
The M.A.D. Experience:

Multiperspective Application Development in evolutionary prototyping

Michael Christensen, Andy Crabtree, Christian Heide Damm, Klaus Marius
Hansen, Ole Lehrmann Madsen, Pernille Marqvardsen, Preben Mogensen, Elmer

Sandvad, Lennert Sloth, Michael Thomsen

Department of Computer Science, University of Aarhus, Building 540,
Ny Munkegade, DK-8000 Aarhus C, Denmark.

{toby, andyc, damm, marius, olm, pernille, preben, ess, les, miksen}@daimi.aau.dk

Abstract. This paper describes experience obtained through a joint project
between a university research group and a shipping company in developing a
prototype for a global customer service system. The research group had no
previous knowledge of the complex business of shipping, but succeeded in
developing a prototype that more than fulfilled the expectations of the shipping
company. A major reason for the success of the project is due to an experimen-
tal and multiperspective approach to designing for practice. Some of the les-
sons to be learned for object-orientation are (1) analysis is more than finding
nouns and verbs, (2) design is more than filling in details in the object-oriented
analysis model, and (3) implementation is more than translating design models
into code. Implications for system development in general and object-
orientation in particular consist in the preliminary respecification of the
classical working order: analysis – design – implementation.

Keywords: Large-scale system development, multiperspective application
development, cooperative design, ethnography, object-orientation, rapid
prototyping, evolutionary prototyping, OO-tools, experience report.

1� Introduction

In late January 1997 a globally distributed shipping company contacted CIT, pro-
posing a joint project for the purpose of developing a prototype of a Global Customer
Service System (GCSS). The initial concept of GCSS emerged from within the
company as a means of supporting the global implementation of business process
improvements (BPI). A month later a team was assembled that had never worked

together before and had no knowledge of shipping whatsoever. A project description
was made and ten weeks and 5 major iterations later, the prototype was appraised and
approved by the company’s highest executive body. Work is still on-going. This
experience report tries to describe central success criteria and lessons learnt to date.

Partners in the project (known as the Dragon Project) were the company (which
cannot be named for commercial reasons) and the DEVISE research group.

The project was funded by The Danish National Centre for IT-research (CIT,
http://www.cit.dk). The company is a large world-wide provider of containerised
transport solutions, employing some two and a half thousand people in over 250
offices in some 70 countries on six continents. Having a superior customer service in
an increasingly competitive market as its key value, the company has and is investing
substantially in IT support for proposed business solutions.

The DEVISE group was originally founded with the research goal of increasing
productivity and quality in the development of large, complex systems, and now
incorporates a large number of diverse competencies. Participants in the Dragon
Project include, from the university: one project coordinator, one participatory
designer, three full-time and three half-time object-oriented developers, one
ethnographer and for a part of the project, one usability expert. Participants from the
business include senior management, business representatives from the major
continental regions, administrative staff, customer service personnel and members
from a private consultancy company.

Although the essence of shipping in our context might be described as the actual
transport of cargo in containers, our concern is with the provision and delivery of
customer services, which the transport of containers relies upon. Work here includes
the handling of interactions with customers in formulating prices for transport
(quoting), in booking containers, in arranging inland haulage, in documenting
ownership of cargo, in notifying the consignee of cargo’s arrival, and so on.

From this all too brief description, the job of design might sound like a relatively
straightforward task but for many reasons the challenge that GCSS has to meet is
anything but simple. Currently, no global system or formal practice exists, yet GCSS
should support coordination between globally distributed sites as well as support a
customer service that, while streamlined (i.e. operating with less resources), is both
effective and efficient and at the same time respects local needs in the various regions.
Thus, the main design issue in many respects was to develop a prototype supporting
these needs. Important issues in addressing these needs consisted in:

• Developing an approach for obtaining detailed knowledge of shipping in
a short period of time; this knowledge had to be developed during the
project due to the very short project period.

• Similarly, the initial requirements and formal specifications for the
prototype from the business were vague and had to be developed during
the project.

• The architecture of the prototype / system had to be flexible and allow
for local customisations.

In order to satisfy these issues we thought it necessary to form a development group
consisting of people with diverse but nevertheless complementary qualifications, who
would be able to utilise their own specialities and at the same time be able to work
together in an extremely focused group. The focus being to develop a prototype to
support customer service. The roles of the different team members may, somewhat
simplistically, be described as follows:

• The ethnographer: focus on current practice within customer service and
related areas.

• The participatory designer: focus on the design of future practice and
technological support with users.

• The OO developers: develop the object model, and implementation.

In what follows we describe the contributions to the project from the perspectives of
ethnography, cooperative design and object-orientation. Having explicated what we
take to be the approach’s main strength, namely its experimental and multiperspective
character in designing for practice, the paper concludes by stating lessons that we take
to be of value with particular regard to object-orientation. In so much as object-
orientation played a major role as a technology for developing a model of shipping
and for implementing the prototype, then a number of lessons for object-orientation
were learned. Perhaps the most important ones are:

1. Analysis is more than finding nouns and verbs. We will argue that it is
often necessary and useful to base analysis on much more powerful
means than currently advocated, such as ethnographic analyses of the
social organisation of work.

2. Design is more than filling in details in the OO analysis model. Here we
will argue that often techniques from participatory or cooperative design
are necessary and useful in formulating concrete design-solutions and
relating them to practice.

3. Implementation is more than translating design models into code. Our
experience shows that it is important to start implementation early in the
design. The initial design model will always be changed during
implementation and the feedback from initial implementation should
appear early in the project so as to facilitate further development.

The above lessons are of course not relevant for all kinds of projects but for a project
as the one described in this paper we think they are relevant. Perhaps most important
are the implications our work has for structured techniques of object-oriented
analysis, design and implementation. Specifically, towards the inadequacies of formal
development methods in accomplishing rapid prototyping.

2� M.A.D – system development using a common frame of
reference

The Dragon development team came from backgrounds ranging from ethnography to
cooperative design to object-oriented development. These competencies should not be
treated in strict separation but rather, in the ways in which they interact and comple-
ment one another and in this way achieve a synergetic effect.

A guiding principle in this multiperspective approach was (indeed is) an
orientation to a common frame of reference: everyday business practice in customer
service. In this paper, we use an example – a real world ‘instance’ of working prac-
tice, namely “rerouting” - that was employed by all the perspectives at work to show
how design was practically achieved. In so much as the instance was oriented to by
each perspective, we use it to illuminate the character of each perspective.
Furthermore, in so much as the instance was employed by each perspective, then we
use it to illuminate the ways in which the perspectives interrelated in practice and,
reciprocally, while preserving individual achievements, to display the organisation of
work from which GCSS emerged as a design product.

The instance of rerouting was only one of many used during development.
Furthermore, the competencies or perspectives did not treat the instances sequentially
but rather, treated them in parallel or at different times thereby mutually informing
one another and the prototype as work progressed.

In order to display the organisation of multiperspective application development in
rapid, evolutionary prototyping, we now turn to a description of how the three main
perspectives, that is the ethnographic perspective, the cooperative design perspective
and the object-oriented perspective, approached development and coordinated their
activities into a coherent ‘process’ from which a concrete product (more than) satis-
fying the requirements of a large geographically distributed organisation emerged.
After this account we will outline some of the major lessons learnt.

3� The ethnographic perspective

Whether operating within the context of rapid prototyping or not, the ethnographic
perspective places an emphasis on securing a real world reference to work and
organisation, informing the design of cooperative systems (Heath et al., 92; COMIC
2.2, 93; Blomberg et al., 94). Working on the presupposition that systems design is
work design (in contrast to model building for example1), it might otherwise be said
that ethnography seeks to base design on an ‘understanding of praxis’ in which the
system is to be put to work. The intention is to predicate design on enacted practice
thus supporting the development of systems that resonate or ‘fit’ with the activities in
which they are to be embedded, thereby circumventing a major cause of systems

1 This is not to abnegate modelling but rather, to remind designers of the relevance of

modelling – it is not an end in itself but a means to an end, namely the (re)organisation of
human activities.

failure (Grudin, 89; Shmidt et al., 93; Hughes et al., 94). The notion of understanding
praxis is ‘bracketed’ in that it is selective – ethnography orients to praxis in a certain
or particular way.

From ethnography’s point of view, work is seen to be socially organised with
organisation itself emerging as a local production out of the routine accomplishment
and coordination of tasks experienced by practitioners (and generally understood) as
the working division of labour (Anderson et al., 89). Ethnography’s task is to make
the working division of labour visible and available to designers in the concrete
details of its accomplishment – i.e. in terms of work’s real time organisation in
contrast to idealised form (Rouncefield et al., 94). This is achieved through direct
observation and naturalistic description of working practice portrayed from the point
of view of parties to the work (Crabtree et al., 97). The notion of ‘social organisation’
refers to the conventional ways in which activities are accomplished and coordinated
by any and every competent member engaged in the work. The notion of ‘convention’
refers, conjointly, to members’ reoccurring actions and interactions, the artefacts used
and the practical reasoning employed in doing the work. Work’s social organisation is
discovered through ‘mapping the grammar’ of the domain by empirical instance2.

Simply and briefly put, the notion of ‘mapping grammar’ refers to ordinary
language which is seen to embody ‘language-games’ (Wittgenstein, 68). Language-
games are distinct practices - computer science, sociology, customer service in ship-
ping for example are unique ways of talking and thus of acting in the world – each of
which consists in a unique family of concepts (‘quoting’, ‘export handling’,
‘documentation’, ‘rerouting’ in customer service for example). In so much as
language-game concepts are activities and in so much as they are intersubjectively
employed ~ enacted by a unique collectivity of people (customer service staff for
example), then to describe the actual performative details of their use is to describe
the social organisation of the named activity. The activity of description is called
‘mapping’, the concepts mapped the ‘grammar’ of the language-game, the description
itself the ‘instance’. Empirical examples or ‘real world’ instances of language-game
concepts-in-use not only preserve the social organisation of work in describing that
organisation in its own terms but in so doing make visible what the work is ‘really all
about’3 (Hughes et al., 92).

3.1� The Bremerhaven Instance (1)

Mapping grammar, a practical example: Customer service work in the container
shipping business consists in the activities of ‘quoting’, ‘export handling’, ‘alloca-

2 The notion of ‘mapping grammar’ is explicated in Talking Work: language-games,

organisations and computer supported cooperative work (Crabtree, forthcoming).
3 It should be said that in so far as ethnography does preserve the real world character of work

then it does so through an attention to concepts-in-use, to ‘rerouting’ as a contingent but
nevertheless routine human achievement in, of and as work in contrast to ‘rerouting’ as an
abstract information process (Garfinkel et al., 70; Hughes et.al, 96). This is not to rule
abstraction out of play but to ground abstraction in formal properties of enacted (in contrast
to idealised) praxis

tion’, ‘documentation’ and ‘inbound handling’. These concepts or categories delineate
the working division of labour. One important feature of allocation work is to
‘reroute’ freight in response to contingencies. Rerouting occasions collaboration
between equipment management, export and import handling, and documentation4

and is itself occasioned for various reasons: bad weather, customer requirements,
running off schedule etc. Rerouting consists in ‘reallocating’ containers to a substitute
vessel or vessels - there may be several ‘legs’ and different vessels on any particular
container’s journey. The substitute vessel may be located in a different port to either
the load or leg port. More: the destination port of rerouted cargo from a particular
vessel may well be different. Thus, the activity of rerouting is all about arranging
appropriate transport for cargo going to multiple destinations from some contingent
point either to the destinations direct or, failing that, to a point from which cargo can
be delivered to its respective destination ports. Real world instances of rerouting’s
accomplishment – actual responses to a vessel being delayed – revealed that route
alterations occasioned not only changing the first leg of a journey but also the first
half of the second leg for instance, or, indeed several legs on a journey. Furthermore,
these changes were discovered to be subject to criteria of rerouting, specifically of
time and cost: independent local carrier was specified wherever possible if time
allowed, rail failing local carrier, truck failing rail; local carrier is more cost effective
than rail, rail more cost effective than truck although time pressures may necessitate
everything being moved by truck. It also transpired that rerouted cargo must be
grouped: in some locations refrigerated containers, used for perishable products in
particular, cannot be moved to transhipment points by rail for example (due to
concerns of supervision – the temperature of refrigerated containers must be moni-
tored at regular intervals), freight for this or that destination must be identified and the
criteria applied. Furthermore, as a result of 'hard-wiring' working processes into the
existing system, rerouting had to be accomplished individually – groups of freight
could not be selected and assigned to alternate vessels except in the simplest of cases:
‘roll over’, i.e. temporal rescheduling to the next available vessel.

3.2� Analysing the instance

Mapping the socially organised details of activities accomplishment by empirical
instance not only allows us to understand praxis in the context of the working division
of labour5 but in so doing, to identify practical problems of work and their situated
methods of solution. Taken together, the practical problems of work and members’
intersubjective or shared methods of solving those problems, and of solving them
routinely, day-in-day-out in the face of any and all contingencies, show us just ‘what

4 Space prevents a detailed description of the work involved here but in practice (i.e. design)

these details were central to the formulation of design-solutions.
5 Which enables us to get ‘hands on’ the actual ways in which activities of work are

coordinated and thus identify what is essential to successful work-oriented design – if
activities cannot be coordinated, work simply cannot be achieved and we can add another
systems failure to the list.

the work is really all about’ and make concrete possibilities for support through
design visible and available to design. Thus, the ‘instance’ circumscribes a problem-
space for design. More: in illuminating the socially organised ways in which staff
routinely go about solving practical problems of work, the instance circumscribes a
solution-space for design.

The outcome of analysing the rerouting instance for example, a collaborative task
performed by members from each of the perspectives at work, was the development
of a flexible ‘tree structure’ supporting local decision-making and the coordination of
a complex task by actively displaying all destinations for cargo on a delayed vessel
and through the application of which one can specify any number of leg changes and
different modes of transport for any group of selected containers, updating all
members of the specified group in one go.

3.3� The limits of ethnography

Clearly there is a great deal more to observing praxis than meets the unaccustomed
eye. In securing a real world reference preserving the context of work the
ethnographic perspective provides concrete topics and resources for design. In so
much as system design is work design, ethnography thus supports the development of
systems that resonate or ‘fit’ with the activities of work in which they are embedded
thereby supporting the local production of organisation in innovative social and
technical ways (Kensing et al., 97). Virtues aside, ethnography is not without its limi-
tations: it is one thing to identify a problem-solution space, another to identify
design-solutions – a very practical problem resolved in practice through prototyping.

4� The cooperative design perspective

Cooperative design (also known as participatory design), as developed in Scandinavia
over the last decades, stresses the importance of creative involvement of potential
users (end-users, managers, affected parties, etc.) in design processes (Bjerknes et
al.,87; Greenbaum et al., 91). It does so both from a “moral” perspective – users are
the ones who have to live with the consequences of design – and from a practical
perspective – they are competent practitioners understanding the practical problems of
work, a capacity which enables them to assess and / or come up with alternatives to
design. From this perspective, design is seen to be a cooperative activity involving
not only end users but also other groups with very different but indispensable
competencies. A primary means to the end of designing successful products is,
accordingly, to bring these competencies together. This is often achieved in workshop
like settings through the appliance of the different perspectives and competencies on a
common and concrete issue, e.g. descriptions of current work, scenarios for future
possibilities, mock-ups, and prototypes. The underlying assumptions and claims as
well as a number of tools and techniques for the practical employment of cooperative

design may be found in (Greenbaum et al., 91; Grønbæk, 91; Grønbæk et al., 93;
Grønbæk et al., In Press; Mogensen, 94)

Closely related to the cooperative design activities, a number of usability studies
were conducted. In this context ‘usability’ is attempting to transcend a history of work
“with one user in a lab thinking aloud” and move evaluation into the workplace itself.
In this respect, it is a deliberate attempt to move away from a conception of users as
human factors to a conception of users as human actors, and from the notion of
finding 'problems' to a notion of the user as an active participant in design (Bannon,
91; Bødker, 91; Wiklund, 94). Despite struggling with an in-built cognitive bias
(Grudin, 89; Bannon et al., 93; Twidale et al., 94) particular workplace studies
supplemented with more traditional one-to-one lab type evaluations focusing on
human computer interaction (HCI), provided detailed information relating to specific
usage of the prototype and thus supplemented cooperative design activities.

Cooperative design has, by and large and up until now, been carried out in
situations where the potential users constituted groups of manageable proportions.
One of the major challenges for cooperative design in the Dragon Project is to resolve
problems of scale: the organisation is distributed across more than 250 offices in 70
countries around the world and users may be found on many different levels in the
organisation. How does one work with such dispersed groups? How does one find
representative users? How does one deal with all the different (and frequently
conflicting) perspectives and interests among not only different levels in the
managerial hierarchy, but also culturally and regionally dispersed groups?

The strategy employed so far can be characterised as a mix of two approaches. On
the one hand we have worked in various specific areas, regarding geographical
locations, specific work domains, and corresponding functionality (e.g. rerouting,
initially with the Aarhus site as primary point of reference). Embedding design in
actual practice has helped to ensure in-depth knowledge regarding the issues being
designed for at the given time. On the other hand, and at the same time, we have tried
to maintain and elaborate “the big picture”, both regarding the functionality GCSS
eventually will provide as well as the regional aspects in order to prepare for, or at
least not counteract, later developments. Both strategies have been approached in
parallel and, naturally, both approaches have influenced one another.

To date, most of the concrete design activities involving developers and users have
been carried out in four ways:

• Presentations of the prototype with subsequent comment / discussion
sessions (all in all 100+ users from over 20 countries).

• Workshops (1-3 days) elaborating the details of current problems,
current stage of the prototype, and various alternatives (all in all 25 users
from around 10 different countries).

• Continuous workshops analysing and designing aspects in various
versions of the prototype (6 users from 4 countries).

• A series of usability studies (8) with the business representatives
attached to the project and with customer service staff in the local office
in Aarhus (one to two users at a time).

An example of how the first two types of interaction have worked is a recent visit to
Singapore: Four developers and the two business representatives working with us in
Aarhus arrived in Singapore on Thursday. Friday morning we presented the prototype
and its intended use to some 20 people from various positions in the Singapore office
for around 3 hours. In the afternoon we all joined various people doing their usual
work in the office. Saturday morning, we had a workshop with four people centred on
export handling. Saturday afternoon, we discussed lessons learned so far and decided
on changes to be implemented immediately, issues for redesign when we came home,
issues that were out of scope, and features that would be ‘nice to have’. Monday, we
split up. The ethnographer focused on issues where we needed more information
(allocation and pricing), observing work-in-progress and interviewing people in the
office. The cooperative designer and three users discussed and elaborated details
regarding booking in a ‘hands on’ session with the prototype. The two OO developers
started to implement changes prompted by the presentation and observations of work
which were agreed upon on Saturday. Tuesday morning, we presented the changes in
the prototype for around 10 people and went into detail regarding the next issue on the
agenda, allocation and documentation (including pricing). Tuesday afternoon, we
went to Malaysia. Wednesday morning, we presented the prototype in the Malaysian
office …

4.1� The Bremerhaven Instance (2)

An example of the continuous work ‘back home’ between developers and users is the
Bremerhaven example. When rerouting came on to the agenda, company personnel
gave us a brief introduction to the problem. The ethnographer went to the office in
Aarhus and collected a series of examples or instances of actual reroutings dealt with
at the office. The cooperative designer started to come up with ideas for supporting
rerouting based on existing knowledge and experience. The next morning was spent
in a continuous ‘ping-pong’ between various suggestions for supporting rerouting and
the instances of actual reroutings coming out of the ethnography. After three to four
iterations, an understanding of the problem as well as a first suggestion for the design
emerged. Both were presented to and discussed with business representatives in the
afternoon. Shown in Figure 1 is an account of the emergent understanding of the
problem as well as the first design-solution (in real time, the example and the design
was constantly produced and reproduced on paper sketches and white-boards).

In considering how this is achieved in practice, it became apparent that affected
cargoes’ destination were different, spreading out globally like the branches on a tree.
The suggested design was to represent all affected bookings in a tree structure with
alternating ports and carriers. When the user, for example, clicks on OC1 (see the
above sketch) in the tree structure, it means that the user is now operating on all
bookings out of Aarhus, transhipped in Rotterdam, and going out on OC1. Having
selected the intercontinental carrier OC1, all further transhipment ports and final
destinations may be seen. From here it is now possible to do rerouting via
Bremerhaven for any particular group of bookings

Naturally, the above instance does not capture all possible problems in rerouting,
neither does the design represent the final solution. The point is that the above
understanding presented, in a very compact and understandable form, a good starting
point and served as a powerful tool in further development where both the design
solutions and the ‘Bremerhaven instance’ were refined and elaborated. As a paradigm
case in point, the Bremerhaven instance was:

• Used and reproduced within the development group as common point of
reference for design. The example states problems and solutions from
current practice in respect to a specific design problem (designing for
the rerouting and rescheduling of multiple bookings). Whenever we

Figure 1. The Bremerhaven instance

You have 200 bookings out of Aarhus, going to Rotterdam via a local carrier.
100 of these bookings are transhipped on the intercontinental, OC1, headed for
the Americas; another 100 are transhipped on to another intercontinental, OC2,
headed for Asia.
Problem: the local carrier does not call Aarhus this week, we have to reroute or
reschedule the 200 bookings.

$DUKXV

%UHPHUKDYHQ

5RWWHUGDP
�ORFDO�FDUULHU

WUDLQ

2&�

2&�

2&�

Port1
Port2
Port3

Port1
Port2
Port3
…

Solution: OC1 calls Bremerhaven the day before it calls Rotterdam, so we can
send all the containers to Bremerhaven by train, get them on the OC1 a day
before planned - everything is “back to normal”. OC2 does not serve
Bremerhaven, we have to reschedule both for another local carrier and OC2.

encountered problems in the implementation, the instance worked as a
common resource: whatever the specific design ideas and problems
were, the quality criteria was always whether we could support the
instance, not, for example, whether we fulfilled some predefined
requirements.

• Used and reproduced in a large number of presentations and workshops
between people from the development team and users from various
locations and levels. It is an integral part of the prototype: on the one
hand it explains a problem the prototype is trying to resolve, on the other
hand, discussing ways of solving the problem triggers new
understanding of the problem and possible methods of solution. Roughly
a week after the first formulation of the instance, it was confronted with
staff from a large ‘import’ port. As was pointed out, the design works
very well for rerouting in out-bound, it does not work when you are
sitting in in-bound, because here the focus is on what is coming towards
you. The instance was expanded with that example, and in the design we
catered for the option of having either the receipt or the delivery port as
the ‘root’ in the tree structure.

• Used and reproduced in the usability studies where, embodied in
scenarios, it provided the starting point and context for assessing the
prototype. In testing the prototype, the instance as well as the design was
further elaborated. Up until testing for example, we provided for either
an ‘outbound’ or an ‘inbound’ view of the tree-structure. What came out
of the usability studies in this respect was the idea that we actually
needed both at the same time, facilitating an overview of both what was
‘coming in’ and what was ‘going out’.

5� The object-oriented perspective

The OO perspective applied in this project is based on the Scandinavian tradition
(Madsen et al., 93) where the focus is on modelling as opposed to technical concepts
like encapsulation and inheritance. The first OO language, Simula was originally
designed as a means for writing simulation programs and when writing simulation
programs, it is useful to have a language with good modelling capabilities. The
modelling approach has been very explicit in the design of BETA (which was the
language used in the implementation of the prototype). One of the main advantages of
object-orientation is that it provides an integrating perspective on analysis, design and
implementation, but in order to fully realise this potential, there should be a proper
balance and integration between modelling and implementation capabilities of the
languages (Madsen, 96).

The application being developed (in this case the prototype) is considered as a
physical model of a perspective on the problem domain. Selected phenomena and
concepts in the application domain are synthesised into the model and represented as
classes, objects, properties of objects and relations between objects. This model is a

very explicit part of the application and it can be regarded as a view on the application
expressed in problem domain-specific terms. The latest version of the model is always
the one in the application.

Below we discuss the concept of modelling, how the model was produced, the
evolution of the model, the architecture in which the model is embodied, and the
crucial role of tools in responding to amendment and change.

5.1� The concept of modelling

Working within our OO-perspective, system development is based on an
understanding of the concepts used within the settings that the system will eventually
support. The setting we refer to as the referent system and the process of translating
referent system specific concepts to concepts within the computer system we refer to
as modelling. The result of the modelling process we refer to as the model system or
just the model (Madsen et al., 93, pp.289, Knudsen et al., 94, pp.52). Using the model
within a referent system context we denote interpretation. This can, for example, be
discussion of business concepts with business users while referring to the model
system. Below we discuss how modelling was actually achieved.

Figure 2. Customer service practice (referent system) in relation to the GCSS
prototype (model system)

5.2� The production of the model

The activity of modelling was started right from the beginning of the project.
Modelling has been an intentionally integrated part of each of the rapid prototyping
cycles, in a sense on the same terms as the user interface and the architecture. The
length of these cycles - the actual time spent on each – precludes a sharp distinction
between the activities of analysis, design and implementation6. Working in an
interdisciplinary context, our experiences extend existing notions of analysis, design
and implementation. As such, a number of various resources and artefacts were used
in producing the model. These included sessions with business representatives,

6 A distinction which, as (Madsen et al., 93, pp 316) remind us, is highly questionable: ‘In

practice it is very difficult to do analysis without doing some design, and similarly doing
design without doing some implementation.' Our experiences concur.

Interpretation

Model
System

Modelling
Referent
System

descriptions of the database of the current system, Yourdon diagrams of current and
future business processes and, of the utmost importance, our own collaborative
studies of current practice. The Yourdon diagrams, which came about as an output
from the BPI analysis, exemplify the way in which the above resources and artefacts
informed the development of the model, being used, much as use case diagrams may
be used, as ‘sensitising’ devices providing for the initial identification of objects. It
should be stressed that the Yourdons were in no way used as requirements
specifications (as such diagrams do not display actual practice in sufficient detail),
rather it was a matter of using whatever resources were available to get an under-
standing of the problem domain.

Modelling proceeded in iterative phases: focussing on a particular area of business
in collaboration with the business representatives attached to the project, the
participatory designer and ethnographer; identifying important phenomena and
concepts; analysing structure, and synthesising into a new iteration of the model. In
the following example we exemplify and explain how modelling was achieved.

Modelling, a practical example - identifying concepts in the quote process: By a
combination of review constraints, formal business process descriptions stemming
from the BPI and the need to start the modelling process with an accessible instance
of business, the quote process was treated first. A particular discussion about the
quote process with a business representative allowed us to identify important concepts
and phenomena embodied within the quote process, such as ‘corridor’, ‘routing’,
‘container’, ‘rate’ and ‘customer’. This session, as other sessions including other
participants as mentioned above, was recorded in the form of a blackboard snapshot
showing the concepts, some properties of the concepts, examples of values of
properties along with textual and pictorial annotations clarifying or explaining
referent system specific concepts. Figure 3 displays the features of the snapshot from
the discussion with the business representative regarding the quote process.

Figure 3. A blackboard snapshot

Customer
name
fax no.

Corridor
origin
destinatio n

Routing
load port
transshipme n
discharge po

haulage - carrier

point X

point Y

point Z

Mode of Transportation

Commodity

Container
size
type
material
(weight)

feet

standard, refrigerated,...

Rate
commo n

Sales

Line Management

Information e.g. telex to sales

Customer usually just asks for
corridor (=>prefered route)
but in some cases also specifies
route!

Independent Action
(special rate)

FC = full container
PC = partial container

 International commodity
 aggrements are often employed
 in formulating retes

London/Utica rate ex.:

LHI 300,-
DAD 100,-
CSC 600,-
Cargo 1000,-
FAC 20% 200,-
BFA 10% 100,-
CTH 300,- ($)
LHI 400,- ($)

 fuel charge

haulage

 Handling Charge

Blackboard snapshots produced through preliminary analysis of descriptions of
working practice and the artefacts used were of considerable value and practical
utility in creating the model. They provided rich detail and a firm basis upon which
we were able to build a first model of the quote process. Furthermore, they worked as
an important means of communication between the respective competencies at work.

Having created an initial model (see Figure 4), the model was then interpreted in
the context of the referent system. The reason for this was to discuss the model with
relevant members of the development team (including business representatives) in
order to assess the state of the model and gain additional information as to the
substance as well as the structure of the quote process. Other parts of the referent
system were then analysed in the same way and synthesised with the parts of the
model already elaborated7.

Furthermore, the model was used for triggering business discussion. In this context
the business representatives were able to see referent system concepts instead of mo-
del system concepts; comments on, for example, multiplicity’s in associations, were
put forward in the context and linguistic terms of business instead of in object-
oriented terminology. In the context of formal reviews, in which participants from the

7 The success of ‘snapshots’ as a modelling technique has resulted in CIT investing in an

electronic blackboard that we intend to use in future initial analysis / design sessions. This is
just a first step in developing some supportive tools to support initial analysis / design.

Customer

Name

Address

Phone

Fax

theContactPerson
1

Profile
1Segmentation

QuotationstheCustomer

*

Quotation

theCustomer Quotations1

theContactPerson
1Origin

Destination

Items
1

thePrice
1

theProduct

1

Product

Origin

Destination

Export
1

Intercon
1

Import

1

ContainerType
1Price

1

Link

From

To

theTransportType
1

* Transporttype

Type

Price

1

Price

Total

LHI_Export

DAD

CCS

Cargo

FAC

BFA

CTH

LHI_Import

*

Item

Commodity

Volume

ContainerType
1

*

ContactPerson

Name

Phone

1

1

Container

Size

Type

Material

Payload

Tare_Weight

Dimensions

1

1

Property

Name

Value

*

Corridor

Origin

Destination

Links
1

111

Local carrier

some are predefined

not physical container
but representative

?

ex:
name=prefered container color
value=blue

VIP/not VIP

- capacity
- reserve_space

here?!

truck,
intercontinental,
local,
long john,
nostromo,...?

all intercontinental transport?

can a quote have multiple
sources/destinations?
(currently only handles
1 source, 1 dest.)

commodity+containertype
(currently only handling
homogenous commodity+
containertype

will probably have
container catalog:

repr. containers

Intercont_Carrier

ex. illust. product concept:

london -> truck -> felixstove
-> local -> rotterdam
-> intercont.-> new york
-> truck -> utica

Product
- origin: london
- dest. : utica

Export : london - felixstove
Intercont.: felixstove - rotterdam - new york
Import : new york - utica

Figure 4. Initial design

business (including the consultants) had been involved in the BPI project and thus had
an abstract perception of the business, the model triggered business discussions
regarding future practice. It should be said that the model was not intelligible in all
settings. In other contexts, participants who had not been part the BPI and who did not
therefore have some knowledge of formal methodologies of design, had a hard time
grasping the whole intent of discussing such a model.

As can be seen in Figure 4, the model exhibits technical simplicity: almost no
implementation-specific attributes or classes have been added and only limited subset
of UML’s class diagram notation (Rational, 98), has been used namely inheritance,
association and aggregation. In keeping the model “clean” it is kept interpretable and
by using a formal notation the model is also executable in the sense that it is a living
thing inside the actual prototype.

5.3� The evolution of the model

The model was by no means finished before coding started. It evolved along two
dimensions: horizontally and vertically. Horizontally the model was gradually
extended to cope with new areas in the referent system in the manner described
above, with the first iteration of the prototype focusing on quoting, then booking and
so on. In proceeding in this manner, both the model and the prototype were mutually
elaborated. This was also the case vertically. The first iterations of a class or
collection of related classes were focused on data and the relationships between the
classes. In the following iterations the focus moved to high level functionality (the
business functions), which introduced methods to the classes. Development of new
business functions occasioned many amendments to the relevant parts of the model.
Amendments primarily consisted in the addition of attributes and methods, modifi-
cation of existing attributes and adjustments in class relationships.

Amendment to the model tended to be at a rather detailed level and our experience
shows both that the model does not have to be complete either horizontally or
vertically before coding can start, and that one does not need to spend too much time
on the details in the design model before coding as they will be changed during
implementation. The problem of when to start coding is not a question of validating
the model but rather, in our experience, one of putting up and satisfying practical
development requirements such as meeting deadlines for formal reviews. It should
also be said that a major development requirement from our point of view is to have a
running prototype even of minimal design to confront practice with and, in reaction,
thereby elaborate modelling issues. Given this, our experience also shows that a
model cannot be effectively created in isolation from implementation. As the model
evolves together with the prototype in an evolutionary process, it becomes more and
more stable with respect to the parts of the referent system so far covered. The
Bremerhaven instance illustrates this.

5.4� The Bremerhaven Instance (3)

The problem of rerouting as elaborated through the perspectives and interaction of
ethnography and participatory design and as visualised in the notion of a tree
structure, emerged as a design issue relatively late in the process. Rerouting was on
the agenda for the last review of the first phase of the project. At that time the basic
functionality of the prototype had been developed to the point where the model
supported a diverse set of business concepts including the concept of booking and
related concepts such as products, schedules, allocation etc. The problem of rerouting
is all about changing a bulk of bookings, a high-level operation that involves
manipulation of multiple sets of bookings and related concepts. In so much as we
already had the basic building blocks available, the development of the rerouting
functionality was developed with only minor changes to the model. The basic
structure did not need to be reconstructed. Radical reconstruction of the model was
unnecessary because it was constructed on a natural understanding of the business
concepts at work. Having said that, in dealing with the issue of rerouting, a new
concept was introduced. The notion of rerouting being akin to a tree with an elaborate
network of branches was not discovered among existing business concepts, but
emerged out of a joint analysis of the work from the ethnographic and participatory
design perspectives. Our approach to modelling allows new concepts to be
introduced easily thus allowing the model to develop in an evolutionary manner.

The Bremerhaven instance is also a good example of how instances were used as a
communication media between in this case the cooperative designer and the OO
developers. Discussions between the cooperative designer and the cooperative deve-
lopers regarding rerouting were centered around the Bremerhaven instance. The
rerouting functionality is rather complex and it is difficult to get it right the first time.
When problems arose during implementation the instance was used as a guideance for
what at least should work in order to illustrate the basic idea. I.e. the Bremerhaven
instance was used as a mediator in the design / implementation cycles as well as a
minimal test case.

5.5� Prototype architecture

Working on the assumption that vertical, evolutionary prototyping needs to be
performed within some well-defined architecture of the prototype, architecture was
designed before actual programming on the prototype began, i.e. within two to three
weeks. In this architecture the object model played a central role as being the common
frame of concepts structuring the code in a referent system specific way. As we
mentioned earlier, dealing with the concept of rerouting did not occasion any major
reconstruction of the model, however, it did impact upon the architecture.
Implementing rerouting in the prototype was problematic in that we did not know if
the functionality required was already there, ready to reuse, or if abstractions of
existing functionality were required. Through analysing the Bremerhaven instance we
anticipated that major parts of the existing routing functionality could be reused. As it
turned out however, the existing architecture did not provide the proper abstractions.

Constraints of time meant that the first design / implementation employed ‘copy-paste
reuse' of existing routing functionality. This was not construed as a problem in itself
because, working in an evolutionary manner, we had the opportunity to design a new
architecture in the next iteration cycle. As such, after the first major iteration of the
prototype, we designed and implemented a component architecture (see Figure 5).
This enabled us to implement rerouting using the cleaner abstractions afforded by the
new architecture. These still, of course, need further iteration and as work continues
more and more aspects of the Bremerhaven and other instances of work are brought
into discussion. Change is now less problematic however, as the current architecture
allows us to deal with the complex issues emerging from prototyping sessions: during
the trip to Asia, for example, the power of component architecture was experienced as
it was actually possible to add major components to the system “on the fly”. The
component architecture is the first step in the direction of an architecture with COM
objects, (Microsoft, 95).

Figure 5. Current architecture of the prototype

5.6� The user interface of the prototype

In the user interface of the prototype we are combining an object-oriented user
interface (in so much as part of the model is visualised in the user interface) with an
activity-oriented user interface. The screen dump in Figure 6 shows this: business
processes are displayed in a sequence of process buttons using a simple colour
scheme for showing work's state of completion but not enforcing the accomplishment
of work in a sequential manner, whereas the tabbed controls visualise the actual
objects - customer, quote, transport - that are being worked on. Most upper tabs
correspond to important domains in the model, whereas the sub-tabs visualise
aggregated or referenced concepts.

Object
Model

Storage
Component

Persistent
Store

Shared
Persistent

Relational
Database

Main Program

Customer
Component

User Interface

Functions

Controller

6� Usage of tools

Within the context of any perspective the use of and support by tools is important.
Working with evolutionary prototyping of architecture, functionality, user interface
and model, tools supporting many iterations over a short period of time are a
necessity. In the Dragon Project the main software engineering tools used are a CASE
tool, a GUI builder, a code editor, a persistent store and a concurrent engineering tool.

The first four tools are part of the Mjølner System (Knudsen et al. 94, Ch.
2;http://www.mjolner.com) and the fifth tool used was concurrent versioning
system (CVS, 98). The programming language used is BETA (Madsen et al., 93).

upper tabs

process buttons

sub tabs

Figure 6. An overview of the main principles in the user interface of the
prototype. (Image blurred for confidentiality)

6.1� CASE tool

The CASE tool was used to draw the model using UML notation and to automatically
generate the corresponding BETA code. In the beginning the CASE tool was also
used to create the unstructured blackboard snapshots that later were used as input for
the construction of the model. As diagrams of the model were created or modified,
code was generated incrementally. Although code was thus available at any time, the
early versions of the model were only used in the form of UML diagrams, as the
emphasis was on communication and discussion.

The model can be changed via the diagrams or via the textual code. As emphasis
moved to code and redesign cycles, model changes were mostly made in the code
editor (see below) – only structural changes requiring overview of the model were
made in the CASE tool. When the main emphasis is on coding, it is often more
convenient to do the changes in the textual representation, especially when the
changes are at a detailed level. Using the reengineering capability, the UML diagram
was recreated from time to time and posters of it were made for discussion as
mentioned earlier The reverse engineering capability is not based on having any
additional information besides the BETA code, e.g. comments or other kinds of
annotations, which means that the code editor – or in fact any editor – could be used
to manipulate the model in its code representation.

6.2� GUI builder

The GUI builder is used to create the user interface in a direct manipulation graphical
editor. Like the model the user interface can be changed via the graphical
representation or via the textual code. The user interface was created from the start
with the graphical editor, but was initially used for discussions only, although code is
generated automatically. Changes regarding the physical appearance of the user
interface, i.e. what type of UI controls used, and their concrete layout, were typically
made in the graphical editor and changes regarding the basic functionality of the user
interface and the interface to the model and functionality layer were typically made in
the code editor. Due to reverse engineering and incrementality it is easy to alternate
between using the two tools.

The user interface was often used as means for organising and/or coordinating
activities between the cooperative designer and the OO developers. The initial user
interface design was, by and large, made by the cooperative designer and it was then
further elaborated by the OO developers in collaboration with the cooperative
designer. Again due to reverse engineering it was possible for the cooperative
designer to make changes to the user interface throughout the process, even very late
in a prototype cycle.

The GUI builder generates code for a platform independent framework. This
framework, which also had great importance to the development of the prototype, had
to be extended during development in order to support platform specific UI controls.
The new UI controls were manually inserted in the code, but they could coexist with

the automatically generated UI controls without affecting the reverse engineering
process.

One problem or annoyance was that a large amount of time was spent on coding a
strict programming interface to the user interface to achieve independence between
the user interface, the model and functionality layer. The separation, however, showed
to provide advantages in stability of interface and those advantages are considered to
outweigh the difficulties. Furthermore, preliminary investigations show that much of
this work can actually be automated (Damm et al., 97).

6.3� Code Editor

All of the tools mentioned above integrate with a structure editor. The editor knows
the grammar for the BETA language allowing it to incrementally “catch” syntax
errors and provide facilities for syntactic and semantic browsing of code.

Furthermore, the editor offers an abstract representation of the code, where any
part of the code can be hidden. As became evident when a new developer was
introduced to the system (and its architecture) relatively late in the process, this
presentation of code and the semantic browsing facilities helped in gaining a quick
understanding of the architecture of the relatively large prototype. Also, the abstract
presentation of code and the editing operations at that level were helpful in
restructuring even large pieces of code (Knudsen et al., 94, chapter 23).

6.4� Persistence

Another major player on the stage of tools was the persistent store that supports
orthogonal and transparent persistence. In this way any object can be stored and given
a persistent root all reachable objects will be made persistent transparently. This
meant that only a little time had to be used on persistence issues in the first versions
of the prototype. Persistent stores generated from data from existing databases
simulated interfaces to legacy systems, and data non-existing in legacy systems was
added. A point has been made of identifying those chunks that are within the object
model to prepare for current work on interfacing to actual legacy systems. In the
current version of the prototype the focus has turned to multi-user functionality in a
client / server architecture and a storage component has been developed. The storage
component (see Figure 4) constitutes a transparent interface to three different storage
media: the initial single-user persistent store, a shared persistent store (Brandt, 93,94;
Wiederhold, 97), and a relational database (for a selected part of the data).

6.5� Concurrent engineering tool

Although preliminary implementation was worked out on separate pieces of code the
need for use of the versioning system CVS very quickly emerged. As implementation
progressed it became evident that its presence was absolutely crucial: It facilitated

seven developers concurrently working on over 300 files containing over 100,000
lines of code, merging code with only minor problems. CVS was also used to merge
changes made in regional prototype sessions with changes made at home at the
University.

7� Managing development

Keeping the project “on track” and within the agreed time-frame was a major problem
to be tackled. Project management and control was achieved in a number of ways.
Development activities were managed and coordinated with BPI objectives through
frequent business reviews ranging from the informal to the company’s highest
executive body. Up until now five different types of review, which vary both with
respect to participants and with respect to purpose, have been held. A review of some
kind has, on average, been held every two weeks during the five months of effective
prototype development. In the second part of the project a major review of the
prototype has been held approximately every second month. All reviews have actively
involved relevant members of the development team. The reviews can be categorised
as follows:

• Formal reviews with the project manager from the business, technical
advisors from a consultancy and business representatives.

• Informal reviews with the same group.
• Reviews with the company’s Regional Programme Coordinators

(RPCs).
• Review with the company’s executive body.
• Review with members of the company’s Business Reference Group

(BRG).

The purpose of the formal reviews – which were held more frequently in the
beginning of the project than later on in development – was to assess whether or not
the prototype was on the right track both in terms of scope and competency8. Informal
reviews occurred in between the formal ones. They were informal in the sense that no
single version of the prototype was built, frozen and presented for the occasion, rather
it was a matter of the company’s project manager and consultants visiting the
development site and discussing work-in-progress9. Reviews with regional program-

8 It might be noted that the “problem of culture” – academics working in a commercial context

– was considered to be an issue of “high risk” by the company and its consultants; a problem
resolved through frequent reviews.

9 It should be said that for the first phase of development, the development team was located in
company offices at a customer service site. While not actually located with customer service
staff, access to practice was greatly facilitated. Furthermore, the transmission of knowledge
was greatly facilitated through locating all the developers / perspectives in one room. This
co-location supported internal awareness and coordination of development activities. It is an

me coordinators and the ethnographer, who did ‘quick and dirty’ studies of work
(Hughes et al., 94) in Hong Kong and the US, were held to ensure that prototype kept
a "global perspective" and, in their reaction to the current prototype, to get further
input for development.

There has only been one review involving the company’s executive body, the
highest authority within the company regarding business development decisions.
Following the executive review of the first major iteration of the prototype (May ’97),
the company decided to go ahead with developing a production version of GCSS.
This decision was, amongst others, made on the basis of formal presentation of the
prototype. The Business Reference Group, assembled in response to development
phase two, represents the regions and is responsible for accepting features of the
prototype that are to go into the production version and organising further, more
“specialised” input from regional staff. By “specialised” staff is meant representatives
from specific areas of the business. Although changed from time to time, one or two
representatives from business have been located with the development team more or
less constantly throughout design. They have been used intensively as resources on
the problem domain and have also acted as coordinators between system development
and BPI.

8� Concluding remarks

Returning to the question posed in the introduction, how come that the project was,
and still is, successful? Based on the state of the work – still in progress – we will
restrain ourselves from too firm conclusions. However, we still believe we might
extract some lessons from the project so far. In the following, and we are very well
aware that we are talking on the basis of one albeit comprehensive example, we will
try to summarise some of the key findings in explicating some of the underlying
means by which the prototype, the process, and the business results were achieved.
Tentatively, and again rather simplistically, we can state that the main result seems to
be the strength of an approach we might call an experimental and multiperspective
approach to designing for practice.

8.1� Practice

Probably the most fundamental principle within our approach is the focus on the work
practice the application has to support. One could say that practice is the subject of
the analysis, a springboard for design, and the goal of the implementation. The
business objective of the project as such is to design a product that fits the practice in
which it is to be embedded and used, in this case customer service. Thus, the key
feature of our approach is the focus on practice which is seen and treated as the
fundamental resource in that it provides the possibility for grounding design,

organisation of work we have maintained in phase two although we are now located at the
university.

identifying solutions to substantive problems, as well as providing triggers for new
ideas as to how work (e.g. the delivery of customer service) might be achieved in the
future through technological intervention.

8.2� Experimentation

In so much as design is an intervening activity very much concerned with future
practice, one of the key characteristics of the whole development process is the quite
comprehensive use of experimentation – i.e. the performance of analysis, design and
implementation in active collaboration with users. Various methodological advise
found in textbooks suggest that analysis, design and implementation should be carried
out in sequence, although with iterations. The approach conducted within the Dragon
Project can almost be said to go to the other extreme – there is no ‘sequence’ of work
in the conventional sense of the word10. Schematically, Figure 7 depicts the approach
employed and characterises experimentation.

In the analysis, we made extensive use of artefacts created within design and
implementation. Similarly, the design activities were heavily dependent on both an in
depth understanding of current practice (analysis) and a firm notion of what could
actually be achieved within given constraints (implementation). Needless to say,
implementation was dependent on analysis and design – notions all of which in this
context are continuous, mutually elaborating and on-going: just as one starts
analysing, designing and implementing in conjunction, then so one proceeds until a
concrete product emerges

This ‘radical parallelism’ and experimentation in all phases is important and, in
placing users at the centre of design activities, leads to the implementation of a
prototype suitable for continuation into the product system. Just as we designed using
specific experiences still keeping “the big picture” in focus, we also, and simul-
taneously, tried to cater for a rapid prototyping process as we developed with the

10 Of course, in so much as this approach is iterative and in real time demands restructuring of

the product, implementation of architectures supporting integration with databases, existing
systems and so on, then there is a ‘sequence’ at work but here we are talking about the
development of a technological infrastructure in contrast to the development of a functioning
system that the infrastructure serves. It is in the sense of the process of developing of
functionality (i.e. what activities the system should support) that the notion of sequence
becomes redundant as analysis, design and implementation are continuous, mutually
elaborative and on-going in contrast to discrete step-by-step tasks.

Analysis

Design

Implementation

Figure 7.

product system in mind – i.e. we took and take an evolutionary approach to proto-
typing. Central to this process were the model and the architecture, the development
of which naturally requires a collection of suitable tools and techniques.

8.3� Multiperspective

In many respects the defining feature of the process is its interdisciplinary or
multiperspective character. As outlined in the previous sections we have made
extensive use of three very different perspectives. Although different, they share a
common frame of reference – the prototype and the practice it is intended to support.
Generally speaking we can say that:

• Ethnography provides a concrete understanding of work’s real time
accomplishment in contrast to idealisations and formal glosses.

• Cooperative design provides an understanding of the relationship
between current and future practice through the experimental formu-
lation of concrete design visions and solutions.

• OO provides a concrete relationship between design visions and the
application in and through formulating a model utilising concepts
derived from practice.

• The instances of work and the prototype provide and maintain important
common reference points between the three perspectives throughout
development.

Naturally, these perspectives do not have fixed boundaries; for all practical
purposes neither seeks to exclude the other. We all need to understand the practice in
question, we all need to share the design visions, as we all need to know what is
realistic in terms of implementation. On the other hand, for practical purposes, we
cannot all comprehend practice to the same extent. Thus, we made extensive use of
overlapping competencies and foci as well as overlapping activities and respon-
sibilities.

8.4� Implications for object-orientation

Besides these rather general lessons, we address more specific object-oriented issues.
Below is a summary of some of the notions and principles applied in the current
project ordered according to where they might best inform object-oriented analysis,
design and implementation.

OO analysis is more than finding nouns and verb.

• Analysis is in significant part directed towards understanding current
practice.

• Ethnography is a powerful approach to understanding the social organi-
sation of activities which is current practice.

• Developers need concrete experiences from within practice, comple-
mentary and in addition to bringing users into the development process.

• Prototypes, mock-ups and scenarios, complement ethnographic tech-
niques in functioning as triggers for discussions on current practice with
users.

OO design is more than filling in details in the OO analysis model.

• Design is seen as an on-going process of formulating “best matches”
between current work and future possibilities.

• Cooperative design bridges between current and future practice by
active user involvement in a creative process of experimentation.

• Concrete representations of design visions (prototypes, mock-ups, and
scenarios) provide the possibility (1) for simulating future work through
hands-on-experience and (2) for (thereby) formulating concrete design-
solutions.

• The central ‘challenge’ in design is not so much to find representative
users, rather it is to find users that can challenge representations.

And to complete the list:
OO implementation is more than translating design models into code.

• Implementation is also seen as the process of realising emergent, in
contrast to predefined, design visions.

• Without understanding design visions and their concrete relationship to
practice, it is virtually impossible to implement or find alternatives to
formal specifications.

• Implementation is in significant part constructing primary means for
analysis and design in accomplishing evolutionary prototyping.

• The construction of robust yet readily adaptable models and archi-
tectures are crucial in implementation and depend on flexible tool
support.

Naturally, the above principles do not apply to all problems in all situations.
System development is, afterall, a heterogeneous enterprise not only in terms of staff
but also in terms of problem domains. Up until now each of the individual
perspectives outlined here have been successfully applied to a wide variety of
application developments in a multiplicity of situations. Although respective

disciplinary achievements suggested the strong possibility of developing a highly
effective and unified approach to system development, in so much as this is the first
major attempt at combining them in large-scale development, then success in a
multiplicity of settings cannot be claimed for their particular association. Thus, it is
difficult to assess scope, applicability, cost, etc.

What we can say, based on the experiences so far, is that the approach has been
successfully applied in a situation characterised by the following features: complex
human work practices, high uncertainty regarding the specifics of the potential
application, large and geographically distributed organisation. In respecifying the
classical working order of design from a sequential process of analysis – design –
implementation to an on-going, mutually elaborative process dependent on active user
involvement (experimentation), the multiperspective approach outlined here is
potentially strong, both in terms of projected cost benefit and in actual terms of
practical efficacy from a client’s point of view, in supporting the integration of
emerging information technologies into the world of work and organisation. To
reiterate: we outline here an organised approach to, not a formal method of, work-
oriented design. Finally, it might be said that in so much as we have explicated the
acronym M.A.D. in what we hope is some reasonable detail, then that acronym not
only captures the essence of a unique approach but also the frenetic character of rapid
prototyping at work.

Acknowledgement: This work was made possible by the Danish National Centre for
IT-Research (CIT, http://www.cit.dk), research grant COT 74.4. We would also
like to express our sincere thanks to all the people within the company who made this
project possible.

9� References

(Anderson et al., 89). Anderson, R.J., Hughes, J.A., Sharrock, W.W. (1989) Working for
Profit: The Social Organisation of Calculation in an Entrepreneurial Firm, Aldershot:
Avebury.

(Bannon, 91) Bannon, L.J. (1991) From Human Factors to Human Actors: the role of
psychology and human-computer interaction studies in system design, Design at Work:
Cooperative Design of Computer Systems (eds. Greenbaum, J. & Kyng, M.), pp. 25 – 44,
New Jersey: Lawrence Erlbaum Associates.

(Bannon et al., 93) Bannon, L.J. & Hughes, J.A. (1993) The Context of CSCW, Developing
CSCW Systems: Design Concepts, Report of COST 14, ‘CoTech’ Working Group 4 (1991-
92), pp 9 – 36.

(Bjerknes et al., 87). Bjerknes, G., Ehn, P., & Kyng, M. (1987) Computers and Democracy: A
Scandinavian Challenge, Aldershot: Avebury.

(Blomberg et al., 94). Blomberg, J., Suchman, L., Trigg, R. (1994) Reflections on a Work-
Oriented Design Project, Proceedings of PDC ’94,pp 99 – 109, Chapel Hill, North Carolina:
ACM Press.

(Brandt, 93). Brandt, S., Madsen, O.L. (1994) Object-oriented Distributed Programming in
BETA, in Lecture Notes in Computer Science, LNCS 791, Springer-Verlag 1994.

(Brandt, 94). Brandt, S. (1994) Implementing Shared and Persistent Objects in BETA, Progress
Report, Tecnical Report, Department of Computer Science, Aarhus University.

(Bødker, 91) Bødker, S. (1991) Through the Interface: a Human Activity Approach to User
Interface Design, Hillsdale, New Jersey: Lawrence Erlbaum Associates.

(COMIC 2.2, 93) COMIC Deliverable 2.2, Esprit Basic Research Project 6225 (1993))LHOG
6WXGLHV�DQG�&6&:, (eds.) Lancaster University and Manchester University.

(Crabtree et al., 97). Crabtree, A., Twidale, M., O’Brien, J., Nichols, D.M. (1997) Talking in
the Library: Implications for the Design of Digital Libraries, Proceedings of ACM Digital
Libraries ’97, Phildelphia: ACM Press

(CVS, 98). Gnu, Concurrent Version System (1998) ftp://archive.eu.net/gnu/.
(Damm et al., 97) Damm, C.H., Hansen, K.M., Thomsen, M. (1997) Issues from the GCSS

Prototyping Project – Experiences and Thoughts on Practice, Department of Computer
Science, Aarhus University.

(Garfinkel et al., 70) Garfinkel, H. & Sacks, H. (1970) On Formal Structures of Practical
Actions, Theoretical Sociology: Perspectives and Developments (eds. Mckinney, J.C. &
Tiryakian, E.A.), pp 337 – 366, New York: Appleton-Century-Crofts, 1970.

(Greenbaum et al., 91). Greenbaum, J., & Kyng, M. (1991) Design at Work: Cooperative
Design of Computer Systems, Hillsdale New Jersey: Lawrence Erlbaum Associates.

(Grønbæk, 91). Grønbæk, K. (1991) Prototyping and Active User Involvement in System
Development: Towards a Cooperative Prototyping Approach. Ph.D. Thesis, Computer
Science Dept., University of Aarhus.

 (Grønbæk et al., 93). Grønbæk, K., Kyng, M., & Mogensen, P. CSCW Challenges:
Cooperative Design in Engineering Projects, Communications of the ACM 36 (6), pp 67 -
77.

(Grønbæk et al., In Press). Grønbæk, K., Kyng, M., & Mogensen, P. Toward a Cooperative
Experimental System Development Approach, In M. Kyng & L. Mathiassen (Eds.), (In
Press).

(Grudin, 89) Grudin, J. (1989) Why Groupware Applications Fail: Problems in Design and
Evaluation, Office: Technology and People, vol. 4 (3), pp 245 – 264.

(Heath et al., 92). Heath, C. & Luff, P. (1992) Collaboration and Control: Crisis Management
and Multimedia Technology in London Underground Line Control Rooms, JCSCW ’92, vol.
1, the Netherlands: Kluwer Academic Publishers.

(Hughes et al., 92). Hughes, J., Randall, D., Shapiro, D. (1992) Faltering from Ethnography to
Design, Proceedings of CSCW ’92, pp 115 – 122, Toronto: ACM Press.

(Hughes et al., 94). Hughes, J., King, V., Rodden, T., Andersen, H. (1994) Moving Out of the
Control Room: Ethnography in System Design, Proceedings of CSCW ’94, pp 429 – 439,
Chapel Hill: ACM Press.

(Hughes et al., 96). Hughes, J., Kristoffersen, S., O’Brien, J., Rouncefield, M. (1996) :KHQ
0DYLV�PHW�,5,6��(QGLQJ�WKH�ORYH�DIIDLU�ZLWK�2UJDQLVDWLRQDO�0HPRU\, Proceedings of IRIS
19 ‘The Future’, Report 8.

(Kensing et al., 97). Kensing, F & Simonsen, J. (1997) Using Ethnography in Contextual
Design, Communications of the ACM, 40 (7), pp 82 - 88.

(Knudsen et al., 94). Knudsen, J.L., Löfgren, M., Madsen, O.L., Magnusson, B. (1994) Object-
Oriented Environments. The Mjølner Approach, Prentice Hall.

(Knudsen et al., 96). Knudsen, J.L., Madsen, O.L. (1996) Using Object-Orientation as a
Common Basis for System Development Education, ECOOP ’96 Teachers Symposium.

(Madsen et al., 93). Madsen, O.L., Møller-Pedersen, B., Nygaard, K. (1993) Object-Oriented
Programming in the BETA Programming Language, ACM Press, Addison Wesley.

(Madsen, 96). O.L Madsen: Open Issues in Object-Oriented Programming (1996) – a
Scandinavian perspective, Software Practice and Experience.

(Microsoft, 95). The Component Object Model Specification, Microsoft Corporation, 1995.
(Mogensen, 94). Mogensen, P. (1994) Challenging Practice: an Approach to Cooperative

Analysis, Ph.D thesis, Computer Science Department, University of Aarhus, Daimi PB-465.
(Rational, 98). Rational Software Cooperation (1998) UML Notation Guide Version 1.1,

http://www.rational.com/uml/html/notation/
(Rouncefield et al., 94). Rouncefield, M, Hughes, J.A., Rodden, T, Viller, S. (1994) Working

with “Constant Interruption”: CSCW and the Small Office, Proceedings of CSCW ’94,
Chapel Hill: ACM Press.

(Schmidt et al., 93) Schmidt, K. & Carstensen, P. (1993) %ULGJLQJ� WKH� *DS�� 5HTXLUHPHQWV
$QDO\VLV�IRU�6\VWHP�'HVLJQ, Working Paper, COMIC-RISØ, Esprit Basic Research Project
6225, (eds.). Lancaster University and Manchester University.

(Twidale et al., 94) Twidale, M., Randall, D., Bentley, R. (1994) Situated Evaluation for
Cooperative Systems, Proceedings of CSCW ’94, pp 441 – 452, Chapel Hill, North
Carolina: ACM Press.

(Weiderhold, 97) Weiderhold, J.T. (1997) A Multi-User Persistence Framework: Building
Customised Database Solutions uing the BETA Persistent Store, MA. Thesis, Department of
Computer Science, Aarhus University.

(Wiklund, 94). Wiklund, M. (1994) Usability in Practice, AP Professional.
(Wittgenstein, 68) Wittgenstein, L. Philosophical Investigations, Oxford: Basil Blackwell,

1968.

