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ABSTRACT 
Users frequently experience situations in which their ability 
to differentiate screen colors is affected by a diversity of sit­
uations, such as when bright sunlight causes glare, or when 
monitors are dimly lit. However, designers currently have no 
way of choosing colors that will be differentiable by users 
of various demographic backgrounds and abilities and in the 
wide range of situations where their designs may be viewed. 
Our goal is to provide designers with insight into the effect 
of real-world situational lighting conditions on people’s abil­
ity to differentiate colors in applications and imagery. We 
therefore developed an online color differentiation test that 
includes a survey of situational lighting conditions, verified 
our test in a lab study, and deployed it in an online environ­
ment where we collected data from around 30,000 partici­
pants. We then created ColorCheck, an image-processing tool 
that shows designers the proportion of the population they in­
clude (or exclude) by their color choices. 
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INTRODUCTION 
The inability to see on-screen content due to challenging 
lighting conditions is a commonly experienced but largely 
unexplored phenomenon. From the teenagers on the side­
walk contorting their bodies to cast shadows over their mobile 
phones to office workers adjusting their monitor settings for 
better readability, we are all aware of the impact that lighting, 
devices, and configuration settings can have on screen-based 
color differentiation. Previous work has shown that our color 
vision can be substantially distorted by a variety of situational 
lighting conditions, such as different combinations of bright 

sunlight, artificial lighting, glossy screens, and monitor set­
tings [37] and that these factors can reduce perceived color 
contrast, inhibiting readability and information uptake [14]. 

However, designers have traditionally been largely unsup­
ported when estimating the impact of users’ varying color 
perception on their designs. This is aggravated by the fact 
that color vision is an inherently individual experience, in­
fluenced by both external factors, such as situational lighting 
conditions, and internal factors, such as acquired or inherited 
color vision deficiencies. 

Current color design guidelines do not address this diversity 
in color perception, but are based either on aesthetics ad­
vice (e.g., Adobe Kuler [2], COLOURlovers [3]), or on de­
sign advice for people with color vision deficiencies (CVD) 
(e.g., [35, 1]). None of these guidelines incorporate the ex­
ternal factors that influence color differentiation ability, such 
as viewing a bright screen in a dimly lit room, or interacting 
with a glossy-screened device in bright sunlight. 

To address this, we demonstrate how a population’s color dif­
ferentiation ability can be measured, modeled, and used by 
designers to understand the impact diverse situational light­
ing conditions have on color perception. In particular, we 
make the following contributions: 

1. An open-sourced color differentiation test (WebCDT) that 
measures a user’s color differentiation ability in a digi­
tal environment (e.g., on a computer, tablet, or phone). 
Through a controlled lab study, we demonstrate that Web-
CDT is sensitive to changes in environmental lighting. 

2. An analysis of the variability in people’s color vision based 
on around 30,000 participants who completed WebCDT 
under a variety of lighting conditions with various de­
vices and monitor settings on the experiment platform 
LabintheWild.org. We evaluate the effect of situational 
and demographic conditions on participants’ ability to dis­
criminate colors, with major findings being that ambi­
ent and monitor brightness, age, gender, and self-reported 
color vision deficiencies all impact users’ color differenti­
ation abilities in digital environments. We also contribute 
a public dataset, which includes the color differentiation 
ability measurements of our 30,000 participants and their 
self-reported demographics, devices, monitor settings, and 
lighting conditions. 
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3. A design tool, ColorCheck, that shows which parts of an 
image are likely not differentiable by certain proportions 
of users. We demonstrate how ColorCheck can be used to 
evaluate the effect of our participants’ varying color differ­
entiation abilities when viewing digital content using 450 
website screenshots and 3,000 infographics. 

RELATED WORK 
The ability to differentiate colors is vital for information up­
take in many areas, from reading maps and understanding in­
formation visualizations, to the interpretation of medical im­
agery. However, color differentiability can be severely im­
pacted by a number of situational factors, such as monitor 
settings and lighting conditions [36] or perceptual abilities [8, 
12]. Crucially, the effects of insufficiently differentiable col­
ors can range from frustration to critical safety issues [8]. 

Effects of Situational Lighting Factors on Color Vision 
Prior work has mentioned the importance of adjusting mon­
itors and lighting in order to optimize viewing conditions. 
Ware [36, p.90], for example, suggests ensuring that “the 
room should have a standard light level and illuminant color” 
and that “only a minimal amount of light should be allowed 
to fall on the monitor screen” in order to perceive computer-
generated colors similarly to colors in a room. This is of 
course difficult to achieve for users with handheld devices 
and laptops. Liu et al. [29] investigated the impact of am­
bient lighting on such handheld devices (tablets and mobile 
phones) used in the medical domain. They found that ambient 
lighting conditions (simulating dark, office, and outdoor envi­
ronments) had a significant effect on visual task performance 
on mobile displays with participants performing best in dark 
conditions. Their findings support other research that has 
found the perceived image quality on mobile phone screens to 
decrease when ambient brightness levels were increased [23, 
27, 28, 16]. Recently, Kim et al. [22] addressed the diffi­
culties around knowing which colors online fashion products 
have when viewed in different lighting conditions by develop­
ing an approach to crowdsource color perception. By gener­
ating a “CrowdColor”, their system approximates the “real” 
color by averaging users’ color perception. The study used 
to evaluate CrowdColor was conducted in lab using two con­
trolled lighting conditions and two different mobile devices; 
the current version of CrowdColor is therefore “limited to a 
controlled environment only” [22, p.483]. 

None of this prior work has explored users in their natural 
computing environments and in a variety of situational light­
ing conditions. 

Effects of Demographics and Abilities on Color Vision 
Color vision can be affected by a variety of inherited and ac­
quired factors. Inherited Color Vision Deficiency (CVD) is 
a result of faulty or missing cones, the light-sensitive cells 
that facilitate color vision. Much work has studied inherited 
CVD and its impact on color perception (see, e.g., [8]). To 
mitigate the negative effects of CVD, Human-Computer In­
teraction (HCI) researchers have developed technology that 
addresses the lack of color differentiability, for example by 
recoloring user interfaces [15]. 

Unlike inherited factors influencing color vision, acquired 
factors are a result of environmental impacts or time. Dam­
age to the brain, for example, can induce acquired CVD [10]. 
Age-related changes in human’s perceptual system can lead 
to a declining ability to distinguish colors and a higher sus­
ceptibility to glare [12]. Our color vision can also be tem­
porarily affected by certain prescription drugs [26]. 

A number of studies have also found that gender correlates 
with color vision [30, 4, 5]. For example, females have been 
found to better perceive changes in colors [4]. Females are 
also less likely to have inherited CVD: 1/12 men versus 1/200 
women in the world are believed to have some kind of color 
vision deficiency [6] (although these numbers may be impre­
cise because many people are not aware of having CVD [8]). 

While HCI researchers have mostly studied the influence of 
CVD on color perception in technology-mediated environ­
ments [25, 14, 15], our study extends prior work with the 
first large-scale analysis of people’s varying color differenti­
ation abilities linked to a combination of situational lighting 
conditions, age, gender, and CVD. 

Color Differentiation Tests 
To assess a person’s color differentiation ability, a variety 
of tests typically aimed at detecting CVD have been devel­
oped. Paper-based color differentiation tests (such as the Ishi­
hara plate test [20]), are used in clinical settings to identify 
whether a person has inherited CVD. These tests have been 
developed over the past one hundred years to become more 
specific in their diagnosis [11, 17], and were moved to com­
puterized color vision tests in the 1990s [7, 32]. Each of 
these tests requires the user to distinguish between different-
colored items (often dots). 

Although technically sensitive to environmental fluctuations, 
most color vision tests assume that they are administered 
in an environment that controls for this potential source of 
noise, e.g., controlled intensity and type of ambient lighting 
for the paper-based tests, and on color-calibrated displays for 
the computerized tests. Recognizing the limitation of this 
assumption, Flatla and Gutwin [13] developed a new two-
minute computerized color vision test designed specifically to 
gather computer users’ real world color differentiation abili­
ties. They showed that the test is sensitive to individual vari­
ations in color vision ability, such as induced by different 
monitor settings or lighting conditions [14]. As we are con­
sidering the influence of environmental factors on users’ color 
differentiation abilities within uncontrolled environments (the 
Web), we based our online color vision differentiation test, 
WebCDT, on the most recent version of their test [14]. 

A WEB-BASED COLOR DIFFERENTIATION TEST 
To develop a web-based test amenable to measuring a user’s 
color differentiation ability in their current online environ­
ment, we adapted the color differentiation test by Flatla and 
Gutwin [14] in a number of ways. First, in their test, test tak­
ers are presented with a series of dynamic tessellating visual 
stimuli (four stills of these stimuli are shown in Figure 1), 
and are asked to identify the location of the gap in the circle. 
The test uses temporally-variant luminance noise (similar to 



Figure 1: CDT stimuli: four stills of gapped circles at max­
imum difference from background in the computerized color 
differentiation test by Flatla and Gutwin. 

‘snow’ on an unoccupied analogue television channel) by ran­
domly re-assigning the background and circle color noise for 
each frame. Since this requires dynamically changing frames 
(i.e., videos) and would potentially exclude participants with 
limited bandwidth, we opted to replace the temporally-variant 
luminance noise with static pre-computed noise. Previous 
work on testing color vision online suggests that temporally-
variant noise does not contribute to the validity of the test 
(and might be detrimental to some users), so can be safely re­
moved [32]. We therefore programmatically captured a single 
randomly-chosen frame from the original test for each testing 
point along each hue and luminance axis. 

Second, we halved the number of color axes tested by Flatla 
and Gutwin’s test in order to keep the online test short. This 
also allowed us to be able to test the same color axis in multi­
ple trials, which serves as an important verification in an un­
controlled online environment in that inconsistent color dif­
ferentiation performance across the different trials would in­
dicate that a participant’s lighting conditions or monitor set­
tings have changed while performing the test. In the orig­
inal test, the intensity of the circle color is systematically 
changed to find the intensity level necessary to discriminate 
the circle from the background. The search is performed for 
six different hues (magenta, pink, yellow, green, cyan, blue) 
and two luminance axes (lighter and darker than the back­
ground gray) on the gray background shown in Figure 1. Be­
cause a perceptually-uniform color space is used to define the 
search colors, each chromatic axis is measured twice, in op­
posite directions out from gray (pink and cyan are in oppo­
site directions, as are magenta and green, yellow and blue, 
and lighter and darker). In previous work, reducing the num­
ber of chromatic axes has been shown to have no significant 
impact on the predictive power of the resulting color differ­
entiation models [14], thus we reduced the number of axes 
to four: pink, magenta, blue, and lighter, as these offer the 
largest ranges of colors to test. 

The resulting WebCDT measures each of the four color axes 
three times, and takes about three minutes to complete. As 
in Flatla and Gutwin’s test, the test identifies four differentia­
tion limits that are used to construct a discrimination ellipsoid 
volume [14, 31] (short, ellipsoid volume) describing the color 
differentiation abilities of the user for the background gray 
color. Only colors outside of the ellipsoid volume are not dif­
ferentiable from the background gray. Using a perceptually-
uniform color space, the ellipsoid volume for the gray back­
ground can be adapted via affine transformations (translation 
and rotation) to be the ellipsoid volume for any other color, 

enabling predictions about the differentiability of any two 
colors (by finding the ellipsoid for one color and determining 
if the other color is inside or outside that ellipsoid). We use 
CIE L*u*v* color space to define our axis colors and ellip­
soid volumes as this color space is perceptually-uniform (Eu­
clidean distance maps to perceptual difference), and planes of 
continuous hue (radiating out from a central vertical achro­
matic axis) are flat within this color space (reducing the num­
ber and complexity of affine transformations required when 
performing color differentiation predictions) [34]. 

WebCDT Verification 
A property of the ellipsoid volumes described above is that as 
the color differentiation abilities of a user get worse, his/her 
ellipsoid volume gets larger. To verify that the WebCDT is 
sensitive to variations in color vision despite the changes we 
made, we conducted a lab study in which we systematically 
adjusted the lighting conditions in which participants com­
pleted the WebCDT, and measured how this influences par­
ticipant ellipsoid volumes. 

Participants 
A total of 14 volunteers were recruited from a local university 
(M=29.1 years, SD=10.1). Six were male, and half of our 
participants (three males) reported they had a pre-existing eye 
condition (e.g., myopia), that was corrected-to-normal. 

Procedure and Experimental Design 
Participants completed the WebCDT on a color-calibrated 
(Spyder4Express) laptop in a room with controlled lighting 
which remained on for the duration of the study. A lamp 
was positioned over the laptop, shining directly on the laptop 
screen. The lamp was illuminated for half of the trials, and 
turned off for the other half, giving two room lighting levels 
(1040.6 lux and 629.5 lux respectively). We measured the 
light levels at the laptop keyboard using a Sinometer Pocket 
Digital Light Meter LX1010BS. 

For each trial, the laptop screen was set to one of its four dark­
est settings, corresponding to 0, 10%, 20%, and 30% bright­
ness (as reported by the laptop display software). Using the 
light meter, we measured the brightness of the center of the 
screen with a pure white image showing to get the following 
light levels: 12, 24, 48, and 69 lux, respectively. 

When using a screen (such as a laptop), the perceived bright­
ness of the display is moderated by the brightness of the en­
vironment; a dark-screened laptop is fine in a dark room, but 
can be impossible to see outside on a sunny day. To take this 
into consideration, we calculated the ratio between the room 
lighting and the monitor brightness in lux. As lux is a percep­
tual measurement of brightness (i.e., it represents perceived 
intensity per unit area), this ratio is a unitless value that rep­
resents the difficulty of seeing items on the screen under those 
given lighting conditions (room and monitor brightness). 

With four monitor brightness settings and two room lighting 
settings, we tested participants in the resulting eight different 
lighting ratios (9.1, 13.1, 15.1, 21.7, 26.2, 43.4, 52.5, 86.7) 
which served as our independent measures. Monitor bright­
ness and lamp order were counterbalanced between partic­
ipants. Participants performed the WebCDT in each of the 



eight lighting ratios. We used the mean differentiation limit 
from the three repetitions of the WebCDT to generate the el­
lipsoid volume which served as our dependent measure. 

As the lighting conditions grow increasingly more challeng­
ing (lighting ratio increases), the color differentiation abilities 
of participants should decrease (resulting in an increasing el­
lipsoid volume). As a result, we hypothesize that there should 
be a strong positive correlation between the lighting ratio and 
ellipsoid volume. 

Results 
We observed a significant relationship between lighting ratio 
(room lux/monitor lux) and participants’ mean discrimination 
ellipsoid volumes (Pearson’s r = 0.97, p < .001) as shown 
in Figure 2. Participants had a harder time discriminating be­
tween colors as the viewing conditions became more difficult. 
These results confirm our hypothesis that the ellipsoid vol­
ume increases proportionally to the lighting ratio. The results 
of our lab study therefore verify that the WebCDT is indeed 
sensitive to variations in environmental lighting conditions. 

Figure 2: Mean discrimination ellipsoid volumes (in CIE 
L*u*v* units3) ± s.e. for each of eight lighting ratios. 

ONLINE EXPERIMENT 
With WebCDT’s sensitivity to changes in environmental 
lighting confirmed with in-lab participants, we proceeded to 
evaluate the color differentiation abilities of a more diverse 
population; diverse both in terms of the situational lighting 
conditions in their natural computing environments, and in 
terms of their demographics and perception abilities. More 
precisely, we wanted to answer two questions: (1) What is 
the variability in people’s color differentiation abilities?, and 
(2) How do situational lighting conditions, demographics, 
and abilities impact their color differentiation abilities? 

Method 
To be able to recruit and study a large and diverse popula­
tion, we deployed the WebCDT on the online experimentation 
platform LabintheWild (www.labinthewild.org). Participants 
came to the study via a link from the platform home page, 
other studies on the same site, and links posted by previous 
participants on social networking sites, blogs, or forums. In­
stead of receiving financial compensation, participants were 
able to test their “color age”: Upon completion of the study, 

they were shown their estimated age based on a prediction 
model using their answers to the color vision test. This pre­
diction served only as an incentive. 

Procedure 
After giving their informed consent, participants were asked 
to answer several questions about their situational lighting 
conditions as well as their computing setup. The type of 
lighting questions that we assessed were dependent in part 
on whether a participant indicated that they were indoors or 
outdoors. Since reporting these conditions can be subject to 
technical expertise, participants were given the option to in­
dicate ‘I don’t know’ for any of the questions. 

Participants were then presented with instructions on how to 
perform the WebCDT, and were given the opportunity to per­
form as many practice trials as desired (practice trials were 
clearly labeled as such and excluded from analysis). As the 
study was only available in English but accessible to people 
around the world, we provided illustrations for most question­
naire items and the instructions of the test. The study can be 
accessed online at www.labinthewild.org/studies/color age. 

Each stimulus page included the WebCDT’s stylized C image 
surrounded by 8 buttons to indicate the possible orientation of 
the image as shown in Figure 3. Participants were asked to 
click on one of these buttons to indicate the opening, or click 
“I can’t tell” if they were unable to identify the position of the 
opening. Each of the four different color axes’ were tested in 
a randomized order. This was repeated three times over (a 4x3 
design) for a total of 12 color differentiation sets per partic­
ipant. The number of C images shown per set varied depen­
dent on participants’ color differentiability. Participants were 
encouraged to take a break in the middle of the experiment. 

Figure 3: The main part of the experiment included a stimuli 
at the center of the page, a title to remind participants of the 
task, a subtitle indicating progress, as well as buttons for all 
eight possible options and “I can’t tell”. 

The experiment concluded with a participant demographic 
questionnaire, including their country of residence, gender, 
age, highest education level, and whether they have any 
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known color vision deficiencies or corrected-to-normal vi­
sion. Participants were also asked to reveal whether this was 
the first time that they were taking this test. All information 
except for the retake question were voluntary. Participants 
were also given the opportunity to report on any technical dif­
ficulties, lighting changes, or other distractions that may have 
influenced their performance in the experiments. The entire 
study took 5-8 minutes to complete. 

The experiment was deployed online between July 17, 2014 
and July 28, 2015 and completed 31,248 times. The data of 
1,765 participants was removed due to self-reported technical 
difficulties (e.g., Internet connection issues), changes in light­
ing conditions, or distractions. We excluded an additional 439 
participants who reported to have participated in the experi­
ment before. The following analysis therefore reports on the 
data of 29,044 participants. 

Participants were between 5-94 years old (M=30.2, SD=15.2) 
and 70.6% were female. The plurality of participants (40.8%) 
reported to be enrolled or completed college, 22.8% currently 
attended high school, and 18.6% graduate school. The re­
maining participants were enrolled in professional schools 
(7.6%), pre-high school (3.8%), or had finished a PhD edu­
cation (6.4%). Participants reported to come from 187 coun­
tries. Two percent of male participants reported to have some 
kind of CVD, as opposed to 1.7% of females. 

Participants 

Results 
We first evaluated the variety of settings and ambient lighting 
conditions that participants were exposed to when taking the 
experiment, before analyzing the influence of these factors on 
their color differentiation abilities. 

Range of Devices and Monitor Settings 
Asked about the type of monitor, most participants re­
ported that they were using built-in laptop monitors (47.33%), 
26.48% used PCs with external monitors, and 26.24% were 
using monitors integrated in tablet computers or mobile 
phones. This suggests that at least 73.6% of participants were 
using monitors adjustable in tilt-angle, which could result in 
varying color vision abilities even throughout the test. Par­
ticipants additionally revealed that their screens were mostly 
matte (63.8%) as opposed to glossy (36.2%). 

We also asked participants to report on the brightness of their 
display, given a 0 to 100 point continuous scale from “Mini­
mum brightness” to “Maximum brightness”. The mean mon­
itor brightness was 67.49 (SD=92.51). A positive correlation 
between monitor brightness and ambient brightness (Pear­
son’s r(15072) = .18, p < .0001) suggests that people set their 
monitors to higher brightness levels in bright lighting condi­
tions, and could also reflect automatic brightness adaption on 
mobiles and tablets. 

Breadth of Situational Lighting Conditions 
The majority of participants (76.6%) indicated that they con­
ducted the experiment indoors. To assess their situational 
lighting conditions, we asked participants “How bright are 
your surroundings?” and provided a continuous scale from 

“Midnight pitch black” to “Noon summer sun” which was 
mapped to values 0 through 100 respectively. Participants 
reported a significantly higher ambient brightness if they 
were outdoors (M=49.08, SD=22.75) than if they were in­
doors (M=46.54, SD=24.05, independent two-tailed t-test: 
t(14799) = −5.45, p < .0001)1. 

In addition, participants were able to indicate their ambient 
lighting color temperature on a continuous scale from “Yel­
low” to “White blue”, again mapped to values 0 through 
100. The average ambient color value was 38.68 (SD=25.25), 
suggesting that the distribution of ambient color values was 
slightly skewed towards a more yellow tone. The ambient 
color reported by outdoor participants (M=37.42, SD=24.0) 
was significantly lower from the average value indicated by 
indoor participants (M=38.48, SD=25.07, independent two-
tailed t-test: t(13381) = 2.09, p < .05)2. 

1CI outdoors [48.31-49.85], indoors [46.10-46.98] 
2CI outdoors [36.59-38.26], indoors [37.99-38.97] 

Variability in Participants’ Color Differentiation Abilities 
To assess the variability in our population’s ability to differen­
tiate colors, we first computed participants’ ellipsoid volumes 
based on their responses in the WebCDT. Figure 4 shows a 
histogram of participants’ ellipsoid volumes with a mean el­
lipsoid volume of 3670.43 (SD=13728.03). The distribution 
of these ellipsoid volumes is positively skewed; 75% of par­
ticipants have ellipsoid volumes below 3223.60. This is con­
sistent with the results that our in-lab participants achieved 
when tested in conditions with lower lighting ratios (i.e., 
when the ratio between the room lighting and the monitor 
brightness was 9.1, 13.1, or 15.1, which corresponds to easier 
viewing conditions). We can therefore assume that the ma­
jority of our participants conducted the test under reasonable 
viewing conditions in which they were able to differentiate 
colors well. Nevertheless, a long tail in the distribution sug­
gests that 25% of participants had poor viewing conditions 
and/or other factors influencing their color vision (factors that 
could explain this variance are analyzed in the next section). 
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Figure 4: Histogram of number of participants versus mean 
discrimination ellipsoid volumes. Participants with ellipsoid 
volumes above 12,000 are not shown for space reasons. 

In general, the larger an ellipsoid volume for a person, the 
fewer colors that person is able to differentiate. However, 
the orientation and shape of an ellipsoid volume within the 
CIE L*u*v* color space will influence the number of differ­
entiable sRGB colors, because the sRGB color gamut is not 
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regular within L*u*v* [34]. With this in mind, we estimated 
the number of differentiable colors for a variety of ellipsoid 
volume orientations, shapes, and sizes by packing the ellip­
soids inside the sRGB gamut within the L*u*v* color space, 
thereby generating upper and lower estimates of the num­
ber of differentiable colors for a given ellipsoid volume (Fig­
ure 5). Note that color differentiation is not linearly related 
to ellipsoid volume, and that the number of distinguishable 
colors drops significantly as we approach the mean ellipsoid 
volume (first vertical line) of our participant pool. 
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Figure 5: Estimate of the number of unique differentiable col­
ors versus discrimination ellipsoid volume. Minimum and 
maximum values for color gamut based on ellipsoid shape 
are shown as green and blue lines respectively. Vertical lines 
show positions of the mean and the first standard deviation 
for our participant population. 

Relationship with Situational Lighting and Demographics 
In order to reduce error from participants’ changing situa­
tional factors during the test (e.g., turning on lights, changing 
monitor settings) we discarded data from participants whose 
performance was highly variable in the WebCDT within the 
three runs for each vector (i.e., if one or more vectors resulted 
in one standard deviation outside of the mean of all partic­
ipants). The data of these participants would be misleading 
to use in this analysis because we are relating their lighting 
conditions (self-reported at the beginning of the test) to their 
responses throughout the test. Note that this variability in re­
sponses within a vector does not occur in controlled lab set­
tings where situational lighting conditions are held constant. 
As a result, 5,924 participants (20.4%) were excluded; the 
following analysis therefore reports on 23,120 participants 
with steady color vision responses across the three trials for 
each vector. The reduced dataset has a mean ellipsoid vol­
ume of 2138.71 (SD=2927.36), so slightly less variability in 
ellipsoid volumes than was the case for our entire population. 
We note that the mode is the same as before (453.72), indicat­
ing that while the long-tail was removed, the most frequently 
occurring ellipsoid volume level remained constant.3 

To analyze this data, we fitted a multiple linear regression 
model using the ellipsoid volume as the dependent variable. 
3Note also that we have no way of differentiating whether a high 
within-vector variability is due to changes in lighting conditions or 
distractions (e.g., a participant not fully focusing on the test). 

We included demographic variables if there was a theoretical 
basis that suggests a possible impact on people’s color vision, 
as it is the case for age [24], gender [5], and color vision de­
ficiencies [6]. Lighting conditions, devices, and demographic 
information were modeled as independent variables. 

The results show that age (F(1)=61.06, p < .0001), gen­
der (F(1)=17.31, p < .0001), and whether or not a partici­
pant reported to have a color vision deficiency (F(1)=164.19, 
p < .0001) have significant main effects on participants’ 
ellipsoid volumes (see Table 1 for parameter estimates of 
the regression results). Ambient brightness (F(1)=19.85, 
p < .0001) and monitor brightness (F(1)=10.82, p < .001) 
also showed significant main effects. Despite the significantly 
larger average ellipsoid volumes for outdoor participants 
(M=2205.48, SD=3273.86) than for those participants who 
accessed the experiment indoors (M=2109.07, SD=2817.66, 
two-tailed t-test t(20418) = − 1.99, p < .05)4, whether or not 
someone was indoors did not significantly contribute to the 
model fit. This is most likely because the variance in ellipsoid 
volumes between indoor and outdoor participants is already 
accounted for by participants’ ambient brightness levels in 
the model. Participants’ screen surface (matte or glossy) and 
ambient color also did not have significant main effects. 

Table 1: Regression model analyzing the influence of situa­
tional lighting conditions, devices, and demographics on par­
ticipants’ ellipsoid volumes, R2 = .06, p < .0001, F(8,4077) = 
33.15, p < .0001. 

β SE β t Ratio p < 
Constant 2532.05 187.25 13.52 .0001 
Age 21.98 2.81 7.81 .0001 
Gender [male] -167.37 40.23 -4.16 .0001 
CVD [none] -1530.38 119.32 -12.81 .0001 
Setting [outdoors] 1.78 43.42 0.04 n.s. 
Glossy screen [false] 35.60 37.79 0.94 n.s. 
Ambient color 0.61 1.44 0.42 n.s. 
Ambient brightness 7.02 1.58 4.45 .0001 
Monitor brightness -4.10 1.25 -3.29 .001 

The slight but significant positive correlation between 
age and ellipsoid volume that we found in our data 
(β = 21.98, p < .0001) confirms previous findings in the 
literature [24]. We found that with every year in age, the ellip­
soid volume increases by 22.72 units with participants’ color 
differentiability being best between 20 and 30. With a mean 
ellipsoid volume of 2138.71, this is, on average, a mostly neg­
ligible increase. 

In line with previous work [5], we also found that males 
have larger ellipsoid volumes than females (β =-167.37, 
p < .0001), despite the fact that the model controls for the 
slightly higher occurrence of CVD in males. Participants who 
reported having inherited CVD have larger ellipsoid volumes 
than those without (β=-1530.38, p < .0001). 

Finally, our results show that ambient brightness is positively 
correlated with ellipsoid volume (β = 7.02, p < .0001). Color 
differentiation ability gets worse as the surrounding light gets 
4CI outdoors [2122.3-2298.7], indoors [2065.0-2153.2] 
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brighter. Similarly, monitor brightness is negatively corre­
lated with ellipsoid volume (β = −4.10, p < .001); setting the 
monitor to a low brightness has a slight negative impact on 
people’s color differentiation ability. 

While both of these findings were expected, the magnitude of 
these results (7.02 and -4.10 with a mean ellipsoid volume of 
2138.71) was surprising. There are two possible reasons why 
situational lighting conditions do not play a larger role in con­
tributing to the model fit. First, our participants might have 
avoided extreme situational lighting conditions when partici­
pating in our color differentiation test (self-selection). Thus, 
even though we see a higher variation in participants’ color 
differentiation ability if they reported to be in bright lighting 
conditions versus darker surroundings, this variation is likely 
to be higher in actual day-to-day interactions when they have 
less freedom to opt-out of color differentiation tasks (e.g., 
when working with older displays outside). Second, we asked 
participants to self-report their situational lighting conditions, 
which is most likely subject to individual perceptions, or may 
not have fully captured people’s ambient light. It is likely 
that the influence of situational lighting conditions is larger 
than our data shows due to the fact that much of the varia­
tion in participants’ color differentiation ability is currently 
unaccounted for (the current model only explains 6% of the 
variance in participants’ ellipsoid volumes). 

In summary, our analysis showed a large variability in color 
differentiation abilities of a broad web population and showed 
that participants’ age, gender, color vision deficiencies, as 
well as ambient brightness and monitor brightness signifi­
cantly influence color differentiability. In the next section, 
we will use this data to demonstrate how designers might im­
prove their practice around color use. 

COLOR DIFFERENTIATION IN PRACTICE 
While our previous results indicate a wide range in people’s 
color differentiation abilities, we have yet to evaluate what 
this means in daily life. What are the consequences of this 
large variability in color differentiation abilities? Which part 
of the population is potentially excluded from properly view­
ing digital content as a designer might have intended? 

To address these questions, we developed ColorCheck, a tool 
that evaluates an image and provides a visual cue to the de­
signer (in the form of an image mask) as to the limitations of 
color differentiation. We then applied ColorCheck to two im­
age datasets (websites and infographics) to characterize how 
the color differentiation ability of our web population affects 
viewing the colors in these images. 

ColorCheck: A Tool to Show Color Differentiability 
ColorCheck is an open-source image processing tool5, devel­
oped to support design decisions. It employs an algorithm 
that compares pairs of colors within a color space and de­
termines if one color occupies the ellipsoid volume of the 
other color. Pairs of colors which overlap in this manner 
are deemed to be non-differentiable. There are often areas 
of an image that contain subtle fluctuations in color that Col­
orCheck may potentially identify as ‘problem colors’ when in 
5ColorCheck can be downloaded at www.labinthewild.org/data 

reality, being able to precisely differentiate these colors is not 
important (e.g., the fluctuations in lighting of an object in an 
outdoor scene). To help reduce the effects of these subtle vari­
ations, ColorCheck discretizes the colors of each input image. 
To accomplish this, it identifies the sRGB gamut within the 
CIE L*a*b* color space, and creates bins within this space 
each with a radius of 5 L*a*b* units (giving 826 bins). Each 
sRGB color is then mapped to its most perceptually-similar 
bin and represented using the sRGB color at the center of 
this bin. We used a D65 illuminant when converting from 
sRGB to L*a*b*, and employed Euclidean distance to repre­
sent perceptual similarity, as the comparison distance is small 
compared to the total gamut of L*a*b* color space. In ad­
dition to reducing the effects of subtle fluctuations in color, 
discretization also improves the computational efficiency of 
ColorCheck, allowing individual images to be processed on 
demand (typically < 350 ms per image on a 2.8 GHz late­
2013 MacBook Pro). 

(a) Original image	 (b) Color pairs that are not differen­
tiable by 15% of the population are 
masked. 

Figure 6: ColorCheck creates masked images, which black 
out color pairs that are not differentiable by a certain percent­
age of the population. 

By using a color differentiation model collected from a broad 
population (such as the ellipsoid volumes computed from our 
cleaned dataset of 23,120 participants), ColorCheck is able 
to measure the proportion of the population that is unable to 
differentiate any pair of image colors. ColorCheck identifies 
the ratio of pixels within the input image that are not differ­
entiable. The output of this process is a data file containing 
a two dimensional description of color differentiability for a 
given proportion of the population (e.g., one value in this de­
scription might be that 60% of a given image’s colors cannot 
be distinguished by 20% of the population). 

In addition to this broad understanding about how an image 
may be seen by a population, ColorCheck is able to layer a 
mask (shown as black pixels) on top of an image which shows 
the color differentiability for a specific part of the population. 
Using this, designers can easily identify the areas of an image 
that contain problematic color pairs. This is demonstrated in 
Figure 6: ColorCheck takes an original image (Figure 6a) and 
blacks out those pixels that are not differentiable by a given 
percentage of the population (Figure 6b). 

Note that these masked images are not intended to show how 
an image would be perceived by the population – this would 
be a difficult task given the variability of color perception 
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within the population. Instead, ColorCheck allows design­
ers to see if the critical parts of their images are perceivable 
(in terms of color differentiability) by their target population: 
Color-coded regions that are blacked out usually suggest that 
users lose important visual cues to understand data. If adja­
cent colors are black, users will be unable to separate content 
regions. Finally, if large parts of an image are set to black, de­
signers can assume that users will be unable to decipher the 
website or image’s message, and aesthetic appreciation of the 
image could be significantly altered. 

In practice, we expect that designers would view the same 
image with various differentiability thresholds, for example 
that of 50% or 80%. In the images generated by ColorCheck, 
all color pairs that are not differentiable by 50% and 20% of 
the population (respectively) will have been set to black. A 
designer can then use this information to decide whether the 
masked parts are essential for interpreting the content. If yes, 
they may decide to recolor critical areas, such as by choosing 
colors that are further apart in the color space. 

In its current form, ColorCheck leaves the decision which 
color pairs need to be differentiable to the designer. This 
decision was made because of the difficulty to computation­
ally determine the intentions of designers, and in particu­
lar, which colors designers necessarily require to be differen­
tiable. To support designers in this process, ColorCheck pro­
vides a batch mode for processing 0-100% of the population, 
generating a separate masked image for each percentage. By 
visually scanning each image in increasing percentage order, 
pairs of problem colors can be identified when both regions 
of the image become masked at the same percentage level. 

As ColorCheck relies on a data set of ellipsoid volumes, the 
output currently shows which parts of an image are not differ­
entiable by our web-based participant population. This sam­
ple might not be representative of the average computer user, 
and likely does not balance usage among situational lighting 
conditions and devices. Our experiment therefore remains 
online; we plan to regularly update the tool with the result­
ing data to achieve more representative forecasts of users’ 
ability to differentiate colors. In addition, ColorCheck users 
can plug in their own data sets (e.g., the ellipsoid volumes of 
their target group obtained through the use of WebCDT). It is 
also possible to reduce the input data set to a specific popu­
lation of interest based on demographics, device and monitor 
settings, situational lighting conditions, or color vision defi­
ciency (e.g., users over a certain age or those on mobile de­
vices). Designers can sub-sample our open-access dataset, or 
use WebCDT to generate their own custom dataset. 

Color Differentiability in Websites and Infographics 
We employed ColorCheck to evaluate the level of differenti­
ation between two example image datasets: (1) 450 website 
screenshots, selected to represent a range of domains and to 
vary in colorfulness, and (2) 3,000 infographics from the on-
line community visual.ly.6 

6These datasets have been previously published in [33] and [18] and 
were used with permission. 

Figure 7: Mean proportion of image pixels differentiable for 
different percentages of the population. 

To estimate how many images in our datasets contain col­
ors that are non-differentiable for different percentages of our 
participant population, we calculated the average proportion 
of differentiable colors within each image dataset (across all 
websites, and across all infographics, respectively). The re­
sults of this analysis shows that 12% of our population can 
differentiate all colors (100% of pixels) in the websites and 
infographics in our dataset (see Figure 7). These are par­
ticipants whose ellipsoid volumes were below 500 (see also 
Figure 4 for the distribution of ellipsoid volumes). Ellipsoid 
volumes larger than 500 result in a steady loss of differentia­
bility in our image datasets. Roughly half of the population 
(52%) is unable to differentiate 10% of the colors in an aver­
age website or infographic. As we increase the proportion of 
the population we are targeting, the mean differentiability fur­
ther decreases to a near-plateau between 90% and 99% of the 
population differentiating just under 60% of website content 
and just over 40% of infographic content. One of the rea­
sons for infographics to perform more poorly than websites 
is that infographics often use homogeneous color schemes, 
so neighboring colors vary only in intensity. We also observe 
a sharp decline when targeting more than 99% of the popu­
lation, which are people with severe color differentiation dif­
ficulties in our dataset (i.e., those whose test data resulted in 
extremely high ellipsoid volume levels). 

Table 2: Comparison of situational lighting conditions and 
demographics of the 10% participants with the worst color 
differentiability, and the remaining 90%. Tests of the equality 
of two proportions report on Pearson’s chi-squared test. 

Factor Worst 10% Top 90% Statistics 

Outdoors 30.05% χ2 = 5.38, p < .05(1,20420) 
Monitor M=62.81, M=68.22, t(106.03) = −1.97, p < .05 
brightness SD=27.96 SD=29.10 
Ambient 
brightness 

M=53.81, 
SD=22.84 

M=47.10, 
SD=23.79 

t(142.93) = 3.50, p < .001 

Age M=40.29, M=30.21, t(111.04) = 5.27, p < .0001 
SD=20.10 SD=14.83 

Male 37.39% 26.58% χ2 = 13.64, p < .01(2,23120) 
CVD 23.04% 2.24% χ2 = 413.50, p < .0001(1,23120) 

23.14% 

But who are the 10% of participants that are most severely 
affected by a lack of color differentiability in websites and 
infographics? From our earlier analysis, we know that par­
ticipants who reported being in brighter surroundings, and 
those who had set their monitors to lower brightness values 
performed worse. We also saw that being older, male, and 
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(b) Colors pairs that are not differentiable by 20% (c) Colors pairs that are not differentiable by 10% (a) Original website of the population have been set to black. of the population have been set to black. 

(f) Colors pairs that are not differentiable by 10% 
of the population have been set to black. 

(d) Original infographic	 (e) Colors pairs that are not differentiable by 20%
 
of the population have been set to black.
 

Figure 8: Image masks generated by ColorCheck for websites and infographics to show which colors become indistinguishable 
for certain proportions of the population. 

having CVD has a negative effect on color differentiability. 
Those 10% of participants who are most severely affected by 
not being able to differentiate roughly 50% of the pixels in 
an average website and infographic confirm these character­
istics; they are significantly more likely to have taken the test 
outdoors compared to the remaining 90% of participants (see 
Table 2 for statistics), they reported to have a lower average 
monitor brightness, as well as higher ambient brightness lev­
els. In addition, the most affected 10% are, on average, ten 
years older than other participants, more likely to be male, 
and much more likely to have a color vision deficiency. 

Figure 8 shows the actual effect of this loss of color vision 
with the original images (website and infographic) as well as 
their masked counterparts with non-differentiable colors for 
20% and 10% of the population, respectively. For 10% of 
our participants, both the example website and infographic 
become almost entirely illegible. Information uptake would 
be severely impacted, and even a basic understanding of the 
content might be impossible. Setting the threshold to 80% 
(i.e., masking colors that are not differentiable by 20% of the 
population) improves this; in the case of the example website 
shown in Figure 8b, 20% of our participants will not be able 
to differentiate the colors of the social media buttons on the 
right, as well as several color accents used by the designer. 
While the general content remains viewable, such lack of 
color differentiability could have critical consequences. First, 
colors are often used as visual cues to guide the user’s atten­
tion to specific parts of a platform. In the case of this website, 
roughly 20% of users might miss the opportunity to “browse 

all topics”, because the button does not stand out from other 
headlines. Second, colors contribute to branding and an over­
all perceived appeal of an image (see, e.g., [9, 33]). If colors, 
such as the red used in the “UX Magazine” logo, become in­
distinguishable from others on the same website, users are 
presented with a site that essentially uses a reduced color 
scheme, resulting in a lower overall colorfulness. As prior 
work has shown, such changes in the level of colorfulness 
can impact users’ perceived appeal [33]. 

The situation is especially severe in cases where reduced 
color differentiation ability impacts decoding information, 
such as when viewing data visualizations in difficult light­
ing conditions. The infographic in Figure 8d, for example, 
relies on viewers being able to distinguish different shades 
of blue in a pie chart. However, as Figure 8e shows, this is 
almost entirely impossible for 20% of our participants. For 
10% of them (see Figure 8f), the dark blue text on a light blue 
background even becomes entirely illegible. 

These examples are representative of many other websites 
and infographics in our dataset, suggesting that large pro­
portions of users have to accept a compromised user ex­
perience in their daily interactions with digital content (see 
www.labinthewild.org/data for more examples). 

LIMITATIONS 
The main results of our study are based on a sample of ap­
proximately 30,000 online participants, who may not be rep­
resentative of general computer users. We hope that leaving 
the WebCDT experiment online to enable frequent updating 
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of the ellipsoid volumes used in ColorCheck will result in an 
increasingly representative population, and a better represen­
tation of the color differentiation abilities for any user. 

Our results are also limited by the fact that our websites and 
infographics datasets might not be representative of an aver­
age website/infographic. Thus, any conclusions on the per­
centage of colors our participants are unable to differentiate 
on average have to be seen in the context of these datasets. 

SUMMARY AND DISCUSSION 
While color choices have been the subject of much prior 
work, it has previously been impossible to foresee the con­
sequences of these choices in increasingly diverse digital en­
vironments. The goal of this work was to quantify how many 
users cannot differentiate colors in a given user interface or 
image (e.g., in websites or infographics) and varying situa­
tional lighting conditions. To do so, we developed WebCDT, 
an online color differentiation test, verified that it is sensitive 
to changes in situational lighting conditions, and deployed 
it online. The results of a heterogeneous sample of around 
30,000 online participants showed that (1) their color differ­
entiation abilities vary considerably, and (2) situational light­
ing conditions (in particular, being outdoors, and/or having a 
low monitor brightness and high ambient brightness levels), 
demographics (age and gender) and possible color vision de­
ficiencies have significant effects on color perception. 

To evaluate the effect of our population’s wide range of color 
differentiation abilities on viewing colors in digital environ­
ments, we developed an image-processing tool that can also 
be used by designers. ColorCheck identifies pairs of colors in 
an image that are not differentiable by certain proportions of a 
population. Applying ColorCheck to commonly viewed digi­
tal content (websites and infographics), we showed that 88% 
of our participants are unable to differentiate some colors in 
websites and infographics. Crucially, 10% of our participants 
can only distinguish around 50% of the colors in an average 
website/infographic. 

We observed that the proportion of users that are affected by 
a reduced color differentiation ability is larger than what was 
previously assumed; it is not only people with (color) vision 
impairments, but any user who accesses digital content in 
suboptimal lighting conditions. As a result, large numbers 
of users could experience usability issues (e.g., if users can­
not perceive color-coded cues in an interface), obstacles in in­
formation uptake (e.g., if color-coding in charts hinders data 
interpretation), or a reduction of perceived appeal (e.g., if an 
image is perceived with a reduced colorfulness). In practice, 
all of these issues could have serious consequences for both 
the user and the designer; for users, an inability to differen­
tiate colors can have consequences for safety, learning and 
information uptake, or simply be frustrating [8]. For design­
ers, possible consequences could be that people might switch 
to competitors, misunderstand their message, or simply will 
not appreciate their designs. 

Ideally, we would therefore provide designers with concrete 
guidelines on how to design for the whole spectrum of peo­
ple’s color perception. From our analysis of infographics and
websites, we have seen that homogeneous color schemes did 

especially poorly, because users will not be able to differ­
entiate neighboring colors. In comparison, starkly contrast­
ing colors (i.e., those that are far apart in most color spaces) 
will fare better, but using them is not always feasible if cer­
tain color schemes are favored by branding and/or aesthetic 
guidelines. There is an inevitable trade-off between aesthetics 
and designing for a broad range of (situational) color differ­
entiation abilities, which necessarily excludes the option of 
prescriptive guidelines. Hence, ColorCheck was only devel­
oped as a demonstration tool, one that visualizes difficult-to­
distinguish parts of an image. The decision of how to recolor 
(parts of) the image is deliberately left to the designer, and has 
to be made with three thoughts in mind: (1) Who is my target 
audience, and in which situations do I expect them to view 
digital content?, (2) Can I freely choose colors or do I have 
to adhere to specific color schemes and branding guidelines?, 
and (3) How important is it that users are able to differentiate 
the problem colors identified by ColorCheck? 

While ColorCheck provides initial support for identifying 
problem color pairs, a future extension could include the abil­
ity to interact with the image masks (e.g., by mousing over 
a certain color) to more easily identify which other parts of 
the image are not differentiable. We also plan to integrate 
population characteristic filtering (e.g., to check the effect on 
a specific age group). Finally, we envision a mode that en­
ables auto-generation of possible replacement colors, such as 
based on current viewing conditions. With the help of such 
automated recoloring of images, users with optimal color vi­
sion could still appreciate the aesthetics of the image as the 
designer intended, but others could be supported with colors 
that are further apart in the color space. Technically, calcu­
lating glare with the help of a tilt-sensor, such as employed 
in [19], in addition to information about time of the day and 
sunlight/cloudy skies, could aid recoloring decisions. Enlarg­
ing icons and adjusting the background color has previously 
been shown to improve readability for users with vision im­
pairments [21] and could therefore be one of the possible im­
age adaptations that is provided to users. We are excited to 
explore such automatic adaptations as part of our future work. 

In summary, we have demonstrated that color choices can 
limit the ability of large proportions of users to perceive im­
ages as the designer intended. This work emphasizes that an 
inability to differentiate colors does not only stem from inher­
ited or acquired CVDs—as commonly explored in HCI—but 
that situational lighting conditions can make anybody tem­
porarily ‘colorblind’. With laptops and mobile devices be­
coming increasingly ubiquitous, we believe that it is time dig­
ital content is designed accordingly. 

DATASET AND SOURCE CODE 
Our participant dataset, as well as the source code 
for WebCDT and ColorCheck can be accessed at 
www.labinthewild.org/data. 

ACKNOWLEDGMENTS 
We thank our in-lab and LabintheWild participants, Tiffany 
Liu for helping with the LITW implementation, and Daniel 
Herron for running the WebCDT verification study. 

http://www.labinthewild.org/data/


REFERENCES 
1. 2008. Web Content Accessibility Guidelines.
 

http://www.w3.org/TR/WCAG20/. (2008). Accessed:
 
2015-09-10.
 

2. 2015. Adobe Kuler. http://color.adobe.com. (2015). 
Accessed: 2015-09-10. 

3. 2015. COLOURlovers. http://www.colourlovers.com. 
(2015). Accessed: 2015-09-10. 

4. Israel Abramov, James Gordon, Olga Feldman, and Alla 
Chavarga. 2012. Sex and vision II: color appearance of 
monochromatic lights. Biology of Sex Differences 3, 1 
(2012), 21. 

5. David L Bimler, John Kirkland, Kimberly A Jameson, 
and others. 2004. Quantifying variations in personal 
color spaces: Are there sex differences in color vision? 
COLOR Research and application 29, 2 (2004), 
128–133. 

6. Jennifer Birch. 2001. Diagnosis of Defective Colour
 
Vision (second ed.). Butterworth Heinemann, Linacre
 
House, Jordan Hill, Oxford.
 

7. Jennifer Birch, John L. Barbur, and Alister J. Harlow. 
1992. New Method Based on Random Luminance 
Masking for Measuring Isochromatic Zones Using High 
Resolution Colour Displays. Ophthalmic & 
Physiological Optics: the Journal of the British College 
of Ophthalmic Opticians (Optometrists) 12, 2 (April 
1992), 133–136. 

8. Barry L Cole. 2004. The handicap of abnormal colour
 
vision. Clinical and Experimental Optometry 87, 4-5
 
(2004), 258–275.
 

9. Dianne Cyr, Milena Head, and Hector Larios. 2010. 
Colour appeal in website design within and across 
cultures: A multi-method evaluation. International 
Journal of Human-Computer Studies 68, 1 (2010), 1–21. 

10. Finlay Dick, Sean Semple, Ruoling Chen, and Anthony 
Seaton. 2000. Neurological deficits in solvent-exposed 
painters: a syndrome including impaired colour vision, 
cognitive defects, tremor and loss of vibration sensation. 
QJM 93, 10 (2000), 655–661. 

11. Dean Farnsworth. 1943. Farnsworth-Munsell 100-Hue 
and Dichotomous Tests for Color Vision. Journal of the 
Optical Society of America (1917-1983) 33 (October 
1943). 

12. Arthur D Fisk, Wendy A Rogers, Neil Charness, Sara J 
Czaja, and Joseph Sharit. 2009. Designing for older 
adults: Principles and creative human factors 
approaches. CRC press. 

13. David R. Flatla and Carl Gutwin. 2011. Improving 
calibration time and accuracy for situation-specific 
models of color differentiation. In ASSETS ’11: 
Proceedings of the 13th International ACM SIGACCESS 
Conference on Computers and Accessibility. 195–202. 

14. David R. Flatla and Carl Gutwin. 2012. SSMRecolor: 
Improving Recoloring Tools with Situation-specific 
Models of Color Differentiation. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing 
Systems (CHI ’12). 2297–2306. 
http://doi.acm.org/10.1145/2207676.2208388 

15. David R. Flatla, Katharina Reinecke, Carl Gutwin, and 
Krzysztof Z. Gajos. 2013. SPRWEB: Preserving 
Subjective Responses to Website Colour Schemes 
Through Automatic Recolouring. In CHI ’13 Extended 
Abstracts on Human Factors in Computing Systems 
(CHI EA ’13). 2805–2806. 
http://doi.acm.org/10.1145/2468356.2479521 

16. Rui Gong, Haisong Xu, Binyu Wang, and Ming Ronnier 
Luo. 2012. Image quality evaluation for smart-phone 
displays at lighting levels of indoor and outdoor 
conditions. Optical Engineering 51, 8 (2012), 084001–1. 

17. Legrand H. Hardy, Gertrude Rand, and M. Catherine 
Rittler. 1954. HRR Polychromatic Plates. Journal of the 
Optical Society of America 44, 7 (1954), 509–521. 

18. Lane Harrison, Katharina Reinecke, and Remco Chang. 
2015. Infographic Aesthetics: Designing for the First 
Impression. In Proceedings of the 33rd Annual ACM 
Conference on Human Factors in Computing Systems 
(CHI ’15). ACM, New York, NY, USA, 1187–1190. 
http://doi.acm.org/10.1145/2702123.2702545 

19. Ken Hinckley, Jeff Pierce, Mike Sinclair, and Eric 
Horvitz. 2000. Sensing Techniques for Mobile 
Interaction. In Proceedings of the 13th Annual ACM 
Symposium on User Interface Software and Technology 
(UIST ’00). 91–100. 
http://doi.acm.org/10.1145/354401.354417 

20. Shinobu Ishihara. 1917. Tests for colour-blindness. 
Pseudoisochromatic Plates. (1917). 

21. Julie A. Jacko, Max A. Dixon, Robert H. Rosa, Jr., 
Ingrid U. Scott, and Charles J. Pappas. 1999. Visual 
Profiles: A Critical Component of Universal Access. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’99). 330–337. 
http://doi.acm.org/10.1145/302979.303105 

22. Jaejeung Kim, Sergey Leksikov, Punyotai 
Thamjamrassri, Uichin Lee, and Hyeon-Jeong Suk. 
2015. CrowdColor: Crowdsourcing Color Perceptions 
Using Mobile Devices. In Proceedings of the 17th 
International Conference on Human-Computer 
Interaction with Mobile Devices and Services 
(MobileHCI ’15). 478–483. 
http://doi.acm.org/10.1145/2785830.2785887 

23. Youn Jin Kim, M. Ronnier Luo, Wonhee Choe, 
Hong Suk Kim, Seung Ok Park, Yeseul Baek, Peter 
Rhodes, Seongdeok Lee, and Chang Yeong Kim. 2008. 
Factors affecting the psychophysical image quality 
evaluation of mobile phone displays: the case of 
transmissive liquid-crystal displays. Journal of the 
Optical Society of America 25, 9 (Sep 2008), 
2215–2222. 

http://www.w3.org/TR/WCAG20/
http://color.adobe.com
http://www.colourlovers.com
http://doi.acm.org/10.1145/2207676.2208388
http://doi.acm.org/10.1145/2468356.2479521
http://doi.acm.org/10.1145/2702123.2702545
http://doi.acm.org/10.1145/354401.354417
http://doi.acm.org/10.1145/302979.303105
http://doi.acm.org/10.1145/2785830.2785887


24. Kenneth Knoblauch, François Vital-Durand, and John L 
Barbur. 2001. Variation of chromatic sensitivity across 
the life span. Vision research 41, 1 (2001), 23–36. 

25. Giovane R Kuhn, Manuel M Oliveira, and Leandro AF 
Fernandes. 2008. An efficient naturalness-preserving 
image-recoloring method for dichromats. Visualization 
and Computer Graphics, IEEE Transactions on 14, 6 
(2008), 1747–1754. 

26. Olof Lagerlof. 1982. T¨ ricyclic psychopharmaca and 
colour vision. Documenta Ophthalmologica 
Proceedings Series (1982). 

27. Po-Hung Lin and Wen-Hung Kuo. 2011. Image Quality 
of a Mobile Display under Different Illuminations. 
Perceptual and Motor Skills 113, 1 (2011), 215–228. 

28. Po-Hung Lin and Patrick Patterson. 2012. Investigation 
of perceived image quality and colourfulness in mobile 
displays for different cultures, ambient illumination, and 
resolution. Ergonomics 55, 12 (2012), 1502–1512. 

29. Peter Liu, Fahad Zafar, and Aldo Badano. 2014. The 
effect of ambient illumination on handheld display 
image quality. Journal of digital imaging 27, 1 (2014), 
12–18. 

30. Ian J Murray, Neil RA Parry, Declan J McKeefry, and 
Athanasios Panorgias. 2012. Sex-related differences in 
peripheral human color vision: a color matching study. 
Journal of vision 12, 1 (2012), 18. 

31. Allen B. Poirson and Brian A. Wandell. 1990. The 
Ellipsoidal Representation of Spectral Sensitivity. Vision 
Research 30, 4 (1990), 647–652. 

32. Benedict C. Regan, J.P. Reffin, and John D. Mollon. 
1994. Luminance Noise and the Rapid Determination of 
Discrimination Ellipses in Colour Deficiency. Vision 
Research 34, 10 (May 1994), 1279–1299. 

33. Katharina Reinecke and Krzysztof Z. Gajos. 2014. 
Quantifying Visual Preferences Around the World. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’14). 11–20. 
http://doi.acm.org/10.1145/2556288.2557052 

34. Maureen C. Stone. 2003. A Field Guide to Digital 
Color. A. K. Peters, Natick, Massachusetts, USA. 

35. Françoise Vienot, Hans Brettel, and John D. Mollon. ´
1999. Digital Video Colourmaps for Checking the 
Legibility of Displays by Dichromats. Color: Research 
and Applications 24, 4 (1999), 243–252. 

36. Colin Ware. 2012. Information visualization: perception 
for design. Elsevier. 

37. J. Terry Yates, Ioannis Diamantopoulos, and Franz-Josef 
Daumann. 2001. Acquired (transient and permanent) 
colour vision disorders. Operational Colour Vision in 
the Modern Aviation Environment, NATO RTO Technical 
Report 16 (2001), 43–47. 

http://doi.acm.org/10.1145/2556288.2557052

	Introduction
	Related Work
	A Web-Based Color Differentiation Test
	WebCDT Verification
	Participants
	Procedure and Experimental Design
	Results


	Online Experiment
	Method
	Procedure
	Participants

	Results
	Range of Devices and Monitor Settings
	Breadth of Situational Lighting Conditions
	Variability in Participants' Color Differentiation Abilities
	Relationship with Situational Lighting and Demographics


	Color Differentiation in Practice
	ColorCheck: A Tool to Show Color Differentiability
	Color Differentiability in Websites and Infographics

	Limitations
	Summary and Discussion
	Dataset and Source Code
	Acknowledgments
	REFERENCES 



