
Andrew J. Ko, Ph.D.
Associate Professor The Information School
Adjunct Associate Professor Computer Science and Engineering
Chief Scientist AnswerDash, Inc.

PROGRAMMING LANGUAGES
ARE USER INTERFACES

2

CODE IS
CHANGING
THE WORLD
010100100100101001010010
100101001010010101001010
101010010101010010101010
100100010010111001010101
001010010101010010010100
101010100010101010010101
001010101001010101100100

3

BUT THE
WORLD ISN’T
CHANGING
CODE
it’s still difficult to learn,
write, test, debug,
design, deploy, fix etc.

4

headlines from the last month
Computer Error Costs Indiana Millions In Education Grants

United Continental CEO: Still fixing bugs in new computer system

Computer glitch hampers IMPD communications for 4 days

Computer Glitch Leads to $1 Gas (Sweet!)

ICANN Extends New Domain Deadline Because of Bug

Computer Glitch Means No Licenses, IDs

Computer Glitch Dashed High School Hopes for Five Queens Girls

Computer glitch causes hospital billing errors

Bats CEO Says Computer Glitch `Unfortunate'

State Panel Wants Answers about Prison Computer Glitch

Computer Glitch Delays NJ Jobless Claims

http://www.google.com/url?sa=X&q=http://www.indystar.com/article/20120417/NEWS02/120417027/Computer-glitch-hampers-IMPD-communications-4-days%3Fodyssey%3Dnav%257Chead&ct=ga&cad=CAcQARgAIAAoATAAOABAq5y3_ARIAlAAWABiBWVuLVVT&cd=aymXcr7IqYI&usg=AFQjCNF9zaRH_fmFNFLRB239e7wDrY1c4g
http://www.google.com/url?sa=X&q=http://fox2now.com/2012/04/12/computer-glitch-leads-to-1-gas-sweet/&ct=ga&cad=CAcQARgAIAIoATAAOABAvdqe_ARIAlgAYgVlbi1VUw&cd=IEtb_CB__n4&usg=AFQjCNEQBjD-BkDRgdnaGkMW8JmNIt0HAw
http://www.google.com/url?sa=X&q=http://wobmam.com/computer-glitch-delays-nj-jobless-claims/&ct=ga&cad=CAcQARgAIAEoATAAOABAmbSl-wRIAlgAYgVlbi1VUw&cd=-FfOLfd8qfQ&usg=AFQjCNH4m5als4PVTzLX9aJcxTjnuPc7ZQ

5

developers use the wrong languages

teams lack effective methodologies

CS education fails to adequately prepare

tools fail to compensate for human fallibility

6

developers use the wrong languages

teams lack effective methodologies

CS education fails to adequately prepare

tools fail to compensate for human fallibility

ALL OF THESE ARE HUMAN PROBLEMS

PROGRAMMING LANGUAGES
ARE USER INTERFACES

because

PROGRAMMING LANGUAGES
ARE USER INTERFACES

7

Some history on this viewpoint

Research on the topic

Open questions

8

IN THE BEGINNING
(the early 1940’s anyway)

Programmers Betty Jean Jennings (left) and Fran Bilas (right) operate the
ENIAC's main control panel at the Moore School of Electrical Engineering

http://en.wikipedia.org/wiki/Jean_Bartik
http://en.wikipedia.org/wiki/Frances_Spence
http://en.wikipedia.org/wiki/Moore_School_of_Electrical_Engineering

9

SEPARATING HARDWARE
AND SOFTWARE

the IBM punchcard

10

INTERACTIVE COMPUTING

Douglas Engelbart, 1968

11

INTERACTIVE COMPUTING
what made this different was the speed with
which the computer reacted to human input

no longer necessary to write and wait

feedback loops between people and
computers were reduced to milliseconds

the result of ones commands could be seen
immediately, allowing people to engage in the
rapid exchange of information

12

INTERACTIVE
COMPUTING

BATCH
COMPUTING

GUIs

web sites

mobile apps

Kinect

....

programming

13

INTERACTIVE
COMPUTING

BATCH
COMPUTING

manipulate the
computer’s present
behavior through
concrete notations

manipulate a
computer’s future
behavior through
abstract notation
Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment models.
In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and
Environments, pp. 2-10.

http://www.cl.cam.ac.uk/~afb21/publications/HCC02a.pdf

researchers started to ask...

“why can’t code be interactive like every
other kind of document?”

14

BATCH COMPUTING

15

INTERACTIVE CODE 1980

InterLisp: syntax highlighting, spell checking, auto-
complete, version control, integrated debugger,
etc.

a vision for writing, executing, and understanding
code interactively

http://bitsavers.informatik.uni-stuttgart.de/pdf/xerox/interlisp/3102300_interlDprimer_Nov86.pdf

http://bitsavers.informatik.uni-stuttgart.de/pdf/xerox/interlisp/3102300_interlDprimer_Nov86.pdf

these ideas go mainstream

Turbo Pascal 1983

16

INTERACTIVE CODE 1980–2000

Eclipse 2004

THE PRESENT AND FUTURE
What’s hard about making
programming environments
more usable?

What progress have we made?

17

SIX BARRIERS IN PROGRAMMING

Think of programming platforms as a collection of
programming interfaces:

Language constructs, functions, classes, libraries,
APIs, types, etc.

I claim that all barriers in programming arise from:

Problem solving challenges inherent to devising
algorithms and data structures to solve a problem
(which I called DESIGN barriers)

Usability problems with with the programming
interfaces necessary to express these solutions

18

Ko, A.J., Myers, B.A., and Aung, H. (2004). Six Learning Barriers in End-User
Programming Systems (2004). IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 199-206.

SIX BARRIERS IN PROGRAMMING

Discuss with your neighbor:

What was useful about the paper?

What was surprising?

What was less useful?

19

SELECTION barriers

Finding programming interfaces that implement a
particular behavior

Reading API documentation, asking a friend, using a
code search engine, searching Stack Overflow

20

? ?

?

USE barriers

Discovering the intended way to use a programming
interface (syntax, inputs, outputs, side effects,
preconditions, postconditions, etc.)

Reading documentation about a function, class, or
method, writing test cases

21

?
?
?

COORDINATION barriers

Discovering usage rules that govern how
programming interfaces can be composed

Reading Stack Overflow, searching for error messages
on Google, reading documentation

22

?

UNDERSTANDING barriers

Difficulties interpreting the unexpected behavior of a
programming interface

Searching Google for an error message, test case
minimization, guessing

23

CrypticUndocumentedException

?

INFORMATION barriers

Difficulties observing the internal behavior of a
programming interface

Finding a better debugging tool, writing the perfect
print statement, selecting the perfect breakpoint

24

?

25

PROGRESS
addressing these barriers

26

solutions to
USE barriers

Alice (2007)

what if syntax and type errors were impossible
(removes USE barriers)

27

Kelleher, C. and R. Pausch. Using Storytelling to
Motivate Programming. Communications of the ACM,
vol. 50, no. 7, July 2007, pages 58-64.

Scratch (2008)

same idea as Alice: drag and drop prevents syntax
and type errors (removes USE barriers)

28

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, Yasmin Kafai. Scratch: Programming for All. Communications of he
ACM Vol. 52 No. 11, Pages 60-67

Barista (2006)

what if you could embed anything in a
source file, in context? (removes USE barriers)

29

Ko, A. J. and Myers, B. A. (2006).Barista: An Implementation Framework for Enabling New
Tools, Interaction Techniques and Views for Code Editors (2006). ACM Conference on
Human Factors in Computing Systems (CHI), Montreal, Canada, April 24Ð27,

30

solutions to
SELECTION barriers

keyword programming (2006)

what if programs could be guessed from natural
language? (removes SELECTION barriers)

31

Greg Little and Robert C. Miller. "Translating
Keyword Commands into Executable Code."
UIST 2006, pp. 135-144.

discussion paper!

http://groups.csail.mit.edu/uid/projects/keyword-commands/uist-2006-paper/paper.pdf

CoScripter (2008)

what if web
interactions could be
recorded and
replayed? (removes
SELECTION barriers)

32

Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. 2008. CoScripter: automating \&
sharing how-to knowledge in the enterprise. In
Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing
systems (CHI '08). ACM, New York, NY, USA,
1719-1728.

Reform (2009)

web mashups
through interactive
web scraping
(removes SELECTION
barriers)

33

Michael Toomim, Steven M. Drucker, Mira
Dontcheva, Ali Rahimi, Blake Thomson, and
James A. Landay. 2009. Attaching UI
enhancements to websites with end users. In
Proceedings of the 27th international conference
on Human factors in computing systems (CHI '09).
ACM, New York, NY, USA, 1859-1868.
DOI=10.1145/1518701.1518987 http://
doi.acm.org/10.1145/1518701.1518987

d.mix (2007)

what if web service mashups could be constructed
by selecting examples? (removes SELECTION barriers)

34

Hartmann, Björn, Leslie Wu, Kevin Collins and Scott R. Klemmer. Programming by a
Sample: Rapidly Creating Web Applications with d.mix. In Proceedings of uist
2007: ACM Symposium on User Interface Software and Technology. Newport,
Rhode Island, USA, 2007.

http://bjoern.org/papers/hartmann-uist2007.pdf

Mica (2006)

Mines an API to
augment Google
search results with
classes and methods

35

36

solutions to
COORDINATION barriers

Intelligent API tutors

Generates instructional
tasks from online FAQs
and open source code
providing more
explanation and
context about API
usage rules

37

Krishnamoorthy, V., Appasamy, B., and Scaffidi, C. (2013). Using
intelligent tutors to teach students how APIs are used for
software engineering in practice. IEEE Transactions on
Education, 56, 3, 355-363.

Stack Overflow

A searchable
repository of patterns
and usage rules for
composing
programming
interfaces

38

39

solutions to
UNDERSTANDING barriers

Stack Overflow

A searchable
repository of human
readable
explanations of error
messages and other
strange behavior

40

HelpMeOut (2010)

what if fixes to
error messages
could come
from everyone
who’d fixed the
error before?

(removes
UNDERSTANDING
barriers)

41

Hartmann, Björn, MacDougall, D., Brandt, J., and Klemmer,
S.R. What Would Other Programmers Do? Suggesting
Solutions to Error Messages. Proceedings of CHI 2010: ACM
Conference on Human Factors in Computing Systems.
Atlanta, GA, 2010.

http://bjoern.org/papers/hartmann-chi2010a.pdf

WYSIWYT (2000)

what if you could test spreadsheets by simply marking
which values are right and wrong?

(removes UNDERSTANDING barriers)

42

"WYSIWYT Testing in the Spreadsheet Paradigm: An Empirical Evaluation", K.
Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. R. G. Green, and G.
Rothermel, International Conference on Software Engineering, Limerick,
Ireland, June 2000, pp 230-239. PDF

43

solutions to
INFORMATION barriers

DuctileJ (2011)

what if programmers could
run their programs
whenever they wanted to,
regardless of compiler
errors? (removes
INFORMATION barriers)

44

“Always-available static and dynamic feedback” by Michael
Bayne, Richard Cook, and Michael D. Ernst. In ICSE'11,
Proceedings of the 33rd International Conference on Software
Engineering, (Waikiki, Hawaii, USA), May 25-27, 2011.

http://samskivert.com/
http://www.cs.washington.edu/homes/mernst/

Whyline

45

Ko, A. J. and Myers B.A. (2010).
Extracting and Answering Why and
Why Not Questions about Java
Program Output. ACM Transactions
on Software Engineering and
Methodology, 20(2), Article 4, August.

discussion paper!

46

TimeLapse

precise
deterministic
replay of web
applications
(removes
INFORMATION
barriers)

Brian Burg

Code Canvas (2010)

what if you could see all of your code and its
dependencies on a single screen? (removes
INFORMATION barriers)

47

Robert DeLine, Gina Venolia, and Kael Rowan, Software
Development with Code Maps, in Communications of the
ACM, vol. 53, no. 8, pp. 48-54, Association for Computing
Machinery, Inc., 4 July 2010

http://research.microsoft.com/apps/pubs/default.aspx?id=135757

A Working Set Interface (2006)

A design sketch I created
Ko, A. J., Myers B. A., Coblenz, M. J., and Aung, H. H. (2006). An Exploratory Study of How Developers Seek,
Relate, and Collect Relevant Information during Software Maintenance Tasks. IEEE Transactions on Software
Engineering, 33(12), December, 971-987.

48

Code Bubbles (2010)

what if IDEs sliced code up into snippets instead of
files? (removes INFORMATION barriers)

49

Code Bubbles: A Working Set-based Interface for Code Understanding and
Maintanence. Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and
Joseph J. LaViola Jr. To appear in: Proceedings of the 28th International
Conference on Human Factors in Computing Systems (2010).

Debugger Canvas

6 years from idea to Visual Studio plug-in

50

51

WHAT’S NEXT?
010100100100101001010010
100101001010010101001010
101010010101010010101010
100100010010111001010101
001010010101010010010100
101010100010101010010101
001010101001010101100100

52

PRODUCTIVITY IS DONE
New dev tools are fine, but they’re increasingly
incremental, niche and irrelevant to industry

Productivity is not the problem, it’s learning,
expertise, design, iteration, scale, domains

Look ahead 20 years…

What will we be coding?

Who will be coding it?

Who will they coding it for?

How should they be coding it?

53

NEW KINDS OF CODE

Machine-learned
How do we code
against uncertainty?

Crowd-powered
How do we code against
human cognition?

Biological
How do we code against
anatomy and physiology?

Cloud-powered
How do we code against
data centers, social
networks, and massive
data sets?

54

BETTER DEVELOPERS
Instead of making better tools, why
not make better developers?

Training end-users
How can we insert
education into end-user
programming tools?

Teaching novices
How can we teach
learners more efficiently
and effectively?

Facilitating experts
How can we help
engineers make more
effective decisions?

Structuring teams
How can we help teams
coordinate work more
effectively?

Teaching Problem Solving (2016)

What if we taught novice programmers
how to structure and reflect on their
programming efforts?

One hour of instruction on six stages:

1) interpreting problem prompt,
2) search for analogous problems,
3) search for solutions,
4) evaluate solutions,
5) implement solution,
6) evaluate implementation

Upon help requests, prompt for reflection:
“What are you doing, why are you doing
it, and is it working”?

55

Loksa, D., Ko, A.J., Jernigan, W.,
Oleson, A., Mendez, C., Burnett, M.M.
Programming, Problem Solving, and
Self-Awareness: Effects of Explicit
Guidance. CHI 2016.

Teaching Problem Solving (2016), cont.

Two camps, two weeks, 25 students each

20 requirements to implement for a web application

56

Campers with the
instruction were more
productive, more
creative, more
independent, more
confident in their
ability to code and
learn other non-
coding skills

CS Ed for All

President Obama just announced a $4 billion
initiative to:

Prepare and place 10,000 CS teachers in U.S. public
schools

Fund $125 million in CS ed research per year, including
NSF graduate fellowships, CAREER grants, basic
research funding, faculty positions, etc.

The computing education research community will
grow from ~50 researchers now to ~500 researchers in
the next twenty years

57

