Expressiveness
A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Effectiveness
A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.
Tell the truth and nothing but the truth
(don’t lie, and don’t lie by omission)

Use encodings that people decode better
(where better = faster and/or more accurate)
<table>
<thead>
<tr>
<th>QUANTITATIVE</th>
<th>ORDINAL</th>
<th>NOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density (Value)</td>
<td>Color Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Color Sat</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td>Color Hue</td>
<td>Connection</td>
</tr>
<tr>
<td>Area (Size)</td>
<td>Texture</td>
<td>Containment</td>
</tr>
<tr>
<td>Volume</td>
<td>Connection</td>
<td>Density (Value)</td>
</tr>
<tr>
<td>Density (Value)</td>
<td>Containment</td>
<td>Color Sat</td>
</tr>
<tr>
<td>Color Sat</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td>Color Hue</td>
<td>Angle</td>
<td>Length</td>
</tr>
<tr>
<td>Texture</td>
<td>Slope</td>
<td>Angle</td>
</tr>
<tr>
<td>Connection</td>
<td>Area (Size)</td>
<td>Slope</td>
</tr>
<tr>
<td>Containment</td>
<td>Volume</td>
<td>Area</td>
</tr>
<tr>
<td>Shape</td>
<td>Shape</td>
<td>Volume</td>
</tr>
</tbody>
</table>
Graphical Perception

The ability of viewers to interpret visual (graphical) encodings of information and thereby decode information in graphs.
Topics

Signal Detection
Magnitude Estimation
Using Multiple Visual Encodings
Pre-Attentive Processing
Gestalt Grouping
Change Blindness
Signal Detection
Detecting Brightness

Which is brighter?

L

R

Which is brighter?
Detecting Brightness

(128, 128, 128)
(144, 144, 144)

Which is brighter?
Detecting Brightness

Which is brighter?

L

R

Which is brighter?
Detecting Brightness

(134, 134, 134) (128, 128, 128)

Which is brighter?
Just Noticeable Difference (JND)

JND (Weber’s Law)

Perceived Change \(\Delta S \) = \(k \frac{\Delta I}{I} \)

Scale Factor (Empirically Determined)

Change of Intensity

Physical Intensity

Ratios more important than magnitude

Most continuous variation in stimuli are perceived in discrete steps

[Diagram showing a gradient scale from black to white]
Encoding Data with Color

Value is perceived as ordered
- Encode ordinal variables (O)

Hue is normally perceived as unordered
- Encode nominal variables (N) using color
Steps in Font Size

Sizes standardized in 16th century
Magnitude Estimation
A Quick Experiment...
Compare area of circles
Compare length of bars
Compare area of circles
Compare length of bars
Steven’s Power Law

Perceived Sensation

Physical Intensity

Exponent (Empirically Determined)

\[S = I^p \]

Predicts bias, not necessarily accuracy!

[Graph from Wilkinson ‘99, based on Stevens ‘61]
Exponents of Power Law

<table>
<thead>
<tr>
<th>Sensation</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loudness</td>
<td>0.6</td>
</tr>
<tr>
<td>Brightness</td>
<td>0.33</td>
</tr>
<tr>
<td>Smell</td>
<td>0.55 (Coffee) - 0.6 (Heptane)</td>
</tr>
<tr>
<td>Taste</td>
<td>0.6 (Saccharine) - 1.3 (Salt)</td>
</tr>
<tr>
<td>Temperature</td>
<td>1.0 (Cold) – 1.6 (Warm)</td>
</tr>
<tr>
<td>Vibration</td>
<td>0.6 (250 Hz) – 0.95 (60 Hz)</td>
</tr>
<tr>
<td>Duration</td>
<td>1.1</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.1</td>
</tr>
<tr>
<td>Heaviness</td>
<td>1.45</td>
</tr>
<tr>
<td>Electric Shock</td>
<td>3.5</td>
</tr>
</tbody>
</table>

[Psychophysics of Sensory Function, Stevens ’61]
Apparent Magnitude Scaling

\[S = 0.98A^{0.87} \]
[from Flannery '71]
Graphical Perception [Cleveland & McGill 84]
Figure 3. Graphs from position–angle experiment.
Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position–length experiment (top) and position–angle experiment (bottom).
Graphical Perception Experiments
Empirical estimates of encoding effectiveness
Relative Magnitude Comparison

Most accurate

Position (common) scale
Position (non-aligned) scale

Length
Slope
Angle
Area
Volume

Least accurate

Color hue-saturation-density
<table>
<thead>
<tr>
<th>QUANTITATIVE</th>
<th>ORDINAL</th>
<th>NOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density (Value)</td>
<td>Color Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Color Sat</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td>Color Hue</td>
<td>Connection</td>
</tr>
<tr>
<td>Area (Size)</td>
<td>Texture</td>
<td>Containment</td>
</tr>
<tr>
<td>Volume</td>
<td>Connection</td>
<td>Density (Value)</td>
</tr>
<tr>
<td>Density (Value)</td>
<td>Containment</td>
<td>Color Sat</td>
</tr>
<tr>
<td>Color Sat</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td>Color Hue</td>
<td>Angle</td>
<td>Length</td>
</tr>
<tr>
<td>Texture</td>
<td>Slope</td>
<td>Angle</td>
</tr>
<tr>
<td>Connection</td>
<td>Area (Size)</td>
<td>Slope</td>
</tr>
<tr>
<td>Containment</td>
<td>Volume</td>
<td>Area</td>
</tr>
<tr>
<td>Shape</td>
<td>Shape</td>
<td>Volume</td>
</tr>
</tbody>
</table>
Multiple Attributes
One-Dimensional: Lightness

White
White
Black
White
Black

White
Black
Black
White
White
One-Dimensional: Shape

- Square
- Circle
- Circle
- Circle
- Square
- Circle
- Circle
- Circle
Redundant: Shape & Lightness

- Circle
- Square
- Circle
- Square

- Circle
- Square
- Square
- Circle
Orthogonal: Shape & Lightness

Circle

Square

Square

Circle

Square
Speeded Classification

Redundancy Gain
Facilitation in reading one dimension when the other provides redundant information

Filtering Interference
Difficulty in ignoring one dimension while attending to the other
Speeded Classification

Response Time

Interference

Gain

Dimension Classified

Lightness

Shape

R 1 O

R 1 O
Types of Perceptual Dimensions

Integral
Filtering interference and redundancy gain

Separable
No interference or gain

Asymmetric
One dim separable from other, not vice versa

Example: The Stroop effect – color naming is influenced by word identity, but word naming is not influenced by color
Stroop Effect: What word?

blue
yellow
red
orange
green
purple
Stroop Effect: What color?

- blue
- yellow
- red
- orange
- green
- purple
Size and Brightness

W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)
Orientation & Size

How well can you see temperature or precipitation? Is there a correlation between the two?

[MacEachren 95]
FIGURE 3.38. An example of the use of an ellipse as a map symbol in which the horizontal and vertical axes represent different (but presumably related) variables.

[MacEachren 95]
FIGURE 3.39. Bivariate map of NO₃ and SO₄ trends. The original Carr et al. version of this map used a wheel with eight spokes, rather than a simple dot, as the center of each glyph. When large enough, this added feature facilitates judgment of specific values. After Carr et al. (1992, Fig. 7a, p. 234). Adapted by permission of the American Congress on Surveying and Mapping.
Summary of Integral & Separable

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Integral</th>
<th>Separable</th>
</tr>
</thead>
<tbody>
<tr>
<td>red-green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow-blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y-size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>orientation</td>
<td></td>
</tr>
<tr>
<td>color</td>
<td>shape</td>
<td></td>
</tr>
<tr>
<td>color</td>
<td>motion</td>
<td></td>
</tr>
<tr>
<td>location</td>
<td>color</td>
<td></td>
</tr>
</tbody>
</table>

[Figure 5.25, Color Plate 10, Ware 2000]
Set

Each card has 4 features:
Color
Symbol
Number
Shading/Texture

A set consists of 3 cards in which each feature is the SAME or DIFFERENT on each card.
Pre-Attentive Processing
How Many 3’s?

1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686

[based on a slide from J. Stasko]
How Many 3’s?

[based on a slide from J. Stasko]
Visual Pop-Out: Color

http://www.csc.ncsu.edu/faculty/healey/PP/index.html
Visual Pop-Out: Shape

http://www.csc.ncsu.edu/faculty/healey/PP/index.html
Feature Conjunctions

http://www.csc.ncsu.edu/faculty/healey/PP/index.html
Pre-Attentive Features

[Information Visualization. Figure 5. 5 Ware 04]
More Pre-Attentive Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line (blob) orientation</td>
<td>Julesz & Bergen [1983]; Wolfe et al. [1992]</td>
</tr>
<tr>
<td>Length</td>
<td>Treisman & Gormican [1988]</td>
</tr>
<tr>
<td>Width</td>
<td>Julesz [1985]</td>
</tr>
<tr>
<td>Size</td>
<td>Treisman & Gelade [1980]</td>
</tr>
<tr>
<td>Curvature</td>
<td>Treisman & Gormican [1988]</td>
</tr>
<tr>
<td>Number</td>
<td>Julesz [1985]; Trick & Pylyshyn [1994]</td>
</tr>
<tr>
<td>Terminators</td>
<td>Julesz & Bergen [1983]</td>
</tr>
<tr>
<td>Intersection</td>
<td>Julesz & Bergen [1983]</td>
</tr>
<tr>
<td>Closure</td>
<td>Enns [1986]; Treisman & Souther [1985]</td>
</tr>
<tr>
<td>Intensity</td>
<td>Beck et al. [1983]; Treisman & Gormican [1988]</td>
</tr>
<tr>
<td>Flicker</td>
<td>Julesz [1971]</td>
</tr>
<tr>
<td>Direction of motion</td>
<td>Nakayama & Silverman [1986]; Driver & McLeod [1992]</td>
</tr>
<tr>
<td>Binocular lustre</td>
<td>Wolfe & Franzel [1988]</td>
</tr>
<tr>
<td>Stereoscopic depth</td>
<td>Nakayama & Silverman [1986]</td>
</tr>
<tr>
<td>3-D depth cues</td>
<td>Enns [1990]</td>
</tr>
<tr>
<td>Lighting direction</td>
<td>Enns [1990]</td>
</tr>
</tbody>
</table>
Pre-Attentive Conjunctions

Spatial conjunctions are often pre-attentive
Motion and 3D disparity
Motion and color
Motion and shape
3D disparity and color
3D disparity and shape

But most conjunctions are NOT pre-attentive
Feature Integration Theory

Treisman’s feature integration model [Healey 04]

Feature maps for orientation & color [Green]
Administrivia
A3: Interactive Prototype

Create an interactive visualization. Choose a driving question for a dataset and develop an appropriate visualization + interaction techniques, then deploy your visualization on the web.

Due by 11:59pm on Monday, May 8.

Work in project teams of 3-4 people.
Final Project

Create a visualization system, technique, or study.
Many options...
New system for a chosen domain + data set
Novel visualization / interaction technique
Design study or experiment

Deliverables
Share milestone progress
Project results (software, study results, etc.)
Video demonstration (max. 2 min)
Final Project Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>Wed May 17</td>
</tr>
<tr>
<td>Prototype</td>
<td>Wed May 24</td>
</tr>
<tr>
<td>Demo Video</td>
<td>Wed May 31</td>
</tr>
<tr>
<td>Video Showcase</td>
<td>Thu June 1 (in class)</td>
</tr>
<tr>
<td>Deliverables</td>
<td>Tue June 6</td>
</tr>
</tbody>
</table>

Logistics

- Final project description posted online
- Work in groups of up to 4 people
- Start determining your project topic!
Gestalt Grouping
Gestalt Principles

Figure/Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate
Transparency
Figure/Ground

Ambiguous

Principle of surroundedness

Principle of relative size

http://www.aber.ac.uk/media/Modules/MC10220/visper07.html
Figure/Ground

Ambiguous

Unambiguous (?)

http://www.aber.ac.uk/media/Modules/MC10220/visper07.html
Proximity

[Ware ’00]
Similarity

Rows dominate due to similarity [from Ware ‘04]
Symmetry

Bilateral symmetry gives strong sense of figure [from Ware ‘04]
Connectedness

Connectedness overrules proximity, size, color shape [from Ware ‘04]
Continuity

We prefer smooth not abrupt changes [from Ware ‘04]

Connections are clearer with smooth contours [from Ware ‘04]
Continuity: Vector Fields

Prefer a field that shows smooth continuous contours [from Ware 04]
Continuity: Vector Fields

Prefer field that shows smooth continuous contours [from Ware ‘04]
Closure

We see a circle behind a rectangle, not a broken circle [from Ware ’04]

Illusory contours [from Durand ’02]
Common Fate

Dots moving together are grouped
Transparency

Requires continuity and proper color correspondence [from Ware ‘04]
Change Blindness
Change Blindness
Change Blindness
Change Blindness
Change Blindness
Change Blindness

[Example from Palmer 99, originally due to Rock]
Demonstrations

http://www.psych.ubc.ca/~rensink/flicker/download/

http://www.youtube.com/watch?v=Ahg6qcgoay4
Summary

Choosing effective visual encodings requires knowledge of visual perception.

Visual features/attributes
Individual attributes often pre-attentive
Multiple attributes may be separable or integral

Gestalt principles provide high-level guidelines

We don’t always see everything that is there!