Touch nput

CSE 510 Christian Holz Microsoft Research http://www.christianholz.net

hall of fame/hall of shame?

Nokia 5800, 2008

hall of fame/hall of shame?

stylus

"we've invented..."

[Plato IV '72]

http://www.billbuxton.com/multitouchOverview.html

IBM Simon, 1992

Touch technologies

Touch accuracy

Touch technologies a cursory overview

Inspiron 7000,1998

Compaq PDA, 2000

[Matsushita et al., UIST '00]

how did they enable dual-touch in a single touch sensor? 30 second brainstorming

[Matsushita et al., UIST '00]

capacitive sensing

DiamondTouch [Dietz & Leigh '0

DiamondTouch [Dietz & Leigh '01]

SmartSkin [Rekimoto '02]

SmartSkin [Rekimoto '02]

Fingerworks, 2005

iPhone 1, 2007

...and it prevailed

Biometric Touch Sensing [UIST '15]

optical touch sensing

walls & tables

1111

Sec.

013

明.

体育场

invisible (infrared)

visible

diffuse illumination

darker and blurry

projection plane

projection plane

IR-light

IR filter

Camera

HoloWall [Rekimoto, UIST '97]

Microsoft Surface, 2008

frustrated total internal reflection

the other camp

MULTI-TOUCH SENSING THROUGH FRUSTRATED TOTAL INTERNAL REFLECTANCE

projection plane

FTIR

[Han, UIST '05]

fingerprint scanners

[Han, UIST '05]

[RAW CAMERA OUTPUT IS OVER INVED ON SURFA

[Han, UIST '05]

diffuse illumination + frustrated Fresnel reflection

weird mixes

[Fiberio, UIST '15]

diffuse reflection + surface reflection

diffuse reflection frustrated surface reflection

diffuse reflection + surface reflection

what's the big difference? 30 second brainstorming

diffuse illumination

TIR

diffuse illumination

Touch processing

typical processing pipeline

typical processing pipeline

segment objects

find connected components

track components

who sees the link to Buxton's Touch, Gesture & Marking? **30 second brainstorming**

typical processing pipeline

track components

typical processing pipeline

Touch accuracy

Biometric Touch Sensing [UIST '15]

input resolution: 42 x 33 across a 10" display map to an accurate input location screen resolution: 2,160 x 1,440

center of gravity

if only it were that easy :-)

Information Kiosks [Plaisant et al. '88]

Touch painting [Sears et al. '91]

Home Automation [Plaisant et al. '90 and on]

Home Automation [Plaisant et al. '90 and on]

sources of error?
"parallax between the touch screen surface and the display surface" "high error shown in many studies" "fatigue in arm motion"

"parallax between the touch screen surface and the display surface"

"high error shown in many studies"

"fatigue in arm motion"

solution: "finger mouse", a cursor the user drags on the screen

AK	HI	ME	NJ	SE
AL	IA	MI	NM	TN
AR	ID	MN	NV	ТХ
AZ	IL	MO	NY	UI
CA	IN	MS	OH	VA
CO	KS	MT	OK	VI
CT	KY	NC	OR	WA
DE	LA	ND	PA	WI
FL	MA	NE	RI	WV
GA	MD	NH	SC	WY
	AK AL AR AZ CA CO CT DE FL GA	AKHIALIAARIDAZILCANNCOKSCTKYDELAFLMAGAMD	AKHIMEALIAMIARIDMNAZILMOCAINMSCOKSMTCTKYNCDELANDFLMANEGAMDNH	AKHIMENJALIAMINMARIDMNNVAZILMONYCAINMSOHCOKSMTOKCTKYNCORDELANDPAFLMANERIGAMDNHSC

"parallax between the touch screen surface and the display surface"

"high error shown in many studies"

"fatigue in arm motion"

solution: "finger mouse", a cursor the user drags on the screen strategies: touch-down, first-contact, lift-off + offset cursor

okay, let's use cursors then...

High precision touch screen interaction [Albinsson and Zhai, CHI '03]

High precision touch screen interaction [Albinsson and Zhai, CHI '03]

High precision touch screen interaction [Albinsson and Zhai, CHI '03]

Pivot point

Precise Selection Techniques [Benko et al., CHI '06]

Precise Selection Techniques [Benko et al., CHI '06]

vertical finger pitch

contact area

flat finger pitch

Direct-touch vs. mouse input

the culprit:

the fat-finger problem

fat finger

fat finger

LucidTouch

[Wigdor et al., CHI '07]

[Baudisch and Chu, CHI '09]

Shift

[Vogel and Baudisch, CHI '07]

why did you read this paper? 30 second brainstorming

Shift

[Vogel and Baudisch, CHI '07]

perceived input point problem [Vogel and Baudisch, CHI '07]

(a) user view

input point

showing cursors is cheating!

...and they almost convinced us!

what's the real problem here?

the problem is **underspecified!**

Toolbox

What links here Related changes Upload the Special pages **Remanentlink** Page information Data item

Print/export

Create a book **Download as PDF** Printable version

Languages

Simple English العربية

Bahasa Indonesia Bahasa Mel

Българ Català Ceshy Dans Deuts Eesti Ελληνικό Español Esperanto Euskara فارسى Français

Galego 한국어

עברית

backs Carnet Witkams (pictured) and Ronnie Brown were conamong the best at their position; for Tech, senior quarterback Randall had had a record-breaking season. Both teams also ha ranked detenses and in a detensive struggle. Auburn earned a victory despite a late-game rally by Virginia Tech. In recognition game-winning performance, Aubum quarterback Jason Campb named the game's most valuable player. Several players from a team were selected in the 2005 NFL Draft and went on to caree the National Football League. (Full article...)

Recently featured: The Hunger Games - Otto Becher - Middle

Archive - By email - More featured an

Did you know

From Wikipedia's newest content:

. ... that Kirkpatrick Chapel (pictured) at Butgers University, built in 1873, was designed by architect Henry Janeway Hardenbergh, and leatures four stained-glass windows from the studios of Louis Comfort Tillany?

ī2

- ... that Arthur Fields took over 180,000 photographs of Dublin pedestrians?
 - ... that according to the 1871 census, the first in British India kappalli had a population of 76,530 making it the s Madras Presidency, next only to Madras? at It Right", featuring Panda Bear of hu both Pitchfork Media

- - - - - - - -

which link am I selecting?

could it be that it is not the fingers but our touch devices that are wrong?

MARONAN

let's assume for a second that there is no fat finger group problem

instead, almost all observed targeting error comes from perceived input point problem

our main hypothesis

while there is always an offset, we hypothesize that the offset **depends on the pointing situation**

current model

user study

independent variables

error metric

error metric

spread := variation within a condition

error metric

:= variation within a condition

minimum button size := 95% of samples across conditions

study design

- 2 yaw
- × 2 sessions (pitch, roll)
- × 5 angles
- × 6 repetitions per angle

 \times 5 blocks

- = 600 trials / participant
- 12 participants

45°

15°

0°

user

pitch

1cm

user

which user is the most accurate? 30 second brainstorming

1cm

minimum button size

minimum button size

can we make this real?

Ridgepad

optical fingerprint scanner 500 dpi 1600 × 1500 pixels

touchpad vs. fingerprint scanner

2D contact area

2D contact area + yaw, pitch, roll + participant ID

minimum button size

minimum button size

now we're done and touch is accurate.

no! there's a **bug** here! we're still compensating...

systematic effect

3D

2D

user-1

challenge

challenge

we need a model

in HCI, models are typically obtained using an **unambiguous** device (e.g., mouse)

measure data points
 fit a curve

but what shall we measure?

there are **infinite ways** how users might map these crosshairs to 3D

so we had to revert to

basic experimental process...

guess a model

try it out in an experiment

if outcome is bad, repeat

which model?

if it is not the contact area...

creating models using visual features

evaluating the models

good model small error offsets

3 user studies

independent variables

pitch

Х
Х

...and head position

study design

6 combinations of finger angles (pitch, roll) ×4 head positions ×2 blocks ×4 repetitions

=192 trials / participant

30 + 12 + 12 participants

results

minimum button size

main insight

touch input is a 3D operation

users target using features on top of the finger

current devices sense

features at the bottom of finger

now we have **two options**...

1) We implement users' mental models

Imaginary Phone [UIST '11]

2) We **compensate** for errors

Ridgepad reconstructs the finger in 3D input-only not real-time

[Fiberio, UIST '15]

Touch technologies

Touch accuracy

Touch nput

CSE 510 Christian Holz Microsoft Research http://www.christianholz.net

