CSE 512 - Data Visualization

Visual Encoding Design

Jeffrey Heer University of Washington
A Design Space of Visual Encodings
Mapping Data to Visual Variables

Assign **data fields** (e.g., with N, O, Q types) to **visual channels** \((x, y, \text{color, shape, size, ...})\) for a chosen **graphical mark** type \((\text{point, bar, line, ...})\).

Additional concerns include choosing appropriate **encoding parameters** \((\text{log scale, sorting, ...})\) and **data transformations** \((\text{bin, group, aggregate, ...})\).

These options define a large combinatorial space, containing both useful and questionable charts!
Expressive?

Raw

Aggregate (Count)
1D: Quantitative

Raw

Aggregate (Count)
Expressive?

Raw

Aggregate (Count)
Effective?

Raw

Aggregate (Count)

✅

❓

❓

✅

⁉️

![Histograms and bar charts showing mileage per gallon distributions.](image)

COUNT
- 20
- 40
- 60
- 80

COUNT
- 1
- 98

Questions mark the potential need for further analysis or validation.
Raw (with Layout Algorithm)

Treemap

Bubble Chart

Aggregate (Distributions)

interquartile range (middle 50%)

low

median

high

Box Plot

Violin Plot
2D: Nominal x Nominal

Raw

Aggregate (Count)
2D: Quantitative x Quantitative

Raw

Aggregate (Count)
2D: Nominal x Quantitative

Raw

Aggregate (Mean)
3D and Higher

Two variables \([x,y]\)
Can map to 2D points.
Scatterplots, maps, ...

Third variable \([z]\)
Often use one of size, color, opacity, shape, etc. Or, one can further partition space.

What about 3D rendering?

[Bertin]
Other Visual Encoding Channels?

wind map

April 1, 2015
11:35 pm EST
(time of forecast download)

top speed: 30.5 mph
average: 10.2 mph
Encoding Effectiveness
Effectiveness Rankings

<table>
<thead>
<tr>
<th>QUANTITATIVE</th>
<th>ORDINAL</th>
<th>NOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density (Value)</td>
<td>Color Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Color Sat</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td>Color Hue</td>
<td>Connection</td>
</tr>
<tr>
<td>Area (Size)</td>
<td>Texture</td>
<td>Containment</td>
</tr>
<tr>
<td>Volume</td>
<td>Connection</td>
<td>Density (Value)</td>
</tr>
<tr>
<td>Density (Value)</td>
<td>Containment</td>
<td>Color Sat</td>
</tr>
<tr>
<td>Color Sat</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td>Color Hue</td>
<td>Angle</td>
<td>Length</td>
</tr>
<tr>
<td>Texture</td>
<td>Slope</td>
<td>Angle</td>
</tr>
<tr>
<td>Connection</td>
<td>Area (Size)</td>
<td>Slope</td>
</tr>
<tr>
<td>Containment</td>
<td>Volume</td>
<td>Area</td>
</tr>
<tr>
<td>Shape</td>
<td>Shape</td>
<td>Volume</td>
</tr>
<tr>
<td>QUANTITATIVE</td>
<td>ORDINAL</td>
<td>NOMINAL</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density (Value)</td>
<td>Color Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Color Sat</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td>Color Hue</td>
<td>Connection</td>
</tr>
<tr>
<td>Area (Size)</td>
<td>Texture</td>
<td>Containment</td>
</tr>
<tr>
<td>Volume</td>
<td>Connection</td>
<td>Density (Value)</td>
</tr>
<tr>
<td>Density (Value)</td>
<td>Containment</td>
<td>Color Sat</td>
</tr>
<tr>
<td>Color Sat</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td>Color Hue</td>
<td>Angle</td>
<td>Length</td>
</tr>
<tr>
<td>Texture</td>
<td>Slope</td>
<td>Angle</td>
</tr>
<tr>
<td>Connection</td>
<td>Area (Size)</td>
<td>Slope</td>
</tr>
<tr>
<td>Containment</td>
<td>Volume</td>
<td>Area</td>
</tr>
<tr>
<td>Shape</td>
<td>Shape</td>
<td>Volume</td>
</tr>
</tbody>
</table>
Effectiveness Rankings

<table>
<thead>
<tr>
<th>QUANTITATIVE</th>
<th>ORDINAL</th>
<th>NOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density (Value)</td>
<td>Color Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Color Sat</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td>Connection</td>
</tr>
<tr>
<td>Area (Size)</td>
<td></td>
<td>Containment</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density (Value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Sat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Hue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Color Encoding (Choropleth Map)
Effectiveness Rankings

<table>
<thead>
<tr>
<th>QUANTITATIVE</th>
<th>ORDINAL</th>
<th>NOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density (Value)</td>
<td>Color Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Color Sat</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td>Color Hue</td>
<td>Connection</td>
</tr>
<tr>
<td>Area (Size)</td>
<td>Texture</td>
<td>Containment</td>
</tr>
<tr>
<td>Volume</td>
<td>Connection</td>
<td>Density (Value)</td>
</tr>
<tr>
<td>Density (Value)</td>
<td>Containment</td>
<td>Color Sat</td>
</tr>
<tr>
<td>Color Sat</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td>Color Hue</td>
<td>Angle</td>
<td>Length</td>
</tr>
<tr>
<td>Texture</td>
<td>Slope</td>
<td>Angle</td>
</tr>
<tr>
<td>Connection</td>
<td>Area (Size)</td>
<td>Slope</td>
</tr>
<tr>
<td>Containment</td>
<td>Volume</td>
<td>Area</td>
</tr>
<tr>
<td>Shape</td>
<td>Shape</td>
<td>Volume</td>
</tr>
</tbody>
</table>
Color Encoding (Choropleth Map)
Gene Expression Time-Series [Meyer et al. ’11]

Color Encoding
Effectiveness Rankings

QUANTITATIVE
- Position
- Length
- Angle
- Slope
- Area (Size)
- Volume

Density (Value)
- Color Sat
- Color Hue
- Texture
- Connection
- Containment

COLOR HUE
- Texture
- Connection
- Containment
- Shape

NOMINAL
- Position
- Color Hue
- Texture
- Connection
- Containment
- Density (Value)
- Color Sat
- Shape
- Length
- Angle
- Slope
- Area
- Volume
Gene Expression Time-Series [Meyer et al. '11]

Color Encoding

Position Encoding

\(g_4 \quad g_8 \quad g_{16} \quad g_{17} \quad g_{18} \quad g_{19} \quad g_{20} \)

\(s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5 \quad s_6 \quad s_7 \quad s_8 \)
Artery Visualization [Borkin et al ’11]

Rainbow Palette

2D: 62%

3D: 39%

Diverging Palette

2D: 92%

3D: 71%
Effectiveness Rankings

QUANTITATIVE
- Position
- Length
- Angle
- Slope
- Area (Size)
- Volume
- Density (Value)
- Color Sat
- Color Hue
- Texture
- **Connection**
- Containment
- Length
- Angle
- Slope
- Area (Size)
- Volume
- Shape

ORDINAL
- Position
- Density (Value)
- Color Sat
- Color Hue
- Texture
- **Connection**
- Containment
- Length
- Angle
- Slope
- Area (Size)
- Volume
- Shape

NOMINAL
- Position
- Color Hue
- Texture
- Connection
- Containment
- Density (Value)
- Color Sat
- Shape
- Length
- Angle
- Slope
- Area
- Volume
Scales & Axes
Include Zero in Axis Scale?

Government payrolls in 1937 [How To Lie With Statistics. Huff]
Include Zero in Axis Scale?

Yearly CO$_2$ concentrations [Cleveland 85]
Include Zero in Axis Scale?

Compare Proportions (Q-Ratio)

Compare Relative Position (Q-Interval)

Violates Expressiveness Principle!
Axis Tick Mark Selection

What are some properties of “good” tick marks?
Axis Tick Mark Selection

Simplicity - numbers are multiples of 10, 5, 2
Coverage - ticks near the ends of the data
Density - not too many, nor too few
Legibility - whitespace, horizontal text, size
How to Scale the Axis?
One Option: Clip Outliers
Clearly Mark Scale Breaks

Violates Expressiveness Principle!

Poor scale break [Cleveland 85] Well-marked scale break [Cleveland 85]
Scale Break vs. Log Scale

[Cleveland 85]
Both increase visual resolution
Scale break: difficult to compare (cognitive – not perceptual – work)
Log scale: direct comparison of all data
Logarithms turn multiplication into addition.

$$\log(x \cdot y) = \log(x) + \log(y)$$

Equal steps on a log scale correspond to equal changes to a multiplicative scale factor.
Linear Scale vs. Log Scale

Linear Scale

Log Scale
Linear Scale vs. Log Scale

Linear Scale
Absolute change

Log Scale
Small fluctuations
Percent change
\[d(10,30) > d(30,60) \]
When To Apply a Log Scale?

Address **data skew** (e.g., long tails, outliers)

Enables comparison within and across multiple orders of magnitude.

Focus on multiplicative factors (not additive)

Recall that the logarithm transforms \times to $+$!

Percentage change, not linear difference.

Constraint: **positive, non-zero values**

Constraint: **audience familiarity?**
Aspect Ratio
(width : height)
Banking to 45° [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations.

Two line segments are maximally discriminable when their average absolute angle is 45°.
Method: optimize the aspect ratio such that the average absolute angle of all segments is 45°.
Alternative: Minimize Arc Length while holding area constant [Talbot et al. 2011]
A Good Compromise

Arc-length banking produces aspect ratios in-between those produced by other methods.

[Talbot et al. 2011]
Trends may occur at different scales!

Apply banking to the original data or to fitted trend lines.

[Heer & Agrawala '06]

CO₂ Measurements

William S. Cleveland
Visualizing Data
A2: Exploratory Data Analysis

Use visualization software to form & answer questions

First steps:
Step 1: Pick domain & data
Step 2: Pose questions
Step 3: Profile the data
Iterate as needed

Create visualizations
Interact with data
Refine your questions

Author a report
Screenshots of most insightful views (8+)
Include titles and captions for each view

Due by 11:59pm
Friday, Apr 23
Break Time!
Multidimensional Data
Visual Encoding Variables

Position (X) Position (Y) Area Value Texture Color Orientation Shape

~8 dimensions?
Example: Coffee Sales

Sales figures for a fictional coffee chain

<table>
<thead>
<tr>
<th>Sales</th>
<th>Q-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>Q-Ratio</td>
</tr>
<tr>
<td>Marketing</td>
<td>Q-Ratio</td>
</tr>
<tr>
<td>Product Type</td>
<td>N {Coffee, Espresso, Herbal Tea, Tea}</td>
</tr>
<tr>
<td>Market</td>
<td>N {Central, East, South, West}</td>
</tr>
</tbody>
</table>
Encode "Sales" (Q) and "Profit" (Q) using Position.
Encode “Product Type” (N) using Hue
Encode “Market” (N) using Shape
Encode “Marketing” (Q) using Size
A *trellis plot* subdivides space to enable comparison across multiple plots. Typically nominal or ordinal variables are used as dimensions for subdivision.
Small Multiples

[MacEachren '95, Figure 2.11, p. 38]
Small Multiples

[MacEachren '95, Figure 2.11, p. 38]
Scatterplot Matrix (SPLOM)

Scatter plots for pairwise comparison of each data dimension.
Multiple Coordinated Views

- Select high salaries
- Avg career HRs vs avg career hits (batting ability)
- Avg assists vs avg putouts (fielding ability)
- How long in majors
- Distribution of positions played
Parallel Coordinates
Parallel Coordinates [Inselberg]
Parallel Coordinates [Inselberg]

Visualize up to ~two dozen dimensions at once
1. Draw parallel axes for each variable
2. For each tuple, connect points on each axis
Between adjacent axes: line crossings imply neg. correlation, shared slopes imply pos. correlation.

Full plot can be cluttered. Interactive selection can be used to assess multivariate relationships.
Highly sensitive to axis scale and ordering.
Expertise required to use effectively!
Radar Plot / Star Graph

“Parallel” dimensions in polar coordinate space
Best if same units apply to each axis

[Antibiotics MIC Concentrations]

[Loren Yu, CS448B 2009]
Dimensionality Reduction
Dimensionality Reduction (DR)

Project nD data to 2D or 3D for viewing. Often used to interpret and sanity check high-dimensional representations fit by machine learning methods.

Different DR methods make different trade-offs: for example to **preserve global structure** (e.g., PCA) or **emphasize local structure** (e.g., nearest-neighbor approaches, including t-SNE and UMAP).
Principal Components Analysis

1. Mean-center the data.
2. Find \(\perp \) basis vectors that maximize the data variance.
3. Plot the data using the top vectors.
Principal Components Analysis

Linear transform: scale and rotate original space.

Lines (vectors) project to lines.

Preserves global distances.
PCA of Genomes [Demiralp et al. '13]
Non-Linear Techniques

Distort the space, trade-off preservation of global structure to emphasize local neighborhoods. Use topological (nearest neighbor) analysis.

Two popular contemporary methods:

t-SNE - probabilistic interpretation of distance
UMAP - tries to balance local/global trade-off
Results can be highly sensitive to the algorithm parameters!
How to Use t-SNE Effectively

Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively.
t-SNE [Maaten & Hinton 2008]

1. Model probability P of one point “choosing” another as its neighbor in the original space, using a Gaussian distribution defined using the distance between points. Nearer points have higher probability than distant ones.
2. Define a similar probability Q in the low-dimensional (2D or 3D) embedding space, using a Student’s t distribution (hence the “t-“ in “t-SNE“!). The t-distribution is heavy-tailed, allowing distant points to be even further apart.
1. Model probability P of one point “choosing” another as its neighbor in the original space, using a Gaussian distribution defined using the distance between points. Nearer points have higher probability than distant ones.

2. Define a similar probability Q in the low-dimensional (2D or 3D) embedding space, using a Student’s t distribution (hence the “t-” in “t-SNE”!). The t-distribution is heavy-tailed, allowing distant points to be even further apart.

3. Optimize to find the positions in the embedding space that minimize the Kullback-Leibler divergence between the P and Q distributions: $KL(P \parallel Q)$
Multiplicity [Stefaner 2018]

t-SNE projection of photos taken in Paris, France
t-SNE projection of latent space of language translation model.

The stratosphere extends from about 10km to about 50km in altitude.

ENGLISH

KOREAN

JAPANESE
Form weighted nearest neighbor graph, then layout the graph in a manner that balances embedding of local and global structure.

“Our algorithm is competitive with t-SNE for visualization quality and arguably preserves more of the global structure with superior run time performance.” - McInnes et al. 2018
Figure 1: Variation of UMAP hyperparameters \(n \) and min-dist result in different embeddings. The data is uniform random samples from a 3-dimensional color-cube, allowing for easy visualization of the original 3-dimensional coordinates in the embedding space by using the corresponding RGB colour. Low values of \(n \) spuriously interpret structure from the random sampling noise – see Section 6 for further discussion of this phenomena.
“Tentacles” map to activity archetypes, “blob” body maps to sessions that blend behaviors.
Time Curves [Bach et al. ‘16]

Timeline:

1 2 3 4 5 6 7

Circles are data cases with a time stamp. Similar colors indicate similar data cases.

Folding:

1 2 3 4 5 6 7

Time curve:

1 2 3 4 5 6 7

The temporal ordering of data cases is preserved. Spatial proximity now indicates similarity.

(a) Folding time

Wikipedia “Chocolate” Article

U.S. Precipitation over 1 Year
Visual Encoding Design

Use **expressive** and **effective** encodings

Reduce the problem space

Avoid **over-encoding**

Use **space** and **small multiples** intelligently

Use **interaction** to generate relevant views

Rarely does a single visualization answer all questions. Instead, the ability to generate appropriate visualizations quickly is critical!
Visualization draws upon both science and art! Principles like expressiveness & effectiveness are not hard-and-fast rules, but can assist us to guide the process and articulate alternatives. They can lead us to think more deeply about our design rationale and prompt us to reflect. It helps to know “the rules” in order to wisely bend (or break) them at the right times!