CSE 512 - Data Visualization Scalable Visualization

Leilani Battle University of Washington

Varieties of "big data"...

Many Records

Large DBs have petabytes or more (but median DB still fits in RAM!)

Affects system and perceptual scalability

How to manage?

Parallel data processing

Reduction: Filter, aggregate, sample

Lots of variables (100s-1000s...) Select relevant subset Dimensionality reduction Statistical methods can suggest and order related variables

Requires human judgment

Many Sources & Structures

Many Sources & Structures

Many Sources & Structures

How can we visualize and interact with **billion+ record** databases in real-time?

Two Challenges:

- 1. Effective visual encoding
 - 2. Real-time interaction

Perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records.

1. Visualizing Large Datasets

How to **Visualize** a Billion+ Records

Decouple the visual complexity from the raw data through aggregation.

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection

2. Aggregate Count, Sum, Average, Min, Max, ...

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection

2. Aggregate Count, Sum, Average, Min, Max, ...

3. Smooth Optional: smooth aggregates Wickham '13]

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection

- 2. Aggregate Count, Sum, Average, Min, Max, ...
- 3. Smooth Optional: smooth aggregates [Wildham 13]
- 4. Plot Visualize the aggregate values

Binned Plots by Data Type

Design Subtleties...

Hexagonal or Rectangular Bins?

Hex bins better estimate density for 2D plots, but the *improvement is marginal* [Scott 92]. Rectangles support *reuse* and *visual queries*.

Color Scale: Discontinuity after Zero

Standard Color RampCounts near zero are white.

Add Discontinuity after Zero Counts near zero remain visible.

Color / Opacity Ramps

Linear interpolation in RGBA is not perceptually linear.

Perceptual color spaces approximate perceptual linearity.

Examples

Example: Binned Scatter Plots

Scatterplot Matrix
Techniques for Large
N
[Carr et al. '87]

Example: Basketball Shot Chart

NBA Shooting 2011-12 [Goldsberry]

Approx. Arc-Length Normalized

Example Time Series

10k Series, Normalized

10k Series, Non-Normalized

2. Enabling Real-Time Interaction

Interactive Scalability Strategies

- 1. Query Database
- 2. Client-Side Indexing / Data Cubes
- 3. Prefetching
- 4. Approximation

1. Query Database Offload to a scalable backend

Tableau, for example, issues aggregation queries.

Analytical databases are designed for fast, parallel execution.

But round-trip queries to the DB may still be too slow...

- 2. Client-Side Indexing / Data Cubes
- 3. Prefetching
- 4. Approximation

- 1. Query Database
- 2. Client-Side Indexing / Data Cubes Query data summaries

Build sorted indices or data cubes to quickly re-calculate aggregations as needed on the client.

- 3. Prefetching
- 4. Approximation

- 1. Query Database
- 2. Client-Side Indexing / Data Cubes
- 3. Prefetching Request data before it is needed

Reduce latency by speculatively querying for data before it is needed. Requires prediction models to guess what is needed.

4. Approximation

- 1. Query Database
- 2. Client-Side Indexing / Data Cubes
- 3. Prefetching
- 4. Approximation Give fast, approximate answers

Reduce latency by computing aggregates on a sample, ideally with approximation bounds characterizing the error.

- 1. Query Database
- 2. Client-Side Indexing / Data Cubes
- 3. Prefetching
- 4. Approximation

These strategies are **not** mutually exclusive! Systems can apply them in tandem.

imMens

[Liu, Jiang & Heer '13]

Strategies: Client-Side Data Cubes

Multivariate Data Tiles

- 1. Send data, not pixels
- 2. Embed multi-dim data

Full 5-D Cube

For any pair of 1D or 2D binned plots, the maximum number of dimensions needed to support brushing & linking is **four**.

13 3-D Data Tiles

Query & Render on GPU (WebGL)

Pre-compute tiles & send from server. Bind data tiles as image textures.

Query & Render on GPU (WebGL)

Compute aggregation for each output bin. Executes in parallel on GPU.

Query & Render on GPU (WebGL)

Accumulate results in offscreen buffer. Render resulting plots in second pass.

Performance Benchmarks

Simulate interaction: brushing & linking across binned plots.

- 4x4 and 5x5 plots
- 10 to 50 bins

Measure time from selection to render.

Test setup: 2.3 GHz MacBook Pro NVIDIA GeForce GT 650M Google Chrome v.23.0

5 dimensions x 50 bins/dim x 25 plots

Limitations and Questions

But where do the multivariate data tiles come from?

They must be provided by a backend server. This can be time-consuming, particularly if supporting deep levels of zooming. imMens assumes that tiles have either been pre-computed or that a backing database can suitably generate them on demand.

Does super-low-latency interaction really matter?

Is it worth it to go to all of this trouble? (Short answer: yes!)
High latency leads to reduced analytic output [Liu & Heer, InfoVis 2014]

Administrivia

A2: Deceptive Visualization

Design **two** static visualizations for a dataset:

- 1. An earnest visualization that faithfully conveys the data
- 2. A deceptive visualization that tries to mislead viewers

Your two visualizations may address different questions.

Try to design a deceptive visualization that appears to be earnest: can you trick your classmates and course staff?

You are free to choose your own dataset, but we have also provided some preselected datasets for you.

Submit two images and a brief write-up on Gradescope.

Due by **Fri 4/22 11:59pm**.

A2 Peer Reviews

On Thursday 4/21 Monday 4/25 you will be assigned two peer A2 submissions to review. For each:

- Try to determine which is earnest and which is deceptive
- Share a rationale for how you made this determination
- Share feedback using the "I Like / I Wish / What If" rubric

Assigned reviews will be posted on the A2 Peer Review page on Canvas, along with a link to a Google Form. You should submit two forms: one for each A2 peer review.

Due by **Fri 4/29 11:59pm**.

I Like... / I Wish... / What If?

I LIKE...

Praise for design ideas and/or well-executed implementation details. Example: "I like the navigation through time via the slider; the patterns observed as one moves forward are compelling!"

I WISH...

Constructive statements on how the design might be improved or further refined. Example: "I wish moving the slider caused the visualization to update immediately, rather than the current lag."

WHAT IF?

Suggest alternative design directions, or even wacky half-baked ideas. Example: "What if we got rid of the slider and enabled direct manipulation navigation by dragging data points directly?"

Two Tutorials Next Week

Both tutorials will be led by Vishal and Philip and will be recorded.

D3.js Deep Dive: Thursday 4/28 during lecture

Web Publishing: Friday 4/29 at 1pm on Zoom

Break Time!

How does interactive latency affect exploratory analysis with visualizations?

[Liu & Heer '14]

Prior Work - Negatives to Latency

Higher latency entails higher action costs, subjects satisfice by selecting strategies that *reduce short-term effort* with no guarantee that the final outcome is optimized. [Gray & Boehm-Davis]

300ms latency reduces the number of Google searches; effect persists for days. [Brutlag et al]

When the cost of acquiring information is increased, subjects change strategy and rely more on working memory. [Ballard et al]

Prior Work - Positives to Latency

When confronted with increased latencies, users resort to more mental planning, at times making fewer errors and performing better on tasks with *verifiable outcomes*. [O'Hara & Payne]

Prior Work - Positives to Latency

When confronted with increased latencies, users resort to more mental planning, at times making fewer errors and performing better on tasks with *verifiable outcomes*. [O'Hara & Payne]

But what about *open, exploratory analysis tasks?* Addressed by Liu & Heer.

Experiment Design

- 2 (Latency) x 2 (Scenario) Design

 Latency: +0ms / +500ms

 Scenario: Mobile Check-ins / FAA Flight Delays
- Exploratory Analysis Tasks (2 per session) imMens with brush, pan, zoom, adjust scales Users asked to explore data and share findings Log events, record audio and screen capture
- 16 subjects, all familiar with data analysis + vis

4.5m Mobile Check-Ins

140m FAA Flight Delay Records

Data Collection & Analysis

Event Log Analysis

Analyze triggered & processed user input events Assess data set coverage (# unique tiles)

Verbal Protocol Analysis

Think-aloud protocol: verbalize thought process

Transcribe sessions; Code actions and insights

Analyze number and type of coded events

Latency Study Results

Higher latency leads to...

Reduced user activity and data set coverage Less observation, generalization & hypothesis

Verbal Category	likelihood-ratio test: Chisq(1, N=32)	p value	significance							
Observation	5.4812	0.01922	*		0.283					
Observation (Single View)	1.5706	0.2101			0.070					
Observation (Multiple Views)	3.3119	0.06878			0.215					
Generalization	8.9763	0.002735	**		0.103					
Generalization (Single View)	0.2641	0.6073			0.002					
Generalization (Multiple Views)	8.5054	0.003541	**		0.100					
Hypothesis	8.3999	0.003752	**		0.169					
Question	0.7416	0.3891			0.043					
Interface	0.4651	0.4953		-0.014						
Recall	0.0202	0.8869			0.003					
Simulation	0.6983	0.4033			0.016					
				0.	00	0.05	0.10 Latency	0.15 Coefficient	0.20	0.25

Latency Study Results

Higher latency leads to...

Reduced user activity and data set coverage

Less observation, generalization & hypothesis

Different interactions exhibit varied sensitivity to latency. Brushing is highly sensitive!

Latency Study Results

Higher latency leads to...

Reduced user activity and data set coverage

Less observation, generalization & hypothesis

Different interactions exhibit varied sensitivity to latency. Brushing is highly sensitive!

In short: milliseconds matter! And imMens was not a waste of time... 😅

ForeCache

[Battle, Chang, & Stonebraker '16]

Strategies: Query Database, Prefetching

ForeCache is also a Data Tile-Based System

Manage a Cache of Tiles from DBMS

Example Tile-Based Views

Key Idea: Model & Predict User Behavior

1. Classify the User's Analysis Phase

Foraging: Searching for patterns of interest

Sensemaking: Closely examine a region-of-interest (ROI)

Navigation: Transition between levels of detail

2. Predict Which Data Tiles Will be Requested

Train a machine learning classifier (SVM) to predict phase.

The input data is the activity trace of user interactions.

Adding a "Navigation" Phase

Navigation

User zooms in

Navigation

User zooms out

Using Phases to Predict Tiles

Using Phases to Predict Tiles

"Pan"

Action-Based Tile Recommendations

Idea: user consistently moves in predictable directions

Evaluating ForeCache: A User Study

Participants: 18 earth science researchers

Explored NASA MODIS snow cover queries

Retrospective Performance Experiments

Compared response times and prediction accuracy to a nonprefetching baseline and two existing pre-fetching methods:

Momentum

Hotspot

[Doshi et al. 2003]

Results: ForeCache was 20% More Accurate and 88% Faster than Existing Pre-fetching Methods

Falcon

[Moritz, Howe, & Heer 19]

Strategies: Query Database, Client-Side Data Cubes, Prefetching

uwdata.github.io/falcon

How does Falcon support finegrained real-time interaction?

Falcon Interaction Log

- Brushing is more common and people are sensitive to latencies.
- Prioritize brushing latency over view switching latency.

Brushing interactions

Key Idea:

User-centered prefetching and indexing to support all brushing interactions with one view. Re-compute if the user switches the view.

brushes in the precomputed view

serves requests from a data cube Data Cube. Gray et al. 1997.

brushes in the precomputed view

serves requests from a data cube Data Cube. Gray et al. 1997.

interacts with a new view

query for new data cubes

brushes in the precomputed view

Constant data & time. Client only.

serves requests from a data cube Data Cube. Gray et al. 1997.

• Aggregation decouples interactions from queries over the raw data.

Requires one pass over the data.

interacts with a new view

query for new data cubes

 \P View switches are **rare** and users are **not as latency sensitive** with them.

"With Falcon it feels like I'm really interacting with my data."

Data Platform Engineer at Stitch Fix

What if data is too large to query in a reasonable time?

Trust, but Verify: Optimistic Vis

[Moritz, Fisher, Ding & Wang '17]

Strategies: Query Database, Approximation

Latencies reduce engagement and lead to fewer observations.

The Effect of Interactive Latency. Liu, Heer. IEEE InfoVis 2014.

Approximation: Trade Accuracy for Speed

Approximate query processing (AQP)
Uncertainty estimation in statistics
Uncertainty visualization
Probabilistic programming
Approximate hardware

Pick your poison:

- 1. Trust the approximation, or
- 2. Wait for everything to complete.

Optimistic Visualization

Trust but Verify

What if we think of the issues with approximation as user experience problems?

Optimistic Visualization

- 1. Analysts uses initial estimates.
- 2. Precise queries run in the background.
- 3. System confirms results. Analyst detects errors.

Analysts can use approximations and also trust them.

Pangloss Implements Optimistic Visualization

Pangloss Visualizes Uncertainty

Pangloss shows a History of Previous Charts

In Pangloss, Analysts can Confirm results

Evaluation

Case studies with teams at Microsoft who brought in their own data.

Approximation works

"seeing something right away at first glimpse is really great"

Need for guarantees

"[with a competitor] I was willing to wait 70-80 seconds. It wasn't ideally interactive, but it meant I was looking at all the data."

Optimism works

"I was thinking what to do next— and I saw that it had loaded, so I went back and checked it . . . [the passive update is] very nice for not interrupting your workflow."

In Conclusion...

Two Challenges:

- 1. Effective visual encoding
 - 2. Real-time interaction

Perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records.

Bin > Aggregate (> Smooth) > Plot

- 1. Bin Divide data domain into discrete "buckets"
- 2. Aggregate Count, Sum, Average, Min, Max, ...
- 3. Smooth Optional: smooth aggregates | Wickham ' | 3
- 4. Plot Visualize the aggregate values

Interactive Scalability Strategies

- 1. Query Database
- 2. Client-Side Indexing / Data Cubes
- 3. Prefetching
- 4. Approximation

These strategies are not mutually exclusive! Systems can apply them in tandem.