CSE 512 - Data Visualization Exploratory Data Analysis

Leilani Battle University of Washington

Learning Goals

What is exploratory data analysis and why is it important?

What factors should we consider when exploring a dataset?

How do visualization researchers design tools to support exploratory data analysis? (one example)

Topics

Exploratory Data Analysis
Historical Context
Visualizations vs Statistical Models
Data Wrangling
Exploratory Analysis Examples
Tableau / Polaris

What was the first data visualization?

~6200 BC Town Map of Catal Hyük, Konya Plain, 0 BC -Jurkey

MACVLAE IN SOLE APPARENTES,OBSERVATAE anno 1611.ad latitudinem grad. $48 . \mathrm{min} .40$.

 semel exhibulse et moruifse, sufficiat.

Longitudinal distance between Toledo and Rome, van Langren

The Rate of Water Evaporation, Lambert 1765

The Rate of Water Evaporation, Lambert 1765

The Golden Age of Data Visualization

Exports and Imports to and from DENMARK \& NORWAY from 1700 to 1780.

The Commercial and Political Atlas, William Playfair 1786

Exports and Imports to and from DENMARK \& NORWAY from 1700 to 1780 .

Statistical Breviary, William Playfair 1801

1786 1826(?) Illiteracy in France, Pierre Charles Dupin
> "to affect thro' the Eyes what we fail to convey to the public through their word-proof ears"
DLAERAM er the CAUSBS er MORTALITY

Consommations approximatives del Howille dans in Grande Bretagne de 1850 a 1864 .

Les abscisses représentent les années et les ordonnées les quantités annuelles de houille consommée.
Tres couteurs indiquent les cspecias de consommations. Ler longueurs d'ordonnées comprises dans une couterer sont les quantités de houille consommiess à raison de deux millimitres pour un million de tonnes

Donmées admises pour former le Tablemu ci-contre Consommations. \ldots Sources des Renseignements.
Exportations. - Mineral statistics 1865 page 214 at Renseignements Partementuinas: District de Londres \qquad $i d$. \qquad - page 213

Produits delaFonte. \qquad id \qquad - page 215 et pour les années avant 1855 calculié à raison de $3^{\text {to }}$. de houille pour $1^{\text {to }}$ de fonte, en admettant los quantite's annuelles de fonte due Coal question page 192.
Production du fer - Mineral statistics - page 215 et pour les années asont 1855 _ calculié à raison de $3^{10} 35$ do howille pour I tonne de fonte convertie en fer; et admettant $\frac{9}{10}$ es de la fonte produite convertis en for

Foyers domestiques:- En y comprenant les petites manufactures. On l'estimait en 1848 à 19 millions de tonnes, (A) qu'on peut réduire à 18 millions to. pour les foyers souls, mais qu'on peub porter à 20 millions pour la population de 1864.
Eclairage au Gaz. - Consommation estimée générclement du $\frac{1}{9}$ - aw $\frac{1}{8} \circ$ de la production totale.
Exploitation des Chemins de Fer. - En supposant pour consommation totate 10 . K par. Kilomitire parcouru par les trains a"après las rensecignemens parlementaizes.
Navigation à vapeur. - Calculée à raison de 5^{*}. houille par cheval vapour et par heure, le nombre de chevaux étant celui du Steaun Vessels pour 1864, et les steamens étant supposés marcher ta moiziè de V'année;
Avant 1864 j'ai supposé les consommations proportionnelles auw tonnages annuels des steamers du statistical abstract et du Board of tirade.
(A) Voir l'cocollent autide houille de Mr: Lamé Fleury, Dictionnaino due Commerce Page 111.

1786
1884 Rail Passengers and Freight from Paris
66. Interstate Migration-Number of Native Immigrants and Native Emigrants, by States and Terkigorifs : I8go.

Native immigrants.
(Hamdredn of tbonsunds.1
Wative kedigrants.

1786
$0-0-\infty-0-\infty$

The Rise of Statistics

Rise of formal statistical methods in the physical and social sciences
Little innovation in graphical methods
A period of application and popularization
Graphical methods enter textbooks, curricula, and mainstream use

Data Analysis \& Statistics, Tukey 1962
$0-0-\infty-0-\infty$

Four major influences act on data analysis today:

1. The formal theories of statistics.
2. Accelerating developments in computers and display devices.
3. The challenge, in many fields, of more and larger bodies of data.
4. The emphasis on quantification in a wider variety of disciplines.

The last few decades have seen the rise of formal theories of statistics, "legitimizing" variation by confining it by assumption to random sampling, often assumed to involve tightly specified distributions, and restoring the appearance of security by emphasizing narrowly optimized techniques and claiming to make statements with "known" probabilities of error.

While some of the influences of statistical theory on data analysis have been helpful, others have not.

Exposure, the effective laying open of the data to display the unanticipated, is to us a major portion of data analysis. Formal statistics has given almost no guidance to exposure; indeed, it is not clear how the informality and flexibility appropriate to the exploratory character of exposure can be fitted into any of the structures of formal statistics so far proposed.

Nothing - not the careful logic of mathematics, not statistical models and theories, not the awesome arithmetic power of modern computers - nothing can substitute here for the flexibility of the informed human mind.

Accordingly, both approaches and techniques need to be structured so as to facilitate human involvement and intervention.

Set A

Set B
Set C

X	Y
10	8.04
8	6.95
13	7.58
9	8.81
11	8.33
14	9.96
6	7.24
4	4.26
12	10.84
7	4.82
5	5.68

X	Y
10	9.14
8	8.14
13	8.74
9	8.77
11	9.26
14	8.1
6	6.13
4	3.1
12	9.11
7	7.26
5	4.74

X	Y	X	Y
10	7.46	8	6.58
8	6.77	8	5.76
13	12.74	8	7.71
9	7.11	8	8.84
11	7.81	8	8.47
14	8.84	8	7.04
6	6.08	8	5.25
4	5.39	19	12.5
12	8.15	8	5.56
7	6.42	8	7.91
5	5.73	8	6.89

Summary Statistics Linear Regression
$u_{X}=9.0 \quad \sigma_{X}=3.317 \quad Y=3+0.5 X$
$u_{Y}=7.5 \quad \sigma_{Y}=2.03 \quad R^{2}=0.67$

Set A
Set B

Set C

Set D

[Anscombe 1973]

Data Wrangling

I spend more than half of my time integrating, cleansing and transforming data without doing any actual analysis. Most of the time I'm lucky if I get to do any "analysis" at all.

Anonymous Data Scientist
[Kandel et al. '12]

In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

bureau of Justice statistics - Data online

Reported crime in Alabama

Year	Population	Property crime rate			
2004	45253754029.3	987	2732.4	309.9	
2005	45483273900	955.8	2656	289	
2006	4599030	3937	968.9	2645.1	322.9
2007	46278513974.9	980.2	2687	307.7	
2008	4661900	4081.9	1080.7	2712.6	288.6

Reported crime in Alaska

Year	Population	Property crime			rate
2004	657755	3370.9	573.6	2456.7	340.6
2005	663253	3615	622.8	2601	391
2006	670053	3582	615.2	2588.5	378.3
2007	683478	3373.9	538.9	2480	355.1
2008	686293	2928.3	470.9	2219.9	237.5

Reported crime in Arizona

Year	Population	Property crime rate		
2004	5739879	5073.3	991	3118.7
2005	59530074827	946.2	2958	922
2006	6166318	4741.6	953	2874.1
2007	6338755	4502.6	935.4	2780.5
2008	6500180.4	786.7		
2087.3	894.2	2605.3	587.8	

Burglary rate Larceny-theft rate Motor vehicle theft rate

Reported crime in Arkansas

Year	Population	Property crime	rate	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
2004	27500004033.1	1096.42699 .7	237			
2005	27757084068	1085.12720	262			
2006	28108724021.6	1154.42596 .7	270.4			
2007	28347973945.5	1124.42574 .6	246.5			
2008	28553903843.7	$1182.7 \quad 2433.4$	227.6			
Reported crime in California						
$\begin{aligned} & \text { Year } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Population } \\ & 35842038 \end{aligned}$	Property crime $3423.9 \quad 686.1$	$\begin{aligned} & \text { rate } \\ & 2033.1 \end{aligned}$	Burglary rate 704.8	Larceny-theft rate	Motor vehicle theft rate
2005	36154147	3321 692.9	1915	712		
2006	36457549	3175.2676 .9	1831.5	666.8		
2007	36553215	$3032.6 \quad 648.4$	1784.1	600.2		
2008	36756666	2940.3646 .8	1769.8	523.8		

Reported crime in colorado

Year	Population		
2004	4601821	3918.5	717.3

Data Wrangling

One often needs to manipulate data prior to analysis. Tasks include reformatting, cleaning, quality assessment, and integration.

Approaches include:
Manual manipulation in spreadsheets
Code: arquero (JS), dplvr (R), pandas (Python)
Trifacta Wrangler
Open Refine

Tidy Data [Wickham 2014]

How do rows, columns, and tables match up with observations, variables, and types? In "tidy" data:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

The advantage is that this provides a flexible starting point for analysis, transformation, and visualization.
Our pivoted table variant was not "tidy"!
(This is a variant of normalized forms in DB theory)

Data Quality

"The first sign that a visualization is good is that it shows you a problem in your data...
...every successful visualization that l've been involved with has had this stage where you realize, "Oh my God, this data is not what I thought it would be!" So already, you've discovered something."

Martin Wattenberg

Query Result: 4792 out of 4792 (100\%)

Visualize Degrees by School?

Berkeley
Cornell
Harvard
Harvard University
Stanford
Stanford University
UC Berkeley
UC Davis
University of California at Berkeley University of California, Berkeley University of California, Davis

Data Quality Hurdles

Erroneous Values
Entity Resolution
Missing Data
Type Conversion
Data Integration
misspelling, outliers, ...?
diff. values for the same thing?
no measurements, redacted, ...?
e.g., zip code to lat-lon
effort/errors when combining data

LESSON: Anticipate problems with your data. Many research problems around these issues!

Administrivia

A1: Visualization Design

Pick a guiding question, use it to title your vis. Design a static visualization for that question. You are free to use any tools (inc. pen \& paper).

Deliverables (upload via Canvas; see A1 page) Image of your visualization (PNG or JPG format) Short description + design rationale (≤ 4 paragraphs)

Due by 11:59 pm, Wednesday April 6.

Tableau Tutorial
 (Optional)

Friday April 8, 1-2pm
Zoom link available on Canvas
Session will be recorded.

Break Time!

Analysis Example: Motion Pictures Data

Motion Pictures Data

Title
IMDB Rating
Rotten Tomatoes Rating
MPAA Rating
Release Date

String (N)
Number (Q)
Number (Q)
String (O)
Date (T)

Lesson: Exercise Skepticism

Check data quality and your assumptions.
Start with univariate summaries, then start to consider relationships among variables. Avoid premature fixation!

Analysis Example: Antibiotic Effectiveness

Data Set: Antibiotic Effectiveness

Genus of Bacteria
Species of Bacteria
Antibiotic Applied
Gram-Staining?
Min. Inhibitory Concent. (g)

Collected prior to 1951.

String (N)
String (N)
String (N)
Pos / Neg (N)
Number (Q)

What questions might we ask?

Table l: Burtin's data.	Antibiotic			
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottnuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus vividans	0.005	10	40	positive

How do the drugs compare?

Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
Aerobacter aerogenes	870	1	1.6	-
Brucella abortus	1	2	0.02	-
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	-
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	-
Salmonella (Eberthella) typhosa	1	0.4	0.008	-
Salmonella schottmuelleri	10	0.8	0.09	-
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

Original graphic by Will Burtin, 1951

How do the drugs compare?

Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
Aerobacter aerogenes	870	1	1.6	-
Brucella abortus	1	2	0.02	-
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	-
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	-
Salmonella (Eberthella) typhosa	1	0.4	0.008	-
Salmonella schottmuelleri	10	0.8	0.09	-
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

Radius: 1 / log(MIC)
 Bar Color: Antibiotic
 Background Color: Gram Staining

How do the drugs compare?

Mike Bostock
Stanford CS448B, Winter 2009

How do the drugs compare?

X-axis: Antibiotic | $\log ($ MIC $)$ Y-axis: Gram-Staining| Species Color: Most-Effective?

Do the bacteria group by antibiotic resistance?

Do the bacteria group by antibiotic resistance?

Wainer \& Lysen
American Scientist, 2009

Do the bacteria group by antibiotic resistance?

Wainer \& Lysen
American Scientist, 2009

Do the bacteria group by antibiotic resistance?

Really a streptococcus! (realized ~20 yrs later)

Wainer \& Lysen American Scientist, 2009

Do the bacteria group by antibiotic resistance?

Not a streptococcus! (realized ~30 yrs later)

Really a streptococcus! (realized ~20 yrs later)

Wainer \& Lysen American Scientist, 2009

Do the bacteria group by resistance? Do different drugs correlate?

Do the bacteria group by resistance?
 Do different drugs correlate?

Wainer \& Lysen American Scientist, 2009

Lesson: Iterative Exploration

Exploratory Process

1 Construct graphics to address questions
2 Inspect "answer" and assess new questions
3 Repeat...
Transform data appropriately (e.g., invert, log)
Show data variation, not design variation [Tufte]

Tableau / Polaris

Polaris [Stolte et al.]

Tableau

Tableau / Polaris Approach

Insight: can simultaneously specify both database queries and visualization
Choose data, then visualization, not vice versa
Use smart defaults for visual encodings
Can also suggest encodings upon request

Tableau Demo

Specifying Table Configurations

Operands are the database fields
Each operand interpreted as a set \{...\}
Quantitative and Ordinal fields treated differently
Three operators:
concatenation (+)
cross product (x)
nest (/)


```
O- Tableau - Book1
```



```
Profit Ratio
# Quantity
# Sales
\oplus Latitude (generated)
\oplus(Longitude (generated)
=# Number of Records
# Measure Values
Office Supplies
Furniture
```


© Data Source

```
Sheet 1
献甶郆



\section*{Table Algebra}

The operators ( \(+, x, /\) ) and operands ( \(\mathrm{O}, \mathrm{Q}\) ) provide an algebra for tabular visualization.
Algebraic statements are then mapped to:
Visualizations - trellis plot partitions, visual encodings
Queries - selection, projection, group-by aggregation In Tableau, users make statements via drag-and-drop Note that this specifies operands NOT operators! Operators are inferred by data type ( \(\mathrm{O}, \mathrm{Q}\) )

\section*{Table Algebra: Operands}

Ordinal fields: interpret domain as a set that partitions table into rows and columns.
Quarter = \{(Qtr1),(Qtr2),(Qtr3),(Qtr4)\} ->
\begin{tabular}{|c|c|c|c|}
\hline Qtr1 & Qtr2 & Qtr3 & Qtr4 \\
\hline \hline 95892 & 101760 & 105282 & 98225 \\
\hline
\end{tabular}

Quantitative fields: treat domain as single element set and encode spatially as axes. Profit \(=\{\) (Profit[-410,650] \()\}\)->


\section*{Concatenation (+) Operator}

\section*{Ordered union of set interpretations \\ Quarter + Product Type \\ \(=\{(\mathrm{Otr} 1),(\mathrm{Otr2}),(\mathrm{Otr} 3),(\mathrm{Otr} 4)\}+\{(\) Coffee \()\), (Espresso) \(\}\) \\ \(=\{(\mathrm{Otr1}),(\mathrm{Otr} 2),(\mathrm{Otr} 3),(\mathrm{Otr} 4),(\) Coffee ),(Espresso) \(\}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Qtr1 & Qtr2 & Qtr3 & Qtr4 & Coffee & Espresso \\
\hline 48 & 59 & 57 & 53 & 151 & 21 \\
\hline
\end{tabular}

Profit + Sales \(=\{(\) Profit \([-310,620]),(\) Sales \([0,1000])\}\)


\section*{Cross (x) Operator}

\section*{Cross-product of set interpretations}

Quarter x Product Type = \{(Otr1,Coffee), (Qtr1, Espresso), (Otr2, Coffee), (Qtr2, Espresso), (Qtr3, Coffee), (Otr3, Espresso), (Otr4, Coffee), (Otr4, Espresso)\}
\begin{tabular}{|c|c||c|c||c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Qtr1 } & \multicolumn{3}{c|}{ Qtr2 } & \multicolumn{2}{c|}{ Qtr3 } & \multicolumn{2}{c|}{ Qtr4 } \\
\hline Coffee & Espresso & Coffee & Espresso & Coffee & Espresso & Coffee & Espresso \\
\hline 131 & 19 & 160 & 20 & 178 & 12 & 134 & 33 \\
\hline
\end{tabular}

Product Type \(\times\) Profit \(=\)


\section*{Nest (/) Operator}

Cross-product filtered by existing records
Quarter x Month ->
creates twelve entries for each quarter. i.e., (Otr1, December)
Quarter / Month ->
creates three entries per quarter based on tuples in database (not semantics)

\section*{Ordinal-Ordinal}
\begin{tabular}{|c|}
\hline \\
\hline \(=\) \\
\hline \(=\) \\
\hline mem \\
\hline \% \\
\hline \(=\) \\
\hline \(\cdots\) \\
\hline
\end{tabular}

\section*{Quantitative-Quantitative}


\section*{Ordinal-Quantitative}


\section*{Querying the Database}
(1)
from the database,

Select records from the database,
filtering by user-defined criteria.

Partition the records into layers and panes. The same record may appear in multiple partitions.

Group, sort, and aggregate the relations within each pane.

Render and compose layers.

\section*{Summary: Connecting Queries and Visualizations in Tableau}

Tableau maintains a joint representation of analysis operations as both data queries and visualizations using a table algebra.

This allows Tableau to support a graphical user interface for expressing data queries.

This also enables Tableau to automatically map queries to visualizations and vice versa.

\section*{Common Data Transformations}

Normalize
Log
Power
Box-Cox Transform

Binning
Grouping
\(y_{i} / \sum_{i} y_{i}\)
\(\log y\)
\(y^{1 / k}\)
\(\left(y^{\lambda}-1\right) / \lambda \quad\) if \(\lambda \neq 0\)
\(\log y\)
if \(\lambda=0\)
e.g., histograms
e.g., merge categories

Often performed to aid comparison (\% or scale difference) or better approx. normal distribution```

