CSE 512 - Data Visualization

Color

Jeffrey Heer University of Washington
Color in Visualization

Identify, Group, Layer, Highlight
Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate

“Above all, do no harm.”
- Edward Tufte
Topics

Perception of Color
Light, Visual system, Mental models

Color in Information Visualization
Categorical & Quantitative encoding
Guidelines for color palette design
Perception of Color
What color is this?
What color is this?

“Yellow”
What color is this?
What color is this?

“Blue”
What color is this?
What color is this?

"Teal"?
Perception of Color

Light

Cone Response

Opponent Signals

“Yellow”

Color Cognition

Color Appearance

Color Perception
Physicist’s View

Light as electromagnetic wave

Wavelength

Energy or

“Relative luminance”
Emissive vs. Reflective Light

Additive (digital displays)

Subtractive (print, e-paper)
Perception of Color

Light → Cone Response → Opponent Signals

“Yellow” → Color Cognition → Color Appearance → Color Perception
Retina

Simple Anatomy of the Retina, Helga Kolb
As light enters our retina...

LMS (Long, Middle, Short) Cones
Sensitive to different wavelength
As light enters our retina...

LMS (Long, Middle, Short) Cones
Sensitive to different wavelength
Integration with input stimulus

A Field Guide to Digital Color, M. Stone
Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. “metamers”).

“Tri-stimulus”
Computer displays
Digital scanners
Digital cameras
CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response.

“Standard observer” response curves
CIE Chromaticity Diagram

Colorfulness vs. Brightness

\[x = \frac{X}{X+Y+Z} \]
\[y = \frac{Y}{X+Y+Z} \]
CIE Chromaticity Diagram

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.
CIE Chromaticity Diagram

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.
CIE Chromaticity Diagram

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.
CIE Chromaticity Diagram

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.
Display Gamuts

Typically defined by:

3 Colorants
Convex region
Display Gamuts

Deviations from sRGB specification
Color Blindness

Missing one or more cones or rods in retina.

Protanope
Deuteranope
Luminance
Simulate color vision deficiencies
Browser plug-ins (NoCoffee, SEE, …)
Photoshop plug-ins, etc…

Color Blindness Simulators

Deuteranope
Protanope
Tritanope
Perception of Color

Light

Cone Response

Opponent Signals

“Yellow”

Color Cognition

Color Appearance

Color Perception
Primary Colors

To paint “all colors”:
Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

Yellow
Blue
Green
Red
Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast
Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast
Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Experiments:
No reddish-green, no blueish-yellow
Color after images
CIE LAB and LUV Color Spaces

Standardized in 1976 to mathematically represent opponent processing theory.
Non-linear transformation of CIE XYZ
CIE LAB Color Space

Axes correspond to opponent signals

- \(L^* \) = Luminance
- \(a^* \) = Red-green contrast
- \(b^* \) = Yellow-blue contrast

Much more perceptually uniform than sRGB!

Scaling of axes to represent “color distance”

- JND = Just noticeable difference (~2.3 units)

D3 includes LAB color space support!
Perception of Color

- Light
- Cone Response
- Opponent Signals
- “Yellow”
- Color Cognition
- Color Appearance
- Color Perception
Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).
Hue, Value and Chroma
Hue, Value and Chroma
Hue, Value and Chroma
Hue, Value and Chroma

Chroma
Munsell Color System

Perceptually-based
Precisely reference a color
Intuitive dimensions
Look-up table (LUT)
Munsell Color System
Perceptual Brightness

Color palette
Perceptual Brightness

Color palette

HSL Lightness *(Photoshop)*
Perceptual Brightness

Color palette

Luminance Y
(CIE XYZ)
Perceptual Brightness

Color palette

Munsell Value
Perceptual Brightness

Color palette

Munsell Value
L* (CIE LAB)
Perceptually-Uniform Color Space

Munsell colors in CIE LAB coordinates
Perception of Color

Light

Cone Response

Opponent Signals

“Yellow”

Color Cognition

Color Appearance

Color Perception
Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?
"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, *Interaction of Color*
Simultaneous Contrast
Simultaneous Contrast
Simultaneous Contrast

Inner & outer rings are the same physical purple.
Chromatic Adaptation
Chromatic Adaptation
Bezold Effect

Color appearance depends on adjacent colors
Crispening

Perceived difference depends on background

Color Appearance Models, Fairchild
Spreading

Spatial frequency
The paint chip problem
Small text, lines, glyphs
Image colors

Adjacent colors blend

Foundations of Vision, Brian Wandell
Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?

Chromatic adaptation
Luminance adaptation
Simultaneous contrast
Spatial effects
Viewing angle
iCAM

iCAM models:
Chromatic adaptation
Appearance scales
Color difference
Crispening
Spreading
HDR tone mapping

(see also CIECAM02)

Mark Fairchild
Perception of Color

Light

Cone Response

Opponent Signals

“Yellow”

Color Cognition

Color Appearance

Color Perception
Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.
Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.
Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages
World Color Survey
World Color Survey
World Color Survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips
Results from WCS

Language #72 (Mixteco)
Mutual info = 0.942 / Contribution = 0.476

Language #98 (Tlapaneco)
Mutual info = 0.942 / Contribution = 0.524
Results from WCS
Universal (?) Basic Color Terms

Basic color terms recur across languages.

- White
- Grey
- Black
- Red
- Yellow
- Green
- Blue
- Pink
- Brown
- Orange
- Purple
Evolution of Basic Color Terms

Proposed universal evolution across languages.
We associate and group colors together, often using the name we assign to the colors.
We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map
We associate and group colors together, often using the name we assign to the colors.
Naming Effects Color Perception

Color name boundaries

Green Blue
Icicle Tree with Rainbow Coloring

Color names conflict with tree structure!
Color Naming Models [Heer & Stone ’12]

Model 3 million responses from XKCD survey

Bins in LAB space sized by saliency:

How much do people agree on color name?

Modeled by entropy of $p(name | color)$

$L^* = 55$

Blue/green confusion

Orange/red boundary
Perception of Color

Light

Cone Response

Opponent Signals

“Yellow”

Color Cognition

Color Appearance

Color Perception
Designing Colormaps
Categorical Color
Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)
Allocation of the Radio Spectrum

http://www.ntia.doc.gov/osmhome/allochrt.html
Palette Design & Color Names

Minimize overlap and ambiguity of colors.

<table>
<thead>
<tr>
<th>Color Name Distance</th>
<th>Salience</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 1.00 1.00 1.00</td>
<td></td>
<td>blue 62.9%</td>
</tr>
<tr>
<td>1.00 0.00 1.00 1.00</td>
<td></td>
<td>orange 93.9%</td>
</tr>
<tr>
<td>1.00 1.00 0.00 1.00</td>
<td></td>
<td>green 79.8%</td>
</tr>
<tr>
<td>1.00 1.00 1.00 0.00</td>
<td></td>
<td>red 80.4%</td>
</tr>
<tr>
<td>0.98 1.00 1.00 1.00</td>
<td></td>
<td>purple 51.4%</td>
</tr>
<tr>
<td>1.00 1.00 1.00 1.00</td>
<td></td>
<td>brown 54.0%</td>
</tr>
<tr>
<td>1.00 1.00 1.00 1.00</td>
<td></td>
<td>pink 71.7%</td>
</tr>
<tr>
<td>1.00 1.00 1.00 1.00</td>
<td></td>
<td>grey 79.4%</td>
</tr>
<tr>
<td>0.20 1.00 1.00 1.00</td>
<td></td>
<td>yellow 31.2%</td>
</tr>
<tr>
<td>0.97 1.00 1.00 1.00</td>
<td></td>
<td>blue 25.4%</td>
</tr>
</tbody>
</table>

Average 0.97
Palette Design & Color Names

Minimize overlap and ambiguity of colors.

http://vis.stanford.edu/color-names
Quantitative Color
Rainbow Color Maps
Be Wary of Rainbows!

1. Hues are not naturally ordered
2. People segment colors into classes, perceptual banding
3. Naive rainbows are unfriendly to color blind viewers
4. Some colors are less effective at high spatial frequencies
Color Brewer: Palettes for Maps
Age-adjusted death rates by HSA, 1988-92

Heart disease
White male

Source: CDC/NCHS

ICD-9 Categories 390-398, 402, 404-429

Age-adjusted
(U.S. rate = 205.0)

Rate per 100,000 population
Comparative mortality ratio
(HSA to U.S.)

253.8 - 328.6
1.24 - 1.60

236.8 - 253.7
1.16 - 1.24

215.2 - 236.7
1.05 - 1.16

199.9 - 215.1
0.98 - 1.05

179.5 - 199.8
0.88 - 0.98

166.7 - 179.4
0.81 - 0.88

112.4 - 166.6
0.55 - 0.81

Distribution of HSA rates per 100,000 population
Classing Quantitative Data

Age-adjusted mortality rates for the United States. Common option: break into 5 or 7 quantiles.
Classing Quantitative Data

1. Equal interval (arithmetic progression)
2. Quantiles (recommended)
3. Standard deviations
4. Clustering (Jenks’ natural breaks / 1D K-Means)
 - Minimize within group variance
 - Maximize between group variance
Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue
Typically higher values map to darker colors
Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue
Typically higher values map to darker colors

Diverging color scale
Useful when data has meaningful “midpoint”
Use neutral color (e.g., grey) for midpoint
Use saturated colors for endpoints
Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue
Typically higher values map to darker colors

Diverging color scale
Useful when data has meaningful “midpoint”
Use neutral color (e.g., grey) for midpoint
Use saturated colors for endpoints

Limit number of steps in color to 3-9
Sequential Scales: Single-Hue

Ramp primarily in luminance, subtle hue difference

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html
Sequential Scales: Multi-Hue

Ramp luminance & hue in perceptual color space
Avoid contrasts subject to color blindness!
Sequential Scales: Multi-Hue

Viridis, https://bids.github.io/colormap/
Diverging Color Scheme
Designing Diverging Scales

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html
Designing Diverging Scales

Hue Transition

Carefully Handle Midpoint
Choose classes of values
Low, Average, High - Average should be gray

Critical Breakpoint
Defining value e.g., 0
Positive & negative should use different hues

Extremes saturated, middle desaturated
Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named
Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism
Get it right in black and white
Respect the color blind
Take advantage of perceptual color spaces