
CSE 510: Advanced Topics in HCI

James Fogarty
Daniel Epstein

Tuesday/Thursday
10:30 to 12:00
CSE 403

Interface Toolkits

Tools and Interfaces
Why Interface Tools?
Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Things I Hope You Learned

Sequential Programs
Program takes control, prompts for input

Person waits
on the program

Program says when
it is ready for more
input, which the
person then provides

Sequential Programs

while true {
print “Prompt for Input”
input = read_line_of_text()
output = do_work()
print output

}

Sequential Programs

while true {
print “Prompt for Input”
input = read_line_of_text()
output = do_work()
print output

}

Person is literally modeled as a file

Event-Driven Programming
A program waits for a person to provide input

All communication done via events
“mouse down”, “item drag”, “key up”

All events go to a queue
Ensures events handled in order
Hides specifics from applications

Mouse Software

Keyboard Software

Event Queue

Basic Interactive Software Loop

do {
e = read_event();
dispatch_event(e);
if (damage_exists())

update_display();
} while (e.type != WM_QUIT);

Nearly all interactive software
has this somewhere within it

input}

output }

processing}

Basic Interactive Software Loop
Have you ever written this loop?

Basic Interactive Software Loop
Have you ever written this loop?

Contrast with:

“One of the most complex aspects of Xlib
programming is designing the event loop,
which must take into account all of the possible
events that can occur in a window.”

Nye & O'Reilly, X Toolkit Intrinsics
Programming Manual, vol. 4, 1990, p. 241.

Understanding Tools
We use tools because they

Identify common or important practices
Package those practices in a framework
Make it easy to follow those practices
Make it easier to focus on our application

What are the benefits of this?
Being faster allows more iterative design
Implementation is generally better in the tool
Consistency across applications using same tool

Understanding Tools
We use tools because they

Identify common or important practices
Package those practices in a framework
Make it easy to follow those practices
Make it easier to focus on our application

What are the benefits of this?
Being faster allows more iterative design
Implementation is generally better in the tool
Consistency across applications using same tool

Understanding Tools
Why is designing tools difficult?

Need to understand the core practices and problems
Those are often evolving with technology and design

Example: Responsiveness in event-driven interface

Event-driven interaction is asynchronous

How to maintain responsiveness in the interface
while executing some large computation?

Understanding Tools
Why is designing tools difficult?

Need to understand the core practices and problems
Those are often evolving with technology and design

Example: Responsiveness in event-driven interface

Cursor:
WaitCursor vs. CWaitCursor vs. In Framework

Progress Bar:
Data Races vs. Idle vs. Loop vs. Worker Objects

Fundamental Tools Terminology
Threshold vs. Ceiling

Threshold: How hard to get started
Ceiling: How much can be achieved
These depend on what is being implemented

Path of Least Resistance
Tools influence what interfaces are created

Moving Targets
Changing needs require different tools

Myers et al, 2000
http://dx.doi.org/10.1145/344949.344959

http://dx.doi.org/10.1145/344949.344959

Tools and Interfaces
Why Interface Tools?
Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Things I Hope You Learned

Model-View-Controller

How to organize the code of an interface?

A surprisingly complicated question, with
many unstated assumptions requiring significant
background to understand and resolve

Seeheim Model
Results from 1985 workshop on user interface
management systems, driven by goals of
portability and modifiability, based in separating
the interface from application functionality

Huh?

Buxton, 1983
http://dx.doi.org/10.1145/988584.988586

http://dx.doi.org/10.1145/988584.988586

[image: image1.wmf]USER

L

exical

Syntactic

Semantic

APPLICATION

Application

Interface

Model

Dialogue

Control

Presentation

Seeheim Model
Lexical - Presentation
External presentation of interface
Generates display, receive input

Syntactic - Dialog Control
Parsing of tokens into syntax
Maintain state

Semantic - Application Interface Model
Defines interaction between
interface and rest of software

e.g., “add” vs. “append” vs. “^a” vs.

e.g., how to make a “menu” or “button”

e.g., interface modes

e.g., drag-and-drop target highlighting

Seeheim Model

[image: image1.wmf]USER

L

exical

Syntactic

Semantic

APPLICATION

Application

Interface

Model

Dialogue

Control

Presentation

Seeheim Model

Huh?

[image: image1.wmf]USER

L

exical

Syntactic

Semantic

APPLICATION

Application

Interface

Model

Dialogue

Control

Presentation

Seeheim Model

Rapid Semantic Feedback
In practice, all of the code goes in here

[image: image1.wmf]USER

L

exical

Syntactic

Semantic

APPLICATION

Application

Interface

Model

Dialogue

Control

Presentation

Model-View-Controller
Introduced by Smalltalk developers at PARC
Partitions application to be scalable, maintainable

Model

View

Controller

View / Controller Relationship
In theory:

Pattern of behavior in response to input events
(i.e., concerns of the controller) are independent
of visual geometry (i.e., concerns of the view)

Controller contacts view to interpret what input
events mean in context of a view (e.g., selection)

View / Controller Relationship
In practice:

View and controller often tightly intertwined,
almost always occur in matched pairs

Many architectures combine into a single class

Model
View

Controller

Model-View-Controller
MVC separates concerns and scales better than
global variables or putting everything together

Separation eases maintenance
Can add new fields to model,
new views can leverage,
old views will still work

Can replace model without changing views

Separation of “business logic” can require care
May help to think of model as the client model

Model-View-Collection on the Web
Core ideas manifest differently by needs

For example, backbone.js implements client views
of models, with REST API calls to web server

Web tools often implement views as templates

Web
Server

Collection

Model
View

Controller

Model View View-Model
Design to support data-binding
by minimizing functionality in view

Also allows greater separation of expertise

Tools and Interfaces
Why Interface Tools?
Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Things I Hope You Learned

Luxo Jr.

Animation Case Study

Principles of Traditional
Animation Applied to
3D Computer Animation

Lasseter, 1987
http://dx.doi.org/10.1145/37402.37407

http://dx.doi.org/10.1145/37402.37407

Squash and Stretch

Squash and Stretch

Squash and Stretch

Timing

Timing

Timing

Anticipation

Staging

Staging

Follow Through, Overlap, Secondary

Pose-to-Pose, Slow In, Slow Out

Objects with mass must accelerate and decelerate
Interesting frames are typically at ends,
tweaks perception to emphasize these poses

Arcs

Animation Case Study

Animation: From Cartoons
to the User Interface

Chang and Ungar, 1993
http://dx.doi.org/10.1145/168642.168647

http://dx.doi.org/10.1145/168642.168647

States Three Principles
Solidity

Desktop objects should
appear to be solid objects

Exaggeration
Exaggerate physical actions
to enhance perception

Reinforcement
Use effects to drive home feeling of reality

Solidity: Motion Blur

Solidity: Arrival and Departure

Solidity: Arrival and Departure

Exaggeration: Anticipation

Reinforcement: Slow In Slow Out

Reinforcement: Arcs

Reinforcement: Follow Through

Animation Case Study

Animation Support in a
User Interface Toolkit:
Flexible, Robust, and
Reusable Abstractions

Hudson and Stasko,
1993
http://dx.doi.org/10.1145/168642.168648

http://dx.doi.org/10.1145/168642.168648

Events and Animation

Not Just an Implementation
Provides tool abstractions for implementing
previously presented styles of animation

Overcomes a fundamental clash of approaches
Event loop receives input, processes, repaints

Animations expect careful control of frames,
but the event loop has variable timing

Events and Animation

Transition Object

Pacing Function

Computing a Frame

Animation Case Study
Based on increased understanding of how
animation should be done in the interface,
increasingly mature tools develop

Now built into major commercial toolkits
(e.g., Microsoft’s WPF, JavaFX, jQuery)

Once mature, begins to be used as a
building block in even more complex behaviors

Animation Case Study

The Kinetic Typography
Engine: An Extensible
System for Animating
Expressive Text

Lee et al, 2002
http://dx.doi.org/10.1145/571985.571997

http://dx.doi.org/10.1145/571985.571997

Kinetic Typography Engine

Kinetic Typography Engine

Goals of Kinetic Type
Emotional content
Creation of characters
Direction of attention

Based on existing work

Animation Composition

Animation Case Study

Prefuse: A Toolkit for
Interactive Information
Visualization

Heer et al, 2005
http://dx.doi.org/10.1145/1054972.1055031

D3: Data-Driven
Documents

Bostock et al, 2011
http://dx.doi.org/10.1109/TVCG.2011.185

http://dx.doi.org/10.1145/1054972.1055031
http://dx.doi.org/10.1109/TVCG.2011.185

Tools and Interfaces
Why Interface Tools?
Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Things I Hope You Learned

Sapir-Whorf Hypothesis
Language is not simply a way of voicing ideas,
but is the very thing which shapes those ideas

Tools not only make it easy to build certain types
of software, they push you to think in terms of
the types of software they can support

You must be aware of this when choosing tools,
designing applications, and creating new tools

Animation Case Study

Phosphor:
Explaining Transitions
in the User Interface
Using Afterglow Effects

Baudisch et al, 2006
http://dx.doi.org/10.1145/1166253.1166280

http://dx.doi.org/10.1145/1166253.1166280

Phosphor
Animation can help
follow interface transitions

The right speed is crucial
Too fast increases error rate
Too slow increases task time

The right speed depends
on familiarity, distraction,
and other such factors

It cannot be determined

Apple Expose

Windows Media Player

Phosphor

Phosphor shows the
outcome immediately,
then explains the
change in retrospect
using a diagrammatic
depiction of the change

Phosphor

animation
animationpast future

phospho
past

phosphor

future

Challenging Assumptions of Tools
Phosphor breaks from the assumptions
that current tools have evolved for transitions

Tools and Interfaces
Why Interface Tools?
Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Things I Hope You Learned

Sapir-Whorf Hypothesis
Roughly, some thoughts in one language cannot
be stated or understood in another language

Our tools define the language of interaction
Beyond the simple matter of code
Frame how we think about possibilities

Myers, Hudson, Pausch. Past, Present, and Future of User Interface Software Tools. TOCHI 2000.

An Interaction Language

The Same Interaction Language

Some Proposed Interactions

Grossman, Balakrishnan. The Bubble Cursor ... CHI 2005.
Baudisch, Tan, Collomb, Robbins, Hinckley, Agrawala, Zhao, Ramos. Phosphor ... UIST 2006.

Moscovich. Contact Area Interaction with Sliding Widgets. UIST 2009.

Bubble Cursor Phosphor Sliding Widgets

Some Proposed Interactions

None of these can be implemented in
the established language of interaction

Grossman, Balakrishnan. The Bubble Cursor ... CHI 2005.
Baudisch, Tan, Collomb, Robbins, Hinckley, Agrawala, Zhao, Ramos. Phosphor ... UIST 2006.

Moscovich. Contact Area Interaction with Sliding Widgets. UIST 2009.

Bubble Cursor Phosphor Sliding Widgets

Interface Fragmentation

It is insufficient to innovate in any one interface
People use interfaces developed in many tools

Prefab

Pixel-based runtime
modification of existing
interfaces without their
source or cooperation

Unlocks interaction by
allowing researchers to
implement new ideas
atop existing applications

Dixon, Fogarty. Prefab: Implementing Advanced Behaviors Using Pixel-Based Reverse Engineering of Interface Structure. CHI 2010.
Dixon, Leventhal, Fogarty. Content and Hierarchy in Pixel-Based Methods for Reverse Engineering Interface Structure. CHI 2011.

Dixon, Fogarty, Wobbrock. A General-Purpose Target-Aware Pointing Enhancement ... CHI 2012.
Dixon, Laput, Fogarty. Pixel-Based Methods for Widget State and Style in a Runtime Implementation of Sliding Widgets. CHI 2014.

Dixon, Nied, Fogarty. Prefab Layers and Annotations: Extensible Pixel-Based Interpretation of Graphical Interfaces. UIST 2014.

Frame 1 Frame 2

Phosphor Enhancement

Dixon, Fogarty. Prefab: Implementing Advanced Behaviors Using Pixel-Based Reverse Engineering of Interface Structure. CHI 2010.

Phosphor Enhancement

Dixon, Fogarty. Prefab: Implementing Advanced Behaviors Using Pixel-Based Reverse Engineering of Interface Structure. CHI 2010.

Phosphor Enhancement

Dixon, Fogarty. Prefab: Implementing Advanced Behaviors Using Pixel-Based Reverse Engineering of Interface Structure. CHI 2010.

Sapir-Whorf Hypothesis
Roughly, some thoughts in one language cannot
be stated or understood in another language

Our tools define the language of interaction
Beyond the simple matter of code
Frame how we think about possibilities

Myers, Hudson, Pausch. Past, Present, and Future of User Interface Software Tools. TOCHI 2000.

Bubble Cursor Phosphor Sliding Widgets

Rebuilding the Language
We regularly rebuild the entire system

Command Line, Text Screens
Multiple Generations of Desktop
Multiple Generations of Web
Mobile Apps

We will do it again
Several near-term challenges require it
e.g., Touch, Cloud, Distributed Interfaces

Backward compatibility helps, but is not required
Olsen. Evaluating User Interface Systems Research. UIST 2007.

Informing the Next Language
Research explores the
next generation of
language, while being
limited by the current

We therefore conflate:
Ideas
Proof of Concept
Engineering
Implementation
Broken Metaphors
Unspeakably Dirty Hacks

Informing the Next Language
Research explores the
next generation of
language, while being
limited by the current

We therefore conflate:
Ideas
Proof of Concept
Engineering
Implementation
Broken Metaphors
Unspeakably Dirty Hacks

Prefab is not just about
‘do everything with pixels’,
but about exploring new
possibilities in the current
ecosystem of interface tools

Tools and Interfaces
Why Interface Tools?
Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Things I Hope You Learned

Things I Hope You Learned
Tools embody expertise and assumptions

Tools evolve based on emerging understanding
of how to address categories of problems

Fundamental tool terminology
Threshold
Ceiling
Path of Least Resistance
Moving Target

Things I Hope You Learned
Tools frame our design processes

Be conscious of your tool decisions
Try to think about designs before tying to a tool

Choose good and appropriate tools

Understand what you are getting in a tool

Push yourself to think outside the tool

We can and will move past our current tools

CSE 510: Advanced Topics in HCI

James Fogarty
Daniel Epstein

Tuesday/Thursday
10:30 to 12:00
CSE 403

Interface Toolkits

	CSE 510: Advanced Topics in HCI�
	Tools and Interfaces
	Sequential Programs
	Sequential Programs
	Sequential Programs
	Event-Driven Programming
	Basic Interactive Software Loop
	Basic Interactive Software Loop
	Basic Interactive Software Loop
	Understanding Tools
	Understanding Tools
	Understanding Tools
	Understanding Tools
	Fundamental Tools Terminology
	Tools and Interfaces
	Model-View-Controller
	Seeheim Model
	Seeheim Model
	Seeheim Model
	Seeheim Model
	Seeheim Model
	Model-View-Controller
	View / Controller Relationship
	View / Controller Relationship
	Model-View-Controller
	Model-View-Collection on the Web
	Model View View-Model
	Tools and Interfaces
	Luxo Jr.
	Animation Case Study
	Squash and Stretch
	Squash and Stretch
	Squash and Stretch
	Timing
	Timing
	Timing
	Anticipation
	Staging
	Staging
	Follow Through, Overlap, Secondary
	Pose-to-Pose, Slow In, Slow Out
	Arcs
	Animation Case Study
	States Three Principles
	Solidity: Motion Blur
	Solidity: Arrival and Departure
	Solidity: Arrival and Departure
	Exaggeration: Anticipation
	Reinforcement: Slow In Slow Out
	Reinforcement: Arcs
	Reinforcement: Follow Through
	Animation Case Study
	Events and Animation
	Not Just an Implementation
	Events and Animation
	Transition Object
	Pacing Function
	Computing a Frame
	Animation Case Study
	Animation Case Study
	Kinetic Typography Engine
	Kinetic Typography Engine
	Animation Case Study
	Tools and Interfaces
	Sapir-Whorf Hypothesis
	Animation Case Study
	Phosphor
	Phosphor
	Phosphor
	Challenging Assumptions of Tools
	Tools and Interfaces
	Sapir-Whorf Hypothesis
	An Interaction Language
	The Same Interaction Language
	Some Proposed Interactions
	Some Proposed Interactions
	Interface Fragmentation
	Prefab
	Phosphor Enhancement
	Phosphor Enhancement
	Phosphor Enhancement
	Sapir-Whorf Hypothesis
	Rebuilding the Language
	Informing the Next Language
	Informing the Next Language
	Tools and Interfaces
	Things I Hope You Learned
	Things I Hope You Learned
	CSE 510: Advanced Topics in HCI�

