CSE512 :: 6 Feb 2014 Color

Jeffrey Heer University of Washington

Color in Visualization

Identify, Group, Layer, Highlight

Colin Ware

Purpose of Color

To label To measure To represent and imitate To enliven and decorate

"Above all, do no harm."

- Edward Tufte

Topics

Perception of Color Light, Visual system, Mental models

Color in Information Visualization Nominal, Ordinal & Quantitative color encoding Guidelines for color palette design

Perception of Color

Perception of Color

Physicist's view

Light as electromagnetic wave

Wavelength Energy or "Relative luminance"

A Field Guide to Digital Color, A.K. Peters

Emissive vs. reflective light

Additive (digital displays)

Subtractive (print, e-paper)

Perception of Color

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retina...

LMS (Long, Middle, Short) Cones Sensitive to different wavelength

A Field Guide to Digital Color, Maureen Stone

As light enters our retina...

LMS (Long, Middle, Short) Cones Sensitive to different wavelength Integration with input stimulus

A Field Guide to Digital Color, Maureen Stone

Effects of retina encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers").

"Tri-stimulus"

Computer displays Digital scanners Digital cameras

CIE XYZ color space

Standardized in 1931 to mathematically represent tri-stimulus response. "Standard observer" response curves

CIE XYZ color space

Colin Ware

Colorfulness vs. Brightness x = X/(X+Y+Z) y = Y/(X+Y+Z)

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.

Courtesy of PhotoResearch, Inc.

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.

Courtesy of PhotoResearch, Inc.

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.

Courtesy of PhotoResearch, Inc.

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.

Courtesy of PhotoResearch, Inc.

Display gamuts

- Typically defined by:
- 3 Colorants
- Convex region

Display gamuts

Deviations from sRGB specification

Color blindness

Missing one or more retina cones or rods

VisCheck

Simulates color vision deficiencies Web service or Photoshop plug-in Robert Dougherty and Alex Wade

Deuteranope

Protanope

Tritanope

Perception of Color

Primary colors?

To paint "all colors":

Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

Yellow Blue Green

Red

Opponent processing

LMS are combined to create: Lightness Red-green contrast Yellow-blue contrast

Opponent processing

LMS are combined to create: Lightness Red-green contrast Yellow-blue contrast

Opponent processing

LMS are combined to create: Lightness Red-green contrast Yellow-blue contrast

Experiments: No reddish green, no bluish yellow Color after images

CIE LAB and LUV color spaces

Standardized in 1976 to mathematically represent opponent processing theory. Non-linear transformation of CIE XYZ

Axes of CIE LAB

Correspond to opponent signals

- L* = Luminance
- a* = Red-green contrast
- b* = Yellow-blue contrast

Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

Perception of Color

Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).

Munsell color system

Perceptually-based Precisely reference a color Intuitive dimensions Look-up table (LUT)

Munsell color system

Color palette

Color palette

HSL Lightness (Photoshop)

Luminance Y (CIE XYZ)

Munsell Value

Color palette

Munsell Value L* (CIE LAB)

Perceptually-uniform color space

Munsell colors in CIE LAB coordinates

Mark Fairchild

Perception of Color

Color Appearance

If we had a perceptually-uniform color space, can we predict how we perceive colors?

Simultaneous Contrast

The inner and outer thin rings are in fact the same physical purple.

Donald MacLeod

Simultaneous Contrast

Josef Albers

Simultaneous Contrast

Josef Albers

Chromatic Adaptation

Chromatic Adaptation

Bezold effect

Color appearance depends adjacent colors

Color Appearance Tutorial by Maureen Stone

Crispening

Perceived difference depends on background

Color Appearance Models, Fairchild

Spreading

Spatial frequency The paint chip problem Small text, lines, glyphs Image colors

Adjacent colors blend

Color Appearance

If we had a perceptually-uniform color space, can we predict how we perceive colors?

Chromatic adaptation Luminance adaptation Simultaneous contrast Spatial effects Viewing angle

iCAM

iCAM models (2002) Chromatic adaptation Appearance scales Color difference Crispening Spreading HDR tone mapping (see also CIECAMO2)

Perception of Color

Colors according to XKCD...

Basic color terms

Chance discovery by Brent Berlin and Paul Kay.

Basic color terms

Chance discovery by Brent Berlin and Paul Kay.

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Initial study in 1969

- Surveyed speakers from 20 languages
- Literature from 69 languages
World color survey

World color survey

World color survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips

Results from WCS

Language #98 (Tlapaneco) Mutual info = 0.942 / Contribution = 0.524

Results from WCS

Language #24 (Chavacano) Mutual info = 0.939 / Contribution = 0.513

Universal (?) Basic Color Terms

Basic color terms recur across languages.

Evolution of Basic Color Terms

Proposed universal evolution across languages.

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors.

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors.

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors.

Naming affects color perception

Color name boundaries

Color naming models [Chuang et al., Heer & Stone]

Model 3 million responses from XKCD survey

Bins in LAB space sized by saliency: How much do people agree on color name? Modeled by entropy

of p(name | color)

Icicle tree with colors

Perception of Color

Color in Data Visualization

Hints for the colorist

Use **only a few** colors (~6 ideal) Colors should be **distinctive** and **named** Strive for color **harmony** (natural colors?) Use **cultural conventions**; appreciate symbolism Beware of **bad interactions** (red/blue etc.) Get it right in **black and white** Respect the color blind

Categorical Color

Gray's anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)

Molecular models

Organic Chemistry Molecular Model Set http://www.indigo.com/models/gphmodel/62003.html

Resistor color codes

Allocation of the radio spectrum

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

http://www.ntia.doc.gov/osmhome/allochrt.html

Alloc

UNITED STATES FREQUENCY ALLOCATION THE RADIO SPECTR

NACIO SERVICES -	COLOR LEGEND						
		-					
	100						
		-					
	-						
-		-					
100 m	-						
	-						
		Section.					
	-	-					
ACTIVITY CODE							
-		NOTION OF BRIDE					
TRAMMET SLAM							
ALLOCATION USA	OF DESIGNATION						
1000 0000	NAME OF A	_					

trum

ACTIVITY CODE

Palette Design + Color Names

Minimize overlap and ambiguity of color names.

Color I	Name [Distanc	e							Salience	Name
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	.47	blue 62.9%
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	.90	orange 93.9%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	.67	green 79.8%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	.66	red 80.4%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	.47	purple 51.4%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	.37	brown 54.0%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	.58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	.67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	.18	yellow 31.2%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	.25	blue 25.4%
Table	au-10						A	verage	0.97	.52	

http://vis.stanford.edu/color-names

Palette Design + Color Names

Minimize overlap and ambiguity of color names.

Color N	Name [Distanc	e							Salience	Name
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	.30	blue 50.5%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	.21	red 27.8%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	.34	green 36.8%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	.55	purple 67.3%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	.20	blue 36.6%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	.39	orange 51.9%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	.13	blue 15.7%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	.16	pink 29.4%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	.12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	.30	purple 23.9%
Excel	10						A	verage	0.87	.27	

http://vis.stanford.edu/color-names

Quantitative Color

Default rainbow maps

Avoid rainbow color maps!

- 1. People segment colors into classes
- 2. Hues are not naturally ordered
- 3. Different lightness emphasizes certain scalar values
- 4. Low luminance colors (blue) hide high frequencies

Singularity in Phase (M. Berry)

Phase is periodic \Rightarrow Hue circle which is also periodic

Classing quantitative data

Age-adjusted mortality rates for the United States.

Classing quantitative data

- 1. Equal interval (arithmetic progression)
- 2. Quantiles (recommended)
- 3. Standard deviation
- 4. Classification [Jenks' "natural breaks"]
- 5. Equal area
- 6. Minimal length boundaries
- 7. Minimal gaps

ColorBrewer: Color advice for maps

Quantitative color encoding

Sequential color scale

Constrain hue, vary luminance/saturation Map higher values to darker colors

Diverging color scale

Useful when data has a meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Sequential color scheme

Sequential color scheme

Design of sequential color scales

Hue-Lightness (Recommended) Higher values mapped to darker colors ColorBrewer schemes have 3-9 steps

Hue Transition

Two hues

Neighboring hues interpolate better Couple with change in lightness
Design of sequential data scales

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Hue Transition

- Carefully handle midpoint
 - Critical class
 - Low, Average, High
 - 'Average' should be gray
 - Critical breakpoint
 - Defining value e.g. O
 - Positive & negative should use different hues
- Extremes saturated, middle desaturated

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Hints for the colorist

Use **only a few** colors (~6 ideal) Colors should be **distinctive** and **named** Strive for color **harmony** (natural colors?) Use **cultural conventions**; appreciate symbolism Beware of **bad interactions** (red/blue etc.) Get it right in **black and white** Respect the color blind