 sample/second

T Value < >
550 - 670 pixels

500~ ~1500 points / pixel!
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Time-Series Aggregation [Jugel'14] M

Insight: the resolution is bound by the number of pixels.
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Time-Series Aggregation [Jugel'14] M

Insight: the resolution is bound by the number of pixels.

1. Compute average value per pixel (1 point/pixel) M

...this may miss extreme (min, max) values

2. Plot min/max values per pixel (2 points/pixel) M

...this does better, but still misrepresents

3. M4: min/max values & timestamps (4 points/pixel) M

...this provides provable fidelity to the full datal!


http://www.vldb.org/pvldb/vol7/p797-jugel.pdf

Data Reduction in the Database

SELECT t,v FROM Q JOIN

(SELECT round($wk(t-$t1)/($t2-$t1)) as Kk,
min(v) as v_min, max(v) as v_max,
min(t) as t_min, max(t) as t_max
FROM Q GROUP BY k) as QA

ON k = round($wk(t-$t1)/($t2-$t1))

AND (v = v_min OR v = v_max OR
t = t . min OR t = t_max)

Q: query that returns a time series (t,Vv)
$w: chart width in pixels
$t1l, $t2: global min/maxtimestamps

——define key
——get min,max
-—get 1st, last
——group by k
——jolin on Kk
—=&(min|max |
—— 1st|last)



Time Series: 1M samples, 1 sample/second
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M4: 1M samples -> 2,653 plotted points
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https://observablehq.com/@uwdata/m4-scalable-time-series-visualization
https://observablehq.com/@uwdata/m4-scalable-time-series-visualization

Price

But what about multiple time-series?
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Perceptual scalability
breaks down...



Density Line Chart  [Moriiz & Fisher]
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The non-normalized heatmap suffers from artifacts, seen as vertical stripes.

Binned charts convey high points across the top, a collective dip in stocks
during the crash of 2008, and two distinct bands of $25 and $15 stocks.



Density Line Chart  [Moriiz & Fisher]
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Density Line Chart  [Moriiz & Fisher]

Time Series Repeat for each series Non-Normalized
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Density Line Chart  [Moriiz & Fisher]
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Density Line Chart  [Moriiz & Fisher]
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The density of the second group appears to increase to the right!

Without normalization, the steep lines are over-represented.



Design Subtleties



Hexagonal or Rectangular Bins?

» (- W |

100,000 Data Points Hexagonal Bins Rectangular Bins

Hex bins better estimate density for 2D plots,
but the improvement is marginal [Scott 92].

Rectangles support reuse and visual queries.



Color Scale: Discontinuity after Zero

Standard Color Ramp Add Discontinuity after Zero
Counts near zero are white. Counts near zero remain visible.



Color / Opacity Ramps

i cout
20
wo
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Linear interpolation in RGBA Perceptual color spaces
is not perceptually linear. approximate perceptual linearity.



Scalable Interaction



Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes

3. Prefetching

4. Approximation



Interactive Scalability Strategies

1. Query Database Offload to a scalable backend...
Tableau, for example, issues aggregation queries.
Analytical databases are designed for fast, parallel execution.
But round-trip queries to the DB may still be too slow...
2. Client-Side Indexing / Data Cubes

3. Prefetching

4. Approximation



Interactive Scalability Strategies

1. Query Database ...or alternative data frame implementation

Python: Vaex, Polars, Modin, cuDF

R: dbplyr
All: DuckDB

2. Client-Side Indexing / Data Cubes
3. Prefetching

4. Approximation


https://vaex.io/
https://www.pola.rs/
https://github.com/modin-project/modin
https://github.com/rapidsai/cudf
https://dbplyr.tidyverse.org/
https://duckdb.org/

Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes Query data summaries

Build sorted indices or data cubes to quickly re-calculate

aggregations as needed on the client.

3. Prefetching

4. Approximation



Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching Request data before it is needed

Reduce latency by speculatively querying for data before it is

needed. Requires prediction models to guess what is needed.

4. Approximation



Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching

4. Approximation Give fast, approximate answers

Reduce latency by computing aggregates on a sample, ideally

with approximation bounds characterizing the error.



Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes

3. Prefetching

4. Approximation

These strategies are not mutually exclusive!

Systems can apply them in tandem.



Client-Side Indexes
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5-D Data Cube
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5-D Data Cube
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Oakland

Visual Data Exploration SPHERE



Oakland

Visual Data Exploration




Multivariate Data Tiles
1. Send data, not pixels
2. Embed multi-dim data
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Full 5-D Cube



Full 5-D Cube

X% % p) z

. ' _, 3-D
2 cubes

For any pair of 1D or 2D binned plots, the
maximum number of dimensions needed
to support brushing & linking is four.



Full 5-D Cube
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5 dimensions x 50 bins/dim x 25 plots
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Limitations and Questions

But where do the multivariate data tiles come from?
They must be provided by a backend server. This can be time-

consuming, particularly if supporting deep levels of zooming.

Does super-low-latency interaction really matter?
s it worth it to go to all of this trouble? (Short answer: yes!)

High latency leads to reduced analytic output [Liu & Heer, Infovis 2014]



Why Latency Matters



Prior Work

Higher latency entails higher action costs, subjects
satisfice by selecting strategies that reduce short-
term effort with no guarantee that the final outcome
is optimized. [Gray & Boehm-Davis)
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Prior Work

Higher latency entails higher action costs, subjects
satisfice by selecting strategies that reduce short-
term effort with no guarantee that the final outcome
is optimized. [Gray & Boehm-Davis)

300ms latency reduces the number of Google
searches; effect persists for days. [Brutlag et al]

When the cost of acquiring information is
increased, subjects change strategy and rely
more on working memory. [Ballard et al]



Prior Work

Higher latency entails higher action costs, subjects
satisfice by selecting strategies that reduce short-
term effort with no guarantee that the final outcome
is optimized. [Gray & Boehm-Davis)

When confronted with increased latencies, users
resort to more mental planning, at times making
fewer errors and performing better on tasks with
verifiable outcomes. [O'Hara & Payne]



Prior Work

Higher latency entails higher action costs, subjects
satisfice by selecting strategies that reduce short-
term effort with no guarantee that the final outcome
is optimized. [Gray & Boehm-Davis)

When confronted with increased latencies, users
resort to more mental planning, at times making
fewer errors and performing better on tasks with
verifiable outcomes. [O'Hara & Payne]

But what about open, exploratory analysis tasks?



Experiment Design

2 (Latency) x 2 (Scenario) Design
Latency: +0Oms/ +500ms
Scenario: Mobile Check-ins / FAA Flight Delays

Exploratory Analysis Tasks (2 per session)
imMens with brush, pan, zoom, adjust scales
Users asked to explore data and share findings
Log events, record audio and screen capture

16 subjects, all familiar with data analysis + vis
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Data Collection & Analysis

Event Log Analysis
Analyze triggered & processed user input events

Assess data set coverage (# unique tiles)

Verbal Protocol Analysis
Think-aloud protocol: verbalize thought process
Transcribe sessions; Code actions and insights

Analyze number and type of coded events
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Latency Study Results

Higher latency leads to...

Reduced user activity and data set coverage
Significantly fewer brushing actions

Less observation, generalization & hypothesis

likelihood-ratio test:

Verbal Category Chisq(1, N=32) p value significance

Observation 5.4812 0.01922 * 0283
Observation (Single View) 1.5706 0.2101 0.070
Observation (Multiple Views)  3.3119 0.06878 . 0.215
Generalization 8.9763 0.002735 o 0.103
Generalization (Single View) 0.2641 0.6073 0.002
Generalization (Multiple Views) 8.5054 0.003541 ox 0.100
Hypothesis 8.3999 0.003752 bl 0.169
Question 0.7416 0.3891 0.043
Interface 0.4651 0.4953 0.014
Recall 0.0202 0.8869 0.003
Simulation 0.6983 0.4033 0.016

0.00 0.05 0.10 0.15 0.20 0.25
Latency Coefficient
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Latency Study Results

Higher latency leads to...

Reduced user activity and data set coverage
Significantly fewer brushing actions

Less observation, generalization & hypothesis

Interaction effect: Exposure to delay reduces
subsequent performance in low-latency interface.

Different interactions exhibit varied sensitivity to
latency. Brushing is highly sensitive!

In short: milliseconds matter! And optimizing for

\ AAO‘

latency was not a waste of time... &



Sampling Methods

Visual Data Exploration \Q\\\ SPHERE



Common Sampling Methods

First-N: Useful for transformation, but not inference.

Random: Good default, but may miss features of
interest. Possible in one pass via reservoir sampling,
or faster if stored in randomized order.

Stratified: Sample within groups, ensure coverage
and balance across those categories.
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Online Aggregation [Hellerstein, Haas, Wang '97]

&. Online Aggregation Demo 7![37@

Provide dynamic, progressive D

190 2.9353933

208 3.0174129 GPA per College
186 3.5308642

A
B
D
E 167 3.0384614
H
K
L2
i

results as queries run: see

177 3.1497006
191 3.0500000
185 3.0730338
209 3.1683416

results over growing samples.

Visualize current results with
confidence intervals to convey

N 175/ 3.2116563
P 177|3.1225805
Q 169 3.3609271
R 184 3.5167599
\4 183/ 3.2289157
iz 22|3.0227273

uncertainty of estimate.

Challenge: difficult to ensure
truly random sampling.

ABDEHKLMNPAOQRYZ

Confidence College

T I




What if data is too large to
guery in a reasonable time?



Trust, but Verify: Optimistic Vis

[Moritz, Fisher, Ding & Wang '17/]

Strategies: Query Database, Approximation
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Latencies reduce engagement

and lead to fewer observations.

The Effect of Interactive Latency. Liu, Heer. IEEE InfoVis 2014.
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Approximation: Trade Accuracy for Speed

Approximate query processing (AQP)
Uncertainty estimation in statistics
Uncertainty visualization

Probabilistic programming
Approximate hardware



Pick your poison:
1. Trust the approximation, or
2. Wait for everything to complete.



'
IS na 1]
B .

> 2
—
e
L —

Optimistic Visualization
Trust but Verify



What if we think of the

issues with approximation as
user experience problems?



O pti m isti C Vis Ua I izati on Trust but Verify. Moritz et al. CHI 2017.
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1. Analysts uses initial estimates.

2. Precise queries run in the background.

3. System confirms results. Analyst detects errors.

Analysts can use approximations and also trust them.



Optimistic Visualization
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Visualize Uncertainty
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Show a History of Previous Charts
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Help Analysts Confirm Results
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Evaluation

Case studies with teams at Microsoft who brought in their own data.

Approximation works

“seeing something right away at first glimpse is really great”

Need for guarantees

“Iwith a competitor] | was willing to wait 70-80 seconds. It wasn't ideally interactive, but it meant | was

looking at all the data.”

Optimism works

“l was thinking what to do next— and | saw that it had loaded, so | went back and checked it

... [the passive update is] very nice for not interrupting your workflow.”



In Conclusion...



Two Challenges:
1. Effective visual encoding
2. Real-time interaction



Perceptual and interactive
scalability should be limited by the
chosen resolution of the visualized

data, not the number of records.



Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete “buckets”
2. Aggregate Count, Sum, Average, Min, Max, ...
3. Smooth Optional: smooth aggregates [wickham 13]

4. Plot Visualize the aggregate values



Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes

3. Prefetching

4. Approximation

These strategies are not mutually exclusive!
Systems can apply them in tandem.



