CSE 512 - Data Visualization **Color**

Leilani Battle University of Washington

Purpose of Color

To label To measure To represent and imitate To enliven and decorate

"Above all, do no harm." - Edward Tufte

Learning Goals

How is color defined in visualization?

How do we reason about color: as rendered within media? as perceived by the human eye?

What are useful rules of thumb for applying color in visualizations?

Perception of Color Light, Visual system, Mental models

Color in Information Visualization Categorical & Quantitative encoding Guidelines for color palette design

Perception of Color

"Yellow"

"Teal" ?

Perception of Color

Physicist's View

Light as electromagnetic waves Wavelength

Visible spectrum is

370-730 nm **Power** or "Relative luminance"

A Field Guide to Digital Color, M. Stone

Emissive vs. Reflective Light

Additive (digital displays)

Subtractive (print, e-paper)

Perception of Color

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retina...

LMS (Long, Middle, Short) Cones Sensitive to different wavelengths

A Field Guide to Digital Color, M. Stone

As light enters our retina...

LMS (Long, Middle, Short) Cones Sensitive to different wavelengths Integration with input stimulus

A Field Guide to Digital Color, M. Stone

Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers").

"Tri-stimulus"

Computer displays Digital scanners Digital cameras

We Use Color Spaces to Express Color Ranges

Color spaces allow us to capture, index, and enumerate colors perceived by the human eye.

Given a set of input parameters, we can extract the corresponding color from the color space

We can also plot the color space to see its organization and relationships between colors

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response from cones on the retina. "Standard observer" response curves

Colorfulness vs. Brightness

x = X / (X+Y+Z)y = Y / (X+Y+Z)

Spectrum locus

Purple line

Spectrum locus

Purple line

Spectrum locus

Purple line

Spectrum locus

Purple line

Display Gamuts

Typically defined by: 3 Colorants Convex region

Display Gamuts

Deviations from sRGB specification

Example:

(R, G, B) coordinates ranging from 0-255.

Displays may produce different colors for a coord!

Color Vision Deficiency (CVD)

Missing one or more cones or rods in retina.

Normal Retina

Protanopia

Color Vision Simulators

Simulate color vision deficiencies Browser plug-ins Photoshop plug-ins, etc.

Deuteranope

Protanope

Tritanope

Perception of Color

Primary Colors

To paint "all colors": Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

> Yellow Blue Green Red

Opponent Processing

LMS are combined to create:

Lightness Red-green contrast Yellow-blue contrast

[Fairchild]

Opponent Processing

LMS are combined to create:

Lightness Red-green contrast Yellow-blue contrast

Opponent Processing

LMS are combined to create:

Lightness Red-green contrast Yellow-blue contrast

Experiments:

No reddish-green, no blueish-yellow Color after images

CIE LAB Color Space

Axes correspond to opponent signals

- L* = Luminance
- **a*** = Red-green contrast

b* = Yellow-blue contrast

Much more perceptually uniform than RGB! Scaling of axes to represent "color distance"

JND = Just noticeable difference (~2.3 units) D3 + Vega include LAB color space support

CIE LAB and LUV Color Spaces

Standardized in 1976 to mathematically represent opponent processing theory. Non-linear transformation of CIE XYZ

CIE LAB Color Space

Axes correspond to opponent signals

- **L*** = Luminance
- **a*** = Red-green contrast

b* = Yellow-blue contrast

Much more perceptually uniform than sRGB! Scaling of axes to represent "color distance"

JND = Just noticeable difference (~2.3 units) D3 + Vega include LAB color space support!

Perception of Color

Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).

Hue, Value, and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Munsell Color System

Perceptually-based Precisely reference a color Intuitive dimensions Look-up table (LUT)

Munsell Color System

Color palette

HSL Lightness (Photoshop)

Perceptually-Uniform Color Space

Munsell colors in CIE LAB coordinates

Mark Fairchild

Perception of Color

Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?

"In order to use color effectively it is necessary to recognize that it deceives continually." - Josef Albers, Interaction of Color

Simultaneous Contrast

Josef Albers

Simultaneous Contrast

Inner & outer rings are the same physical purple.

Donald MacLeod

Bezold Effect

Color appearance depends on adjacent colors

Color Appearance Tutorial by Maureen Stone

Crispening

Perceived difference depends on background

Color Appearance Models, Fairchild

Spreading

Spatial frequency

The paint chip problem Small text, lines, glyphs Image colors

Adjacent colors blend

Foundations of Vision, Brian Wandell

Perception of Color

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Initial study in 1969 Surveyed speakers from 20 languages Literature from 69 languages

World Color Survey

World Color Survey

World Color Survey

Naming information from 2,616 speakers from 110 languages on 330 Munsell color chips

Results from WCS

Language #24 (Chavacano) Mutual info = 0.939 / Contribution = 0.513

Results from WCS

Language #98 (Tlapaneco) Mutual info = 0.942 / Contribution = 0.524

Universal (?) Basic Color Terms

Basic color terms recur across languages.

Evolution of Basic Color Terms

Proposed term evolution across languages.

Naming Effects Color Perception

Color name boundaries

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Icicle Tree with Rainbow Coloring

Color Naming Models [Heer & Stone '12]

Model 3 million responses from XKCD survey Bins in LAB space

sized by *saliency*: How much do people

agree on color name? Modeled by entropy of *p(name | color)*

Perception of Color

Administrivia

A3: Interactive Prototype

Create an interactive visualization. Choose a driving question for a dataset and develop an appropriate visualization + interaction techniques, then deploy your visualization on the web.

Due by 11:59pm on **Monday, May 10**. Work in project teams of 3-4 people.

Break Time!

Designing Colormaps

Colormap Design Considerations

Perceptually distinguishable colors Value distance matches perceptual distance Colors and concepts properly align Aesthetically pleasing, intriguing Respect color vision deficiencies Should survive printing to black & white Don't overwhelm people's capability!

Discrete (Binary, Categorical)

Continuous (Sequential, Diverging, Cyclic)

Discretized Continuous

Categorical Color

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)

Allocation of the Radio Spectrum

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

UNITED

http://www.ntia.doc.gov/osmhome/allochrt.html

Alloc UNITED STATES FREQUENCY ALLOCATION THE RADIO SPECT

RADIO SERVICES COLOR LEGEND

ACTIVITY CODE

um

Allocation of the Radio Spectrum

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

UNITED

Issues:

Too many colors

Hard to remember mapping

Colors not distinctive, some are very similar Poor grouping: similar colors, different values

MARITME MOBILE

Labels cause clutter

Color surround effects

Colors interactions may not look good together

http://www.ntia.doc.gov/osmhome/allochrt.html

Palette Design & Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance Salience										Name	
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	.47	blue 62.9%
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	.90	orange 93.9%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	.67	green 79.8%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	.66	red 80.4%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	.47	purple 51.4%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	.37	brown 54.0%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	.58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	.67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	.18	yellow 31.2%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	.25	blue 25.4%
Tableau-10							A	verage	0.97	.52	

http://vis.stanford.edu/color-names

Palette Design & Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance Salience										Name	
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	.30	blue 50.5%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	.21	red 27.8%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	.34	green 36.8%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	.55	purple 67.3%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	.20	blue 36.6%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	.39	orange 51.9%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	.13	blue 15.7%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	.16	pink 29.4%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	.12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	.30	purple 23.9%
Excel-				A	verage	0.87	.27				

http://vis.stanford.edu/color-names

Quantitative Color

Rainbow Color Maps

Be Wary of Naïve Rainbows!

1. Hues are not naturally ordered

People segment colors into classes, perceptual banding
Naive rainbows are unfriendly to color blind viewers
Some colors are less effective at high spatial frequencies

Steps, rather than Gradients?

Classing Quantitative Data

Age-adjusted mortality rates for the United States. Common option: break into 5 or 7 quantiles.

Classing Quantitative Data

- 1. Equal interval (arithmetic progression)
- 2. Quantiles (*recommended*)
- 3. Standard deviations

Clustering (Jenks' natural breaks / 1D K-Means)
Minimize within group variance
<u>Maximize between group variance</u>

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9 Why?

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Avoid simultaneous contrast, hold mappings in memory

Sequential Scales: Single-Hue

Ramp primarily in luminance, subtle hue difference

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Sequential Scales: Multi-Hue

Ramp luminance & hue in perceptual color space Avoid contrasts subject to color blindness!

Sequential Scales: Multi-Hue

Viridis, https://bids.github.io/colormap/

Designing Sequential Scales

Hue-Lightness

Higher values mapped to darker colors ColorBrewer schemes have 3-9 steps

Hue Transition

Two hues Neighboring hues interpolate better Couple with change in lightness

Diverging Color Scheme

Designing Diverging Scales

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Designing Diverging Scales

Hue Transition Carefully Handle Midpoint Choose classes of values

Low, Average, High - Average should be gray **Critical Breakpoint** Defining value e.g., 0

Positive & negative should use different hues Extremes saturated, middle desaturated

Hints for the Colorist

Use **only a few** colors (~6 ideal) Colors should be **distinctive** and **named** Strive for color **harmony** (natural colors?) Use cultural conventions; appreciate symbolism Get it right in **black and white** Respect the **color blind** Take advantage of **perceptual color spaces** Color is cultural and a matter of taste!