CSE512 :: 9 Jan 2014 Data and Image Models

Jeffrey Heer University of Washington

Last Time: Value of Visualization

The Value of Visualization

Record information

Blueprints, photographs, seismographs, ...

Analyze data to support reasoning Develop and assess hypotheses Discover errors in data Expand memory Find patterns

Communicate information to others Share and persuade Collaborate and revise

1.

Marey's sphygmograph in use, 1860. La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine.

Marey's sphygmograph [from Braun 83]

Make a decision: Challenger

Visualizations drawn by Tufte show how low temperatures damage O-rings [Tufte 97]

1856 "Coxcomb" of Crimean War Deaths, Florence Nightingale

Info-Vis vs. Sci-Vis?

Visualization Reference Model

Data and Image Models

The Big Picture

task

data physical type int, float, etc. abstract type nominal, ordinal, etc.

domain

metadata semantics conceptual model processing algorithms

mapping visual encoding visual metaphor image visual channel retinal variables

Properties of data Properties of images Mapping data to images Data

Data models vs. Conceptual models

Data models are low level descriptions of the data

- Math: Sets with operations on them
- Example: integers with + and \times operators

Conceptual models are mental constructions

Include semantics and support reasoning

Examples (data vs. conceptual)

- (1D floats) vs. Temperature
- (3D vector of floats) vs. Space

Taxonomy (?)

1D (sets and sequences) Temporal 2D (maps) 3D (shapes) nD (relational) Trees (hierarchies) Networks (graphs) Are there others?

The eyes have it: A task by data type taxonomy for information visualization [Shneiderman 96]

Types of variables

Physical types

- Characterized by storage format
- Characterized by machine operations
 Example: bool, short, int32, float, double, string, ...

Abstract types

- Provide descriptions of the data
- May be characterized by methods/attributes
- May be organized into a hierarchy
 Example: plants, animals, metazoans, ...

Nominal, Ordinal and Quantitative

- N Nominal (labels)
 - Fruits: Apples, oranges, ...
- O Ordered
 - Quality of meat: Grade A, AA, AAA
- Q Interval (Location of zero arbitrary)
 - Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45)
 - Like a geometric point. Cannot compare directly
 - \cdot Only differences (i.e. intervals) may be compared
- Q Ratio (zero fixed)
 - Physical measurement: Length, Mass, Temp, ...
 - Counts and amounts
 - Like a geometric vector, origin is meaningful

S. S. Stevens, On the theory of scales of measurements, 1946

Nominal, Ordinal and Quantitative

- N Nominal (labels)
 - Operations: =, \neq
- O Ordered
 - Operations: =, \neq , <, >
- Q Interval (Location of zero arbitrary)
 - Operations: =, \neq , <, >, -
 - \cdot Can measure distances or spans
- Q Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, %
 - Can measure ratios or proportions

S. S. Stevens, On the theory of scales of measurements, 1946

From data model to N,O,Q data type

Data model

- 32.5, 54.0, -17.3, ...
- floats

Conceptual model

Temperature (°C)

Data type

- Burned vs. Not burned (N)
- Hot, warm, cold (O)
- Continuous range of values (Q)

		OIL EXCEL-I	ischi	er.iris.2.xls									_ 🗆 ×
1	Ele	Edit Viev	, D	nsert Format	Tools	Data	Window	Help		Туре	e a question f	or help 👻	- 8 ×
_	A1	-		fx ID									
	A	В		С	[D	E	F	G	Н	1	J	
1	ID	Case		Species_No	Species	s	Organ	Width	Length				
2	1		1	1	I. Setos	a	Petal	2	14		11. 		3-0
3	2		1	3	I. Vergin	nica	Petal	24	56				
4	3		1	2	I. Versio	color	Petal	13	45				-
5	4		1	1	I. Setos	a	Sepal	33	50			8	1.1
6	5		1	3	I. Vergin	nica	Sepal	31	67				
7	6		1	2	I. Versio	color	Sepal	28	57			2	3-2.0
8	7		2	1	I. Setos	a	Petal	2	10			-	
9	8		2	3	I. Vergin	nica	Petal	23	51		20 10		0.33
10	9		2	2	I. Versio	color	Petal	16	47		<u>1</u>		12.14
11	10		2	1	I. Setos	a	Sepal	36	46		1		
12	11		2	3	I. Vergin	nica	Sepal	31	69				
13	12		2	2	I. Versic	olor	Sepal	33	63		1		1.13
14	13		3	1	I. Setos	а	Petal	2	16				1.6
15	14		3	3	I. Vergin	nica	Petal	20	52		1		
16	15		3	2	I. Versio	olor	Petal	14	47		1		
17	16		3	1	I. Setos	a	Sepal	31	48				
18	17		3	3	I. Vergin	nica	Sepal	30	65		5		
19	18		3	2	I. Versio	color	Sepal	32	70				
20	19		4	1	I. Setos	a	Petal	1	14		2	3	2.3
21	20		4	3	I. Vergin	nica	Petal	19	51				
22	21		4	2	I. Versic	olor	Petal	12	40			-	
23	22		4	1	I. Setos	а	Sepal	36	49				
24	23		4	3	I. Vergin	nica	Sepal	27	58		2		
25	24		4	2	I. Versio	olor	Sepal	26	58		1	6	2-2.
26	25		5	1	I. Setos	а	Petal	2	13		1		
27	26		5	3	I. Vergin	nica	Petal	17	45			2	19.73
28	27		5	2	I. Versio	olor	Petal	10	33		1		
29	28		5	1	I. Setos	a	Sepal	32	44		1		
30	29		5	3	I. Vergin	nica	Sepal	25	49		10 mm	1	
31	30		5	2	I. Versio	olor	Sepal	23	50				
32	31	377	6	1	I. Setos	a	Petal	2	16		1	18 July -	
		fischer.ir	is /						1		1. ·		+IC

Sepal and petal lengths and widths for three species of iris [Fisher 1936].

Mi	cros	oft Excel - f	ische	r.iris.	2.colore	d.xls								_ 🗆 ×
3	Ele	Edit View	/ In	sert	Format	Tools	Data	Window	Help		Туре	e a question f	or help 🔹	- 8 ×
	H27	• 0		fx.										-
	Α	В		1	С		D	E	F	G	н	1	J	
1	D	Case	S	peci	es_No	Specie	s	Organ	Width	Length				
2	1		1		1	I. Setos	a	Petal	2	14		1		- 561
3	2		1		3	I. Vergi	nica	Petal	24	56				
4	3		1		2	I. Versi	color	Petal	13	45				-
5	4		1		1	I. Setos	a	Sepal	33	50				
6	-5		1		3	I. Vergi	nica	Sepal	31	67				
7	6		1		2	I. Versi	color	Sepal	- 28	57				
8	7		2		1	I. Setos	a	Petal	2	10				1
9	8		2		3	I. Vergi	nica	Petal	23	51		1	Ĩ.	1.3.8
10	9		2		2	I. Versi	color	Petal	16	47				
11	10		2		1	I. Setos	a	Sepal	36	46				1.54
12	11		2		3	I. Vergi	nica	Sepal	31	69				
13	12		2		2	I. Versi	color	Sepal	33	63				1.15
14	13		3		1	I. Setos	a	Petal	2	16				
15	14		3		3	I. Vergi	nica	Petal	20	52				2.0
16	15		3		2	I. Versi	color	Petal	14	47		1	1	11.2
17	16		3		1	I. Setos	a	Sepal	31	48				
18	17		3		3	I. Vergi	nica	Sepal	30	65				
19	18		3		2	I. Versi	color	Sepal	32	70				
20	19		4		1	I. Setos	a	Petal	1	14		6	1	12 3
21	20		4		3	I. Vergi	nica	Petal	19	51				
22	21		4		2	I. Versi	color	Petal	12	40				
23	22	-	4		1	I. Setos	a	Sepal	36	49		1		1.00
24	23		4		3	I. Vergi	nica	Sepal	27	58		2		
25	24		4		2	I. Versi	color	Sepal	26	58			1	2-2
26	25		5		1	I. Setos	a	Petal	2	13			-	
27	26		5		3	I. Vergi	nica	Petal	17	45		8	2	19.08
28	27		5		2	I. Versi	color	Petal	10	33				
29	28		5		1	I. Setos	a	Sepal	32	44		1		1.2
30	29		5		3	I. Verdi	nica	Sepal	25	49			1	
31	30		5		2	L Versi	color	Sepal	23	50				
32	31	100	6		1	I. Setos	a	Petal	2	16			Re We	
1		fischer.ir	is/		-		-			11		1.	1	FIL

Q 0 N

Relational data model

Represent data as a table (relation)
Each row (tuple) represents a single record
Each record is a fixed-length tuple
Each column (attribute) represents a single variable
Each attribute has a name and a data type
A table's schema is the set of names and data types

A **database** is a collection of tables (relations)

Relational Algebra [Codd]

- Data transformations (sql)
- Projection (select)
- Selection (where)
- Sorting (order by)
- Aggregation (group by, sum, min, ...)
- Set operations (union, ...)
- Combine (inner join, outer join, ...)

Statistical data model

Variables or measurements Categories or factors or dimensions Observations or cases

Statistical data model

Variables or measurements Categories or factors or dimensions Observations or cases

Month	Control	Placebo	300 mg	450 mg
March	165	163	166	168
April	162	159	161	163
May	164	158	161	153
June	162	161	158	160
July	166	158	160	148
August	163	158	157	150

Blood Pressure Study (4 treatments, 6 months)

Dimensions and Measures

Dimensions: Discrete variables describing data Dates, categories of values (independent vars)

Measures: Data values that can be aggregated Numbers to be analyzed (dependent vars) Aggregate as sum, count, average, std. deviation

Example: U.S. Census Data

People: # of people in group
Year: 1850 - 2000 (every decade)
Age: 0 - 90+
Sex: Male, Female
Marital Status: Single, Married, Divorced, ...

		A	B	C	D	E
	1	year	age	marst	sex	people
	2	1850	0	0	1	1483789
	3	1850	0	0	2	1450376
Example UN Census	4	1850	5	0	1	1411067
	5	1850	5	0	2	1359668
-	6	1850	10	0	1	1260099
	7	1850	10	0	2	1216114
	8	1850	15	0	1	1077133
	9	1850	15	0	2	1110619
Deenle	10	1850	20	0	1	1017281
People	11	1850	20	0	2	1003841
	12	1850	25	0	1	862547
	13	1850	25	0	2	799482
Year	14	1850	30	0	1	730638
	15	1850	30	0	2	639636
	16	1850	35	0	1	588487
Δσρ	17	1850	35	0	2	505012
~5~	18	1850	40	0	1	475911
	19	1850	40	0	2	428185
Sav	20	1850	45	0	1	384211
JEX	21	1850	45	0	2	341254
	22	1850	50	0	1	321343
	23	1850	50	0	2	286580
Marital Status	24	1850	55	0	1	194080
	25	1850	55	0	2	187208
	26	1850	60	0	1	174976
	27	1850	60	0	2	162236
	28	1850	65	0	1	106827
	29	1850	65	0	2	105534
23/18 data noints	30	1850	70	0	1	73677
	31	1850	70	0	2	71762
	32	1850	75	0	1	40834
	33	1850	75	0	2	40229
	34	1850	80	0	1	23449
	35	1850	80	0	2	22949
	36	1850	85	0	1	8186
	37	1850	85	0	2	10511
	38	1850	90	0	1	5259
	39	1850	90	0	2	6569
	40	1860	0	0	1	2120846
	41	1860	0	0	2	2092162

Census: N, O, Q?

People Count Year Age Sex (M/F) Marital Status Q-Ratio Q-Interval (O) Q-Ratio (O) N

Census: Dimension or Measure?

People Count Year Age Sex (M/F) Marital Status Measure Dimension Depends! Dimension Dimension

Roll-Up and Drill-Down

Want to examine marital status in each decade? **Roll-up** the data along the desired dimensions

Roll-Up and Drill-Down

Need more detailed information? **Drill-down** into additional dimensions

SELECT year, age, marst, sum(people) FROM census GROUP BY year, age, marst;

YEAR	AGE	MARST	SEX	PEOPLE
1850	0	0	1	1,483,789
1850	5	0	1	1,411,067
1860	0	0	1	2,120,846
1860	5	0	1	1,804,467
• • •				

AGE	MARST	SEX	1850	1860	• • •
0	0	1	1,483,789	2,120,846	• • •
5	0	1	1,411,067	1,804,467	• • •

Which format might we prefer?

Row vs. Column-Oriented Databases

Relational Data Organizations

Transactions vs. Analysis

Row-oriented

Column-oriented

Relational Data Organizations

Row-oriented

Column-oriented

Relational Data Organizations

Speed-up Analysis Reduce data transfer Improved locality Data compression Column-oriented

Administrivia

Announcements

Auditors

Requirements: Come to class and participate (online as well)

Class participation requirements

- Complete readings before class
- In-class discussion
- Post at least 1 discussion substantive comment/question on
 Piazza within 24 hours after each lecture (11am next day)

Assignment 1: Visualization Design

Design a static visualization for a given data set.

Deliverables (submit via Catalyst)

- Image of your visualization
- Short description and design rationale (\leq 4 para.)

Due by 5:00pm on Monday 1/13.

Questions?

lmage

Visual language is a sign system

Images perceived as a set of signs Sender encodes information in signs Receiver decodes information from signs

Sémiologie Graphique, 1967

Jacques Bertin

Bertin's Semiology of Graphics

A, B, C are distinguishable
 B is between A and C.
 BC is twice as long as AB.

.:. Encode quantitative variables

"Resemblance, order and proportion are the three signifieds in graphics." - Bertin

Visual encoding variables

Position (x 2) Size Value Texture Color Orientation Shape

Visual encoding variables

Position Length Area Volume Value Texture Color Orientation Shape Transparency Blur / Focus ...

Information in color and value

- Value is perceived as ordered
- \therefore Encode ordinal variables (O)

: Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered ∴ Encode nominal variables (N) using color

Bertin's "Levels of Organization"

Position	Ν	0	Q
Size	N	0	Q
Value	Ν	0	Q
Texture	N	ο	
Color	Ν		
Orientation	Ν		
Shape	N		

Nominal

Ordered

Quantitative

Note: Q < O < N

Design Space of Visual Encodings

factors

Univariate data

factors

Univariate data

variable

0

Bivariate data

Scatter plot is common

Trivariate data

3D scatter plot is possible

Three variables

Two variables [x,y] can map to points

• Scatterplots, maps, ...

Third variable [z] must use

• Color, size, shape, ...

Large design space (visual metaphors)

[Bertin, Graphics and Graphic Info. Processing, 1981]

Multidimensional data

How many variables can be depicted in an image?

Multidimensional data

How many variables can be depicted in an image?

"With up to three rows, a data table can be constructed directly as a single image ... However, an image has only three dimensions. And this barrier is impassible."

Bertin

Deconstructions

Playfair 1786

x-axis: year (Q) y-axis: currency (Q) color: imports/exports (N, O)

http://www.smartmoney.com/marketmap/

Wattenberg 1998

rectangle size: market cap (Q) rectangle position: market sector (N), market cap (Q) color hue: loss vs. gain (N, O) color value: magnitude of loss or gain (Q)

Minard 1869: Napoleon's march

Single axis composition

[based on slide from Mackinlay]

Mark composition

y-axis: temperature (Q)

x-axis: longitude (Q) / time (O)

temp over space/time (Q x Q)

[based on slide from Mackinlay]

Mark composition

y-axis: longitude (Q)

x-axis: latitude (Q)

width: army size (Q)

army position (Q x Q) and army size (Q)

[based on slide from Mackinlay]

Minard 1869: Napoleon's march

Depicts at least 5 quantitative variables. Any others?

Formalizing Design (Mackinlay 1986)
Choosing Visual Encodings

Challenge:

Assume 8 visual encodings and n data attributes. We would like to pick the "best" encoding among a combinatorial set of possibilities with size (n+1)⁸

Principle of Consistency:

The properties of the image (visual variables) should match the properties of the data.

Principle of Importance Ordering:

Encode the most important information in the most effective way.

Design Criteria (Mackinlay)

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Cannot express the facts

A one-to-many (1 \rightarrow N) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position

		000						*****						00000		•
0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
	Value															

I. Setosa	petal		00000	• •••									
	sepal		*******										
I. Vereinica	petal		e eccessecces ec co e										
1. Verginica	sepal						٠	******	0 000 0000	00 0			
T. Unseinder	petal							•					
1. Versicolor	sepal		0000 0000000000000000000000000000000000										
		0	10	20	30	40	50	60	70	1 80			
			Value										

Expresses facts not in the data

A length is interpreted as a quantitative value;

... Length of bar says something untrue about N data

Fig. 11. Incorrect use of a bar chart for the Nation relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

[Mackinlay, APT, 1986]

Design Criteria (Mackinlay)

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Mackinlay's Ranking

Conjectured effectiveness of the encoding

Mackinlay's Design Algorithm

User formally specifies data model and type

Additional input: ordered list of data variables to show

APT searches over design space

- Tests expressiveness of each visual encoding
- Generates specification for encodings that pass test
- Tests perceptual effectiveness of resulting image

Outputs the "most effective" visualization

Limitations

Does not cover many visualization techniques

- Bertin and others discuss networks, maps, diagrams
- Does not consider 3D, animation, illustration, photography, ...

Does not model interaction

Does not consider semantic data types / conventions

Summary

Formal specification

- Data model
- Image model
- Encodings mapping data to image

Choose expressive and effective encodings

- Formal test of expressiveness
- Experimental tests of perceptual effectiveness

Assignment 1: Visualization Design

Design a static visualization for a given data set.

Deliverables (submit via Catalyst)

- Image of your visualization
- Short description and design rationale (\leq 4 para.)

Due by 5:00pm on Monday 1/13.