CSE 512 - Data Visualization
 Visual Encoding Design

Leilani Battle University of Washington

Learning Goals

How do we apply existing encoding principles to univariate, bivariate, and multivariate data?

A Design Space of Visual Encodings

Mapping Data to Visual Variables

Assign data fields (e.g., with N, O, Q types) to visual channels (x, y, color, shape, size, ...) for a chosen graphical mark type (point, bar, line, ...). Additional concerns include choosing appropriate encoding parameters (log scale, sorting, ...) and data transformations (bin, group, aggregate, ...). These options define a large combinatorial space, containing both useful and questionable charts!

1D: Nominal

Raw

Aggregate (Count)

Origin

- Europe
- Japan
- USA

Expressive?

Aggregate (Count)

Origin - Europe

- Japan
- USA

1D: Quantitative

Raw

Aggregate (Count)

Expressive?

Raw

Aggregate (Count)

COUNT
O 20
O 40
O 60
O 80

COUNT

Effective?

Raw

Aggregate (Count)

Raw (with Layout Algorithm)

Treemap

Bubble Chart

Aggregate (Distributions)

interquartile range
(middle 50\%)

| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |

Box Plot

2D: Nominal x Nominal

Raw

Aggregate (Count)

COUNT

3	108

2D: Quantitative x Quantitative

Raw

Aggregate (Count)

Horsepower

2D: Nominal x Quantitative

Raw

Origin

- Europe
- Japan
- USA

Origin
O Europe
\& Japan
\bigotimes USA
Origin
O Europe
\& Japan
\bigotimes USA
Origin
O Europe
\& Japan
\bigotimes USA

Aggregate (Mean)

Origin

- Europe
- Japan
- USA

Raw (with Layout Algorithm)

Treemap

Bubble Chart

3D and Higher

Two variables $[x, y$]

Can map to 2D points.
Scatterplots, maps, ... Third variable [z]
Often use one of size, color, opacity, shape, etc. Or, one can further partition space. What about 3D rendering?

[Bertin]

Other Visual Encoding Channels?

wind map

Encoding Effectiveness

Effectiveness Rankings [Mackinlay 86]

QUANTITATIVE
Position
Length
Angle
Slope
Area (Size)
Volume
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Effectiveness Rankings [Mackinlay 86]

QUANTITATIVE
Position.
Length
Angle
Slope
Area (Size)
Volume
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Effectiveness Rankings [Mackinlay 86]

QUANTITATIVE
Position
Length
Angle
Slope
Area (Size)
Volume
Density (Value) ${ }^{\circ}$
Color Sat
Color Hue.
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Value)
Color Sat
Color Hue
\therefore Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Color Encoding (Choropleth Map)

Effectiveness Rankings

QUANTITATIVE
Position
Length
Angle
Slope
Area (Size)
Volume
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Color Encoding (Choropleth Map)

Gene Expression Time-Series [Meyer et al '11]

Color Encoding

Effectiveness Rankings

QUANTITATIVE
Position
Length
Angle
Slope
Area (Size)
Volume
Density (Value)
Color Sat
Geler Hte
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Gene Expression Time-Series [Meyer et al '11]

Color Encoding

Position Encoding

Artery Visualization [Borkin et al '11]

Effectiveness Rankings

QUANTITATIVE
Position?
Length
Angle
Slope
Area (Size)
Volume
Density (Value)
Color Sat
Geler-Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Scales \& Axes

Include Zero in Axis Scale?

GOVT. PAY ROLLS UP!

Government payrolls in 1937 [How To Lie With Statistics. Huff]

Include Zero in Axis Scale?

Yearly CO_{2} concentrations [Cleveland 85]

Include Zero in Axis Scale?

Axis Tick Mark Selection

Axis Tick Mark Selection

(b) R's pretty

(c) Wilkinson

(d) Extended

Simplicity - numbers are multiples of 10, 5, 2 Coverage - ticks near the ends of the data Density - not too many, nor too few

Legibility - whitespace, horizontal text, size

How to Scale the Axis?

One Option: Clip Outliers

userratio

Clearly Mark Scale Breaks

Violates Expressiveness
Principle!

Poor scale break [Cleveland 85]

Well-marked scale break [Cleveland 85]

Scale Break vs. Log Scale

Scale Break vs. Log Scale

Both increase visual resolution

Scale break: difficult to compare (cognitive - not perceptual - work) Log scale: direct comparison of all data

Logarithms turn multiplication into addition.

$\log (x y)=\log (x)+\log (y)$
Equal steps on a log scale correspond to equal changes to a multiplicative scale factor.

Linear Scale vs. Log Scale

Linear Scale

Log Scale

Linear Scale vs. Log Scale

Linear Scale

Absolute change

Log Scale

Small fluctuations
Percent change
$d(10,30)>d(30,60)$

When To Apply a Log Scale?

Address data skew (e.g., long tails, outliers)
Enables comparison within and across multiple orders of magnitude.
Focus on multiplicative factors (not additive)
Recall that the logarithm transforms \times to + !
Percentage change, not linear difference.
Constraint: positive, non-zero values
Constraint: audience familiarity?

Aspect Ratio (width: height)

William S. Cleveland The Elements of Graphing Data

William S. Cleveland The Elements of Graphing Data

Banking to 45° [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations

Two line segments are maximally discriminable when their average absolute angle is 45°
Method: optimize the aspect ratio such that the average absolute angle of all segments is 45°

Alternative: Minimize Arc Length

 while holding area constant [Talbot et al. 2011]

Straight line $->45^{\circ}$

Ellipse -> Circle

Trends may occur at different scales!

Apply banking to the original data or to fitted trend lines.
[Heer \& Agrawala '06]

$\mathbf{C O}_{2}$ Measurements

 William S. Cleveland Visualizing DataAdministrivia

Migrating to Gradescope

Students will now submit assignments (A1, A2, etc.) through Gradescope instead of Canvas.

If you submitted A1 through Canvas, we will migrate your submission to Gradescope for you.

Please let us know asap if you run into any issues with Gradescope!

Tableau Tutorial

Friday April 8, 1-2pm
Led by Nussara and Chandler
Zoom link available on Canvas
Session will be recorded

A2: Deceptive Visualization

Design two static visualizations for a dataset:

1. An earnest visualization that faithfully conveys the data 2. A deceptive visualization that tries to mislead viewers

Your two visualizations may address different questions.
Try to design a deceptive visualization that appears to be earnest: can you trick your classmates and course staff?
You are free to choose your own dataset, but we have also provided some preselected datasets for you.
Submit two images and a brief write-up on Gradescope.
Due by Wed 1/26 11:59pm.

A2 Peer Reviews

On Thursday 4/21 you will be assigned two peer A2 submissions to review. For each:

- Try to determine which is earnest and which is deceptive
- Share a rationale for how you made this determination
- Share feedback using the "I Like / I Wish / What If" rubric Assigned reviews will be posted on the A2 Peer Review page on Canvas, along with a link to a Google Form. You should submit two forms: one for each A2 peer review.

Due by Fri 4/29 11:59pm.

I Like... / I Wish... / What If?

I LIKE...

Praise for design ideas and/or well-executed implementation details. Example: "I like the navigation through time via the slider; the patterns observed as one moves forward are compelling!"

I WISH...

Constructive statements on how the design might be improved or further refined. Example: "I wish moving the slider caused the visualization to update immediately, rather than the current lag."

WHAT IF?

Suggest alternative design directions, or even wacky half-baked ideas. Example: "What if we got rid of the slider and enabled direct manipulation navigation by dragging data points directly?"

Break Time!

Multidimensional Data

Visual Encoding Variables

Position (X)
Position (Y)
Area
Value
Texture
Color
Orientation
Shape
~8 dimensions?

LES VARIABLES DE SÉPARATION DES IMAGES

Example: Coffee Sales

Sales figures for a fictional coffee chain

Sales
Q-Ratio
Profit
Marketing
Product Type Tea\}
Market
Q-Ratio
Q-Ratio

N \{Coffee, Espresso, Herbal Tea,

N \{Central, East, South, West\}

Filters

YEAR(Date): 2010

Marks
x^{+}Automatic
Shape

Label
Color - Product Type
Size

Level of Detail

Product Type
Coffee
Espresso
Herbal Tea
Tea

Filters

YEAR(Date): 2010

Filters

YEAR(Date): 2010

Encode "Marketing" (Q) using Size

Marketing

- $\$ 0$
$\$ 50$
$\$ 100$

Trellis Plots

A trellis plot subdivides space to enable comparison across multiple plots.
Typically nominal or ordinal variables are used as dimensions for subdivision.

Small Multiples

[MacEachren '95, Figure 2.11, p. 38]

Small Multiples

[MacEachren '95, Figure 2.11, p. 38]

Scatterplot Matrix (SPLOM)

Scatter plots for pairwise comparison of each data dimension.

Multiple Coordinated Views

Parallel Coordinates

Parallel Coordinates [Inselberg]

Parallel Coordinates [Inselberg]

Visualize up to \sim two dozen dimensions at once 1. Draw parallel axes for each variable
2. For each tuple, connect points on each axis Between adjacent axes: line crossings imply neg. correlation, shared slopes imply pos. correlation. Full plot can be cluttered. Interactive selection can be used to assess multivariate relationships. Highly sensitive to axis scale and ordering. Expertise required to use effectively!

Radar Plot / Star Graph

Antibiotics MIC Concentrations

"Parallel" dimensions in polar coordinate space Best if same units apply to each axis

Dimensionality Reduction

Dimensionality Reduction (DR)

Project nD data to 2D or 3D for viewing. Often used to interpret and sanity check high-dimensional representations fit by machine learning methods.

Different DR methods make different trade-offs: for example to preserve global structure (e.g., PCA) or emphasize local structure (e.g., nearest-neighbor approaches, including t-SNE and UMAP).

Principal Components Analysis

1. Mean-center the data.
2. Find \perp basis vectors that maximize the data variance.
3. Plot the data using the top vectors.

Principal Components Analysis

Linear transform: scale and rotate original space.

Lines (vectors) project to lines.

Preserves global distances.

PCA of Genomes [Demiralp et al. '13]

Non-Linear Techniques

Distort the space, trade-off preservation of global structure to emphasize local neighborhoods. Use topological (nearest neighbor) analysis.

Two popular contemporary methods: t-SNE - probabilistic interpretation of distance UMAP - tries to balance local/global trade-off

Visualizing t-SNE
 [Wattenberg et al. '16]

Original

Original

Perplexity: 2 Step: 5,000

Perplexity: 2
Step: 5,000

Perplexity: 5
Step: 5,000

Step: 5,000
ep: 5,000

Perplexity: 30 Step: 5,000

Perplexity: 30
Step: 5,000

Perplexity: 50
Step: 5,000

Perplexity: 100
Step: 5,000

Results can be highly sensitive to the algorithm parameters!

How to Use t -SNE Effectively

Although extremely useful for visualizing high-dimensional data, t -SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively.

distill.pub

t-SNE [Maaten \& Hinton 2008]

1. Model probability \mathbf{P} of one point "choosing" another as its neighbor in the original space, using a Gaussian distribution defined using the distance between points. Nearer points have higher probability than distant ones.

t-SNE [Maaten \& Hinton 2008]

2. Define a similar probability \mathbf{Q} in the low-dimensional (2D or 3D) embedding space, using a Student's t distribution (hence the " t-" in " t-SNE"!). The t-distribution is heavytailed, allowing distant points to be even further apart.

[Maaten \& Hinton 2008]

1. Model probability \mathbf{P} of one point "choosing" another as its neighbor in the original space, using a Gaussian distribution defined using the distance between points. Nearer points have higher probability than distant ones.
2. Define a similar probability \mathbf{Q} in the low-dimensional (2D or 3D) embedding space, using a Student's t distribution (hence the "t-" in "t-SNE"!). The t-distribution is heavytailed, allowing distant points to be even further apart.
3. Optimize to find the positions in the embedding space that minimize the Kullback-Leibler divergence between the \mathbf{P} and \mathbf{Q} distributions: $K L(P \| Q)$

Multiplicity [Stefaner 2018]

t-SNE projection of photos taken in Paris, France

MT Embedding [Johnson et al. 2018]

t-SNE projection of latent space of language translation model.

UMAP

[McInnes et al. 2018]

Form weighted nearest neighbor graph, then layout the graph in a manner that balances embedding of local and global structure. "Our algorithm is competitive with t-SNE for visualization quality and arguably preserves more of the global structure with superior run time performance." - McInnes et al. 2018

Figure 1: Variation of UMAP hyperparameters n and min-dist result in different embeddings. The data is uniform random samples from a 3-dimensional colorcube, allowing for easy visualization of the original 3-dimensional coordinates in the embedding space by using the corresponding RGB colour. Low values of n spuriously interpret structure from the random sampling noise - see Section 6 for further discussion of this phenomena.

Reader Behavior [Conlen et al. 2019]

UMAP projection of reader activity for an interactive article.

Summary: Visual Encoding Design

Use expressive and effective encodings Reduce the problem space
Avoid over-encoding
Use space and small multiples intelligently
Use interaction to generate relevant views Rarely does a single visualization answer all questions. Instead, the ability to generate appropriate visualizations quickly is critical!

About the design process...

Visualization draws upon both science and art!
Principles like expressiveness \& effectiveness are not hard-and-fast rules, but can assist us to guide the process and articulate alternatives.
They can lead us to think more deeply about our design rationale and prompt us to reflect.
It helps to know "the rules" in order to wisely bend (or break) them at the right times!

