Touch
 nput

CSE 510

Christian Holz Microsoft Research http://www.christianholz.net

February 11, 2016

Nokia 5800, 2008

"we've invented..."

[Plato IV '72]
¢ http://www.billbuxton.com/multitouchOverview.html

Touch technologies Touch accuracy

Touch technologies acusory overiew

Inspiron 7000,1998

Compaq PDA, 2000

[Matsushita et al., UIST '00]

DER

DiamondTouch [Dietz \& Leigh '01]

Fingerworks, 2005

iPhone 1, 2007

...and it prevailed

Bodyprint [CHI '15]

optical touch sensing

walls \& tables

camera

illumination

imaging surface

optical touch sensing

diffuse illumination

darker and blurry

projection plane

projection plane

Microsoft Surface, 2008

frustrated total internal reflection the other camp

Multr-Touch Sensing through Frustrated Total Internal Reflectance
projection plane

[Han, UIST '05]
fingerprint scanners

[RAW CAMERA OUTPUT IS O MYE OM SURFACE]
[Han, UIST '05]

weird mixes

diffuse illumination + frustrated Fresnel reflection

diffuse reflection + surface reflection

diffuse reflection + surface reflection
diffuse reflection frustrated surface reflection
)

what's the big difference?
30 second brainstorming
diffuse illumination
FTIR

Touch processing

typical processing pipeline

typical processing pipeline

\section*{| $\begin{array}{c}\text { segment } \\ \text { objects }\end{array}$ | $\begin{array}{c}\text { find connected } \\ \text { components }\end{array}$ |
| :---: | :---: | | track |
| :---: |
| components | who sees the link to Buxton's Touch, Gesture \& Marking? 30 second brainstorming}

typical processing pipeline

typical processing pipeline

Touch accuracy

Biometric Touch Sensing [UIST '15]

-

input resolution: 42×33 across a $10^{\prime \prime}$ display
map to an accurate input location
screen resolution: 2,160 x 1,440

center of gravity

if only it were that easy :-)

Information Kiosks [Plaisant et al. '88]

Home Automation [Plaisant et al. '90 and on]

Home Automation [Plaisant et al. '90 and on]

"parallax between the touch screen surface and the display surface"
"high error shown in many studies"
"fatigue in arm motion"
"parallax between the touch screen surface and the display surface"
"high error shown in many studies"
"fatigue in arm motion"
solution:"finger mouse", a cursor the user drags on the screen

AK	HI	ME	NJ	SD
AL	IA	MI	NM	TN
AR	ID	MN	NV	TX
AZ	IL	MO	NY	UT
CA	IN	MS	OH	VA
CO	KS	MT	OK	VT
CT	KY	NC	OR	WA
DE	LA	ND	PA	WI
FL	MA	NE	RI	WV
GA	MD	NH	SC	WY

"parallax between the touch screen surface and the display surface"
"high error shown in many studies"
"fatigue in arm motion"
solution: "finger mouse", a cursor the user drags on the screen strategies: touch-down, first-contact, lift-off + offset cursor
okay, let's use cursors then...

High precision touch screen interaction [Albinsson and Zhai, CHI '03]

High precision touch screen interaction
[Albinsson and Zhai, CHI '03]

Touch Screen Pointing Test
Experiment Settings

High precision touch screen interaction [Albinsson and Zhai, CHI '03]

High precision touch screen interaction
[Albinsson and Zhai, CHI '03]

Precise Selection Techniques [Benko et al., CHI '06]

Precise Selection Techniques [Benko et al., CHI '06]

contact area
flat finger pitch

Direct-touch vs. mouse input

the culprit:
the fat-finger problem
fat finger

fat finger

[Baudisch and Chu, CHI '09]

Shift

why did you read this paper?

30 second brainstorming

Shift
(a) user view

(b) hardware view

perceived input point problem
[Vogel and Baudisch, CHI '07]

showing cursors is cheating!

...and they almost convinced us!

the problem is underspecified!

let's assume for a second that there is
no fat finger
instead, almost all observed targeting error comes from perceived input point
problem

perceived input point problem

why we hope it's the perceived input point problem?
we can correct for it

the fat finger problem, in contrast is always noise = error

our main hypothesis

while there is always an offset, we hypothesize that the offset depends on the pointing situation

I yaw

pitch

3 roll

\& users: finger shape

Δ users: mental model

current model

center of contact area

2D screen

we propose

sensing the finger in 3D

2D screen

independent variables

yaw

0°
pitch
roll

90°

90°
65°

45°

45°

15°

25°

15°

0°

-15°
error metric

error metric

spread
:= variation within a condition

error metric

spread
:= variation within a condition
minimum button size
:= 95\% of samples across conditions

study design

2 yaw
$\times 2$ sessions (pitch, roll)
$\times 5$ angles
$\times 6$ repetitions per angle $\times 5$ blocks
$=600$ trials / participant
12 participants

pitch

roll

user

\#1
\#2
\#3

\#4

pitch

user

which user is the most accurate?
30 secondi brainstorming

minimum button size

minimum button size

can we make this real?

Ridgepad

optical fingerprint scanner
500 dpi
1600×1500 pixels

touchpad vs. fingerprint scanner

2D contact area

2D contact area

+ yaw, pitch, roll
+ participant ID

minimum button size

minimum button size

now we're done and touch is accurate.
no! there's a bug here!
we're still compensating...

systematic effect

2D

3D

2D

challenge

challenge

we need a model
in HCl , models are typically obtained using an unambiguous device (e.g., mouse)

1. measure data points
2. fit a curve
but what shall we measure?
there are infinite ways how users might map these crosshairs to 3D
so we had to revert to
basic experimental process...

guess a model

try it out in an experiment
if outcome is bad, repeat

which model?

if it is not the contact area...

creating models using visual features

	P)	19	1	1	$\xrightarrow{1}$	$\stackrel{p}{=}$	101	(ब)
P								
\bar{O}								
$\stackrel{\square}{1}$								
\bigcirc								
\bigcirc								
$\stackrel{\text { (9) }}{=}$								
$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{ }}$								
(1)								

	9	19	1	$\xrightarrow{1}$	$\xrightarrow{1}$	P	1(1)	(19)
$\underline{ }$								
$\overline{\text { P }}$								
$\stackrel{\square}{\square}$								
\bigcirc								
\bigcirc					X			
$\stackrel{\text { - }}{\square}$								
$\stackrel{\text { ® }}{\stackrel{\text { ® }}{ }}$								
(19)								

	（9）	9	1	9			，	，
9								
$\overline{9}$								
9								
θ								
9								
（9）								
（®）								
回								

evaluating the models

bad model large error offsets
good model small error offsets

3 user studies

independent variables

pitch

...and head position

study design

6 combinations of finger angles (pitch, roll)
$\times 4$ head positions
$\times 2$ blocks
$\times 4$ repetitions
$=192$ trials / participant
$30+12+12$ participants

	(9)	19	19	Cl	1	P	1 191	(1)
\bigcirc								
$\bar{\square}$								
$\stackrel{\square}{\square}$								
\bigcirc								
\bigcirc								
(9)								
(®)								
(0)								

	(1)	10	1	Cl	\bigcirc	P	(1)	(1)
9		contact area model						
$\stackrel{\bar{O}}{\square}$								
$\stackrel{\square}{1}$								
ρ								
\bigcirc								
$\stackrel{\text { (9) }}{=}$								
$\stackrel{\text { ¢ }}{\text { ¢ }}$								
(1)								

	Q	19	1	Cl	1	(P)	1 101	\|(1)
?								
$\bar{\square}$								
\bigcirc								
\bigcirc								
\bigcirc								
(䧉)								
$\stackrel{\text { - }}{\square}$								
(-)								

minimum button size

touch input is a 3D operation
users target using features on top of the finger

current devices sense features at the bottom of finger

1) We implement users' mental models

2) We compensate for errors

Ridgepad
reconstructs the finger in 3D
input-only
not real-time

Touch technologies Touch accuracy

Touch
 nput

CSE 510

Christian Holz Microsoft Research http://www.christianholz.net

February 11, 2016

