
Smart Touch: Improving Touch Accuracy for
People with Motor Impairments with Template Matching

Martez E. Mott1, Radu-Daniel Vatavu2, Shaun K. Kane3 and Jacob O. Wobbrock1

1The Information School

DUB Group

University of Washington

Seattle, WA 98195 USA

{memott, wobbrock}@uw.edu

2MintViz Lab | MANSiD

Research Center

University Stefan cel

Mare of Suceava

Suceava 720229, Romania

vatavu@eed.usv.ro

3University of Colorado, Boulder

Boulder, CO 80309 USA

shaun.kane@colorado.edu

ABSTRACT

We present two contributions for improving the accessibility

of touch screens for people with motor impairments. First,

we provide an exploration of the touch behaviors of 10

people with motor impairments, e.g., we describe how

touching with the back or sides of the hand, with multiple

fingers, or with the knuckles creates varied multi-point

touches. Second, we introduce Smart Touch, a novel

template-matching technique for touch input that maps any

number of arbitrary contact-areas to a user’s intended (𝑥, 𝑦)

target location. The result is that users with motor

impairments can touch however their abilities allow, and

Smart Touch will resolve their intended touch point. Smart

Touch therefore allows users to touch targets in whichever

ways are most comfortable and natural for them. In an

experiment, we found that Smart Touch predicted the (𝑥, 𝑦)

coordinates of users’ intended target locations over three

times closer to actual intended targets than the native Land-

on and Lift-off techniques reported by the built-in touch

sensors found in the Microsoft PixelSense interactive

tabletop. This result is an important step toward improving

touch accuracy for people with motor impairments and

others for whom touch screen operation was previously

difficult or impossible.

Author Keywords

Ability-based design; accessibility; motor impairment; $P

recognizer; target acquisition; touch input; touch screens.

ACM Classification Keywords

H.5.2. [Information interfaces and presentation]: User

interfaces – input devices and strategies. K.4.2. [Computers

and society]: Social issues – assistive technologies for

persons with disabilities.

Figure 1. Touching with multiple fingers or various parts of the hand
(left) creates various contact regions (right). Current touch screens
are not designed to accommodate this kind of touch input when the
user’s goal is to activate just a single (x,y) point.

INTRODUCTION
Touch is one of the most dominant ways users interact with

modern computing devices. The predominance of touch can

be attributed to the pervasiveness of touch-enabled devices,

such as smartphones, tablets, interactive tables, interactive

wall displays, and public kiosks. The simple and direct

nature of touch also makes it a popular form of interaction.

Although touch has been widely adopted, it remains largely

inaccessible for many people with motor impairments

[2,5,8,16,17,21,27,35]. The requirement that a user be able

to suspend an arm, extend a finger, and land and lift

accurately on a touch-sensitive surface is beyond the abilities

of many people with motor impairments. Instead, many

people with motor impairments touch inadvertently with

multiple parts of their hand, or are able to use only the back

of their hand or even their elbow. Our perspective is that the

touch screen access barrier does not inherently lie with users,

but with the implicit ability-assumptions embedded in the

design of touch screens. It is because the ability-assumptions

do not match the actual abilities of many people with motor

impairments that touch screens remain inaccessible.

Adopting a perspective of ability-based design [42,44], we

seek to upend these assumptions by making touch screens

more amenable to a much wider range of users’ touch-

abilities, enabling more users to benefit from this technology.

Previous research has investigated the accessibility of touch

screens for people with motor impairments in both lab

[8,10,16,17,21,35] and field settings [2,22,26,27]. However,

little is known about the touch behavior of people who use

various parts of their hand, not just a single finger, when

interacting with a touch screen (Figure 1, left.) There has also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CHI'16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2858036.2858390

http://dx.doi.org/10.1145/2858036.2858390

been little advancement into new techniques for improving

touch performance for users with motor impairments,

especially techniques designed to accommodate varied

multi-touch input (see Figure 1, right.)

To further our understanding of touch input and to improve

touch accuracy for people with motor impairments, we

present in this work: (1) an exploration of the touch behavior

of 10 people with motor impairments, and (2) a novel

template-matching algorithm for touch input called Smart

Touch. Specifically, we identify and describe two touch

behaviors that challenge the assumptions of current touch

screens and, ultimately, impact their accessibility. First,

utilizing various parts of the hand creates a multi-contact

problem, where multiple contact areas are registered but only

a single point is intended by the user. Second, the difficulty

of accurately landing and lifting is exhibited by users who do

not possess the motor control to land and lift within their

intended target. Instead, some users go through an extended

touch process, where the screen is used as a stabilizing

surface against which some users slide, resulting in multiple

touches over time as users approach their target.

To improve upon the limitations of touch screens, we created

Smart Touch, a novel three-step user-specific template-

matching algorithm that maps any number of arbitrary touch-

areas to a user’s intended (𝑥, 𝑦) target location. First, Smart

Touch analyzes a user’s touch process to extract the most

relevant touch data. Second, a template matcher is employed

to match the extracted touch data to previously observed

touch instances that were captured as training examples.

Third, the location of the user’s intended (𝑥, 𝑦) target is

predicted by adding an offset to the weighted centroid of the

extracted touch data based on the best-matched template.

We evaluated the effectiveness of Smart Touch using touch

data collected from 10 participants with motor impairments.

Our results showed that Smart Touch predicted (𝑥, 𝑦)

coordinates of the users’ intended target locations over three

times closer to the intended target than the native Land-on

and Lift-off techniques reported by the built-in touch sensors

found in the Microsoft PixelSense interactive tabletop. This

increase in touch accuracy brings us closer to accessible and

operable touch screens for people with motor impairments.

The contributions of this work are: (1) an empirical

characterization of the touch behaviors of 10 people with

motor impairments; (2) a novel template-matching algorithm

called Smart Touch, including a general extension of the $P

point-cloud recognizer [36] to point-clouds with different

point cardinalities; and (3) empirical results from a study of

Smart Touch comparing it to the Microsoft PixelSense using

the touch data collected from our 10 participants. This work

takes a significant step toward realizing the vision of ability-

based design [42,44] for touch screens and for people with

motor impairments.

RELATED WORK

This work is motivated by prior research on accessible touch

screen technology, high precision touch techniques, theories

of touch input, probabilistic input, and ability-based design.

Understanding Touch Screen Accessibility for People
with Motor Impairments

There have been numerous investigations into understanding

the accessibility of touch screens for people with motor

impairments. Research has provided more understanding

into the everyday use of touch screens by people with motor

impairments [2,22,26,27]. In these investigations, touch-

enabled mobile devices have been acknowledged as

improving independence and creating a sense of

empowerment [2,22]. Findings also describe the accessibility

challenges of current touch screens. Notably, in their analysis

of YouTube videos with people physical disabilities

interacting with touch screens, Anthony et al. [2] observed

that individuals encountered difficulties using standard touch

behaviors, and instead adopted a variety of different

interaction styles, including the use of multiple fingers,

hands, fists, and knuckles.

In addition to touch screen use “in the wild,” researchers

have also examined touch screen use in the lab

[8,10,13,16,17,21,35,45]. Guerreiro et al. [16,17] explored

how different interaction techniques and target properties

impact the ability of users to acquire targets. Trewin et al.

[35] found that for people with motor impairments,

performing sliding and tapping gestures resulted in more

errors and accidental activation of other touch screen

features, such as zooming. They also found that users would

slide their finger along the screen for stability as they

approached their target. Our research builds upon and

extends this prior research by providing an analysis of non-

single-finger touch, a form of interaction reported in

previous research [2,35] but not thoroughly investigated.

The research to-date in understanding touch accessibility has

been both descriptive (detailing the difficulties of performing

certain touch screen interactions) and prescriptive (providing

design guidelines such as minimum widget size). Little

advancement, however, has been made in the way of new

algorithms, techniques, and approaches for fundamentally

improving the accuracy of touch input for people with motor

impairments. Notable exceptions include Biswas and

Langdon [5], who created an algorithm to improve the

pointing performance of users with motor impairments by

measuring hand strength. Montague et al. [26] introduced a

novel tap gesture recognizer to improve the accuracy of tap

recognition on touch-enabled devices. In another invention,

Montague et al. introduced the Shared User Modeling

Framework [25], an adaptive framework that aimed to

improve touch accessibility across devices and applications.

Wacharamanotham et al. evaluated Swabbing [38], a

technique for elderly adults to acquire targets by dragging

their finger across a target rather than discretely tapping it.

Unlike these techniques, which focused primarily on single

finger touch input, Smart Touch improves touch accuracy

while allowing users to interact with the screen in whichever

way is most comfortable and natural for them.

High-precision Touch Screen Interaction Techniques

Accurately acquiring targets using a finger has been a

limitation of touch screens since their inception, thanks in

large part to the “fat finger” occlusion and precision

problems [37]. As a result, researchers have developed

several techniques to help users of any abilities to acquire

targets. For instance, Potter et al. [29] investigated the offset-

cursor with three different selection techniques, land-on,

first-contact, and take-off. Sears and Shneiderman [34]

added stabilization to the offset-cursor to improve pointing

performance. Albinsson and Zhai [1] created Cross Keys and

Precision-Handle, two pointing techniques that allow for

pixel-level precision pointing. Benko et al. developed Dual

Finger Selections [4], a collection of five techniques which

leverage multi-touch by allowing the use of two fingers to

acquire small targets. Shift by Vogel and Baudisch [37] is a

technique that creates a callout when a finger occludes small

targets, allowing such targets to be acquired quickly and

accurately. Wigdor et al. invented LucidTouch [41], a device

that solves the occlusion problem by allowing users to

interact with targets by touching the back of the device.

All of these techniques require users to possess fine motor

control skills, making them inaccessible to many people with

motor impairments. In contrast, Smart Touch was designed

specifically to improve touch accuracy for users with

reduced and poor motor control.

Probabilistic Input

Researchers have exploited the uncertain nature of touch

input to improve its accuracy. Schwarz et al. proposed

methods [31], frameworks [30], and an architecture [32] to

handle uncertain input techniques, including touch input. Bi

and Zhai developed Bayesian Touch [7], a statistical target

acquisition technique based on Bayes’ rule and the bivariate

Gaussian distribution principle of finger touch [6]. Weir et

al. [39,40] created a machine learning approach that

improved touch accuracy using the device’s reported (𝑥, 𝑦)

touch location and the raw sensor data.

Although probabilistic methods have been shown to improve

touch accuracy, they also require the system to be target-

aware [3], requiring the system to have knowledge of all on-

screen targets. Target-aware systems are difficult to

implement in the real-world because of the engineering and

theoretical challenge they pose [9]. Smart Touch, however,

is target-agnostic [43], requiring no information of the

locations and dimensions of on-screen targets. As a result,

Smart Touch has the potential to be much more easily

deployed on current touch-enabled systems.

Utilizing Users’ Mental Model of Touch

Work by Holz and Baudisch [19,20] showed that touch

screens introduce a systematic error by not taking into

account users’ mental model of touch when determining their

intended touch point. The authors were able to improve touch

accuracy by employing a model based on the visual features

of users’ fingers.

Their approach demonstrated that using non-disabled users’

mental models of touch could improve touch accuracy.

However, little is known about the mental models of touch

for people with motor impairments. Our analysis provides a

detailed view into the touch behaviors of people with motor

impairments, while Smart Touch utilizes this knowledge to

improve the accuracy and operability of touch screens.

Ability-Based Design

Our work is motivated by the concepts and principles of

ability-based design [42,44], an approach to achieving

accessible design that emphasizes discovering what users

can do, instead of focusing on what they cannot do, and then

creating systems that can adapt or be adapted to supporting

the actual abilities of users. A key tenet of ability-based

design is that the burden of adaptation should be placed on

the system rather than on the user. Perhaps the best example

of ability-based design is SUPPLE [14,15], a system that

automatically generates user interfaces to best accommodate

the unique mouse-pointing abilities of users.

Smart Touch embodies the concepts and principles of ability-

based design by allowing users to touch “as they are” with

whatever part of their hand they prefer and in the manner

which is most comfortable and natural for them. Touch

screens and their algorithms come to bear the burden of

enabling a much wider range of touch-abilities to be effective

for their operation than ever before.

EXPLORATION OF MOTOR-IMPAIRED TOUCH

To better understand how people with motor impairments

interact with touch screens, we conducted a preliminary

study where participants with motor impairments were asked

to touch the center of a crosshairs displayed on a Microsoft

PixelSense interactive tabletop.

Participants

We recruited 10 people (4 female, 6 male, average age 52.5

years, SD=8.46) with motor impairments from a local

organization that provides rehabilitation, job placement, and

community living for people with physical disabilities. Six

participants reported having greater control in their right arm

and hand and four reported greater control in their left arm

and hand. All participants were paid $30 for their

participation, which lasted about one hour. Additional details

about our participants can be found in Table 1.

Apparatus

Touch data was collected in an experiment testbed developed

in C# .NET 4.5. All sessions were conducted on a Microsoft

PixelSense interactive table running Windows 7. The testbed

captured and logged all touch events registered by the sensor

in the PixelSense. We selected the PixelSense as our

platform because of the wealth of information provided by

the touch sensor. Each registered touch is presented as an

ellipse with a major and minor axis, and an orientation. To

accommodate participants in wheelchairs, the PixelSense

was placed on an adjustable-height table. The table was

adjusted before every session to a height most comfortable

for each participant.

 Self-reported impairments†

ID Age Sex Touch method Health condition Mo Sp St Tr Co Fa Gr Ho Se Dir Dis

1 61 M Fist Cerebral Palsy

2 37 F Fingers Cerebral Palsy

3 42 F Fingers Spinal Cord Injury

4 47 M Fingers Cerebral Palsy

5 58 M Fingers Cerebral Palsy

6 55 M Hand Cerebral Palsy

7 63 F Fingers Cerebral Palsy

8 51 F Fingers Cerebral Palsy

9 59 M Fingers Multiple Sclerosis

10 52 M Fingers & Hand Cerebral Palsy

† Mo = slow movements, Sp = spasm, St = low strength, Tr = tremor, Co = poor coordination, Fa = rapid fatigue, Gr = difficulty gripping,
Ho = difficulty holding, Se = lack of sensation, Dir = difficulty controlling direction, Dis = difficulty controlling distance.

Table 1. Demographic information for our participants. Categories used for self-reporting impairments were from Findlater et al. [12].

Figure 2. A participant performs tasks on the Microsoft PixelSense.

Procedure

Seven participants engaged in study sessions in a computer

lab at their organization and three engaged in sessions in our

university lab. Each session lasted approximately one hour.

Sessions began with the experimenter explaining the

capabilities of the PixelSense and what information would be

collected during the session. Next, the experimenter asked

the participant to demonstrate where he or she was most

comfortable interacting on the screen. The experimenter then

drew a rectangular region on the screen around the area the

participant indicated was comfortable to reach. The size and

placement of the region varied by participant. The

rectangular region acted as the designated interactive space

and targets only appeared inside that space. A crosshairs was

then drawn by the testbed inside the interactive space.

The participant was instructed to touch the center of the

crosshairs in whichever way was most comfortable and

natural for them. The experimenter asked the participant to

demonstrate touching the crosshairs five times for practice.

After, the data collection trials began.

In each trial, a crosshairs was placed randomly inside the

interactive region. A trial began when the first touch event

was registered and ended after all registered touches had

been removed and no new touches were detected for one

second. This one second timeout was used to prevent trials

from accidently advancing when registered touches would

suddenly disappear and reappear due to the touch behavior

of our participants. There was a three second countdown

between trials.

The participant was asked to complete trials at a pace that

was most comfortable for him or her. Based on pilot testing,

we set the maximum number of trials to 110. Due to fatigue,

however, many of our participants could not complete all 110

trials. Participants were instructed to complete as many trials

as they could. On average, participants completed 94.4 trials.

Results

We collected a total of 944 trials from our 10 participants.

Eleven trials were discarded because of a sensor error in

reporting participants’ lift-off locations. In total, 932 trials

were analyzed; see Table 2 for the number of trials

completed by each participant. In the following sections, we

provide an analysis of the collected touch data, detailing how

various aspects of our participants’ touch behavior affects

their ability to interact with touch screens.

Concurrent Touches

Across all participants, the average number of concurrent

touches (i.e., the number of simultaneous touches registered

by the sensor at any given time) was 2.30 (SD=1.38). To

calculate the average number of concurrent touches, we

portioned each trial into frames (a definition of a “frame” is

provided in the next section) and we counted the number of

active touches in each frame.

Figure 3. P6 interacting with the PixelSense. P6 is using the entire
left edge of his hand to interact with the touch screen.

Many of our participants averaged more than one concurrent

touch during a given trial. The presence of multiple

concurrent touches is a result of the use of multiple fingers

(see Figure 1) and various parts of the hand (Figure 3) when

interacting with the screen. Distributions of the average

number of concurrent touches for each participant are shown

in Figure 4.

Figure 4. Distribution of the average number of concurrent touches
per trial. Due to their touch behavior, participants impacted the
screen with various parts of the hand, resulting in multiple registered
touches.

Trial Duration

The average duration of a trial across our participants was

1870.82 ms (SD=3029.16). A trial began when the first touch

event was registered and ended when all registered touches

were removed. (The one second timeout used to ensure trials

did not advance prematurely was not included in the trial

duration.) Our results show that average target acquisition

times for many of our participants are much longer for

motor-impaired users than for what the literature reports for

non-disabled users (600 ms to 1200 ms, depending on target

size [28]). Mean trial duration times per participant are

shown in Table 2.

Touch-Down and Touch-Up

In current touch screen systems, a target is acquired when a

user successfully lands and lifts within the target bounds. To

see how accurately our participants could land and lift near

the displayed crosshairs in each trial, we measured the

distance from the center of the ellipses that represent the first

and last registered touches to the center of each crosshairs.

The mean touch-down distance for our participants was

9.71 cm (SD=8.69), and the mean touch-up distance was

9.97 cm (SD=10.25). On the Microsoft PixelSense, a

centimeter corresponded to about 22 pixels. Mean distances

Figure 5. Distribution of distances between the touch-down (top) and
touch-up (bottom) locations to the target center. Note that the
distances are measured in centimeters. A centimeter on the Microsoft
PixelSense is equivalent to about 22 pixels.

for touch-up and touch-down are shown in Table 2. Figure 5

shows the distribution of our participants’ touch-down and

touch-up distances.

Discussion

Our data provides some important insights into the touch

behavior of users with motor impairments. With respect to

ID Trials TD (cm) TU (cm) CT Time (ms)

Table 2. The number of trials
completed by each participant, the
mean touch-down (TD) and mean
touch-up (TU) distance to target
center, the mean of the average
number of concurrent touches per
trial (CT), and the mean trial
duration (Time). Standard
deviations are shown in

parentheses.

1 100 27.03 (8.68) 34.51 (7.09) 2.06 (0.65) 3528.16 (2123.80)

2 110 7.29 (3.72) 7.17 (4.13) 1.90 (0.66) 259.57 (302.61)

3 110 8.89 (3.26) 8.09 (3.16) 1.89 (0.48) 398.49 (518.51)

4 82 1.64 (0.83) 1.98 (0.88) 1.00 (0.00) 1841.21 (1925.17)

5 76 7.93 (2.17) 8.16 (2.50) 2.93 (0.98) 2520.36 (1064.16)

6 50 17.14 (3.56) 14.40 (4.96) 3.10 (0.73) 8477.38 (5679.49)

7 84 1.43 (1.10) 0.76 (1.10) 1.35 (0.38) 867.46 (175.40)

8 110 5.50 (4.89) 5.00 (5.01) 1.66 (0.45) 235.15 (210.88)

9 110 7.56 (5.23) 6.84 (5.59) 1.92 (0.47) 290.53 (191.90)

10 100 14.13 (6.34) 12.94 (4.62) 5.48 (1.01) 4206.29 (4343.25)

touch-down and touch-up events, our participants’ average

touch-down and touch-up distances from the target center

were much higher than those reported in previous studies for

non-disabled users; for instance, the average error offset for

the non-disabled participants in Holz and Baudisch’s study

was only 4 mm [20], compared to 97+ mm in our study. The

much higher touch distances exhibited by our participants is

a result of two observed behaviors. The first is that

participants accidently impacted the screen with their palm

or other fingers before they were prepared to touch the

crosshairs. The same is true as they lifted their fingers or

hand off the screen. Prematurely impacting the screen is a

behavior also observed in other studies exploring touch

screen use by people with motor impairments [35]. The

second behavior is that participants would use the screen for

support by sliding on it as they approached their target.

Participants who used this approach experienced difficulties

moving their hand and arm freely through the air.

Participants would also use the screen for stability during

lift-off, as they would move their hand away from the target

and lift once it was comfortable for them. As a result of

exhibiting these two behaviors, the touch-down and touch-

up locations registered by the system were quite far from the

intended target. The landing and lifting distances were well

beyond the widths of current touch screen widgets. For

example, a typical 50 pixel button on the Microsoft

PixelSense measures only 2.31 cm wide, a mere 23.79% of

our average distance from target. Even previously

recommended target sizes for motor-impaired users would

not be large enough to accommodate the touch behaviors of

our participants; for example, see Guerreiro et al. [17], who

recommended a minimum target size of 12 mm.

Another behavior exhibited by our participants was dragging

multiple fingers and various parts of the hand while

interacting with the screen. Some participants tried to use a

single finger, but lacked the dexterity to touch with a fully

extended finger. Instead, multiple fingers and parts of the

hand impacted the screen throughout the trial, resulting in

multiple concurrent touches. Other participants were unable

to extend and fully control any of their fingers, using the fist

or hand to interact with the screen. This behavior also

resulted in multiple concurrent touches, as the system

attempted to fit contact points to the various parts of the hand

touching the screen (Figure 6). Current touch screen systems

are not designed to accommodate varied multi-touch input

for target acquisition tasks and previous research has found

that it is common for users with motor impairments to

accidently trigger multi-touch gestures when inadvertently

touching with more than one finger [35].

To improve touch screen accuracy, we must view the touch

behavior of people with motor impairments holistically.

Current touch screens place too much emphasis on the first

and last contact points a user makes on the screen. Current

touch screens also assume users can touch the screen with a

fully extended finger, resulting in one contact point the

system can use to infer which target the user is trying to

Figure 6. Touch input frames from participants P1, P5, P6, and P10.
Ellipses represent contact areas captured by the PixelSense.

acquire. Instead of focusing on the land-on and lift-off

locations of a single contact point, systems need to take into

account the user’s entire touch process. A user’s touch

process includes all the touch events that occur between the

first and last contacts a user makes with the screen.

Leveraging what we have learned from our exploration of

motor-impaired touch, we created Smart Touch, a three-step

user-specific template-matching algorithm that takes

advantage of all the touch information provided in a user’s

touch process to improve touch accuracy for people with

motor impairments.

THE DESIGN OF SMART TOUCH

Smart Touch is a three-step user-specific template-matching

algorithm that: (1) analyzes a user’s touch process to extract

the most relevant touch data, (2) matches that data to

previously observed training examples (the templates), and

(3) resolves the user’s intended (𝑥, 𝑦) touch point. Template-

matching of touch patterns is employed to match the

extracted touch data to previously observed touch instances.

The location of the user’s intended target is predicted by

adding an (𝑥, 𝑦) offset to the weighted centroid of the

extracted touch data. In this section, we describe the design

of our Smart Touch algorithm in detail.

Pose Extraction

The first step in our Smart Touch algorithm is to analyze the

user’s entire touch process to extract the most relevant touch

data. The touch process begins when the user first contacts

the screen and ends once all registered touches have been

removed. The touch process of users with motor impairments

is typically longer and includes more touches than the touch

process of non-disabled users. Our touch behavior

exploration reported above describes why we cannot rely

solely on the first and last touch locations as indicators of

where the user is intending to touch. Instead, we must rely

on all of the information provided throughout the user’s

touch process. The steps to extract the touch data are

explained in more detail below.

Step 1: Deconstruct the Touch Process into Frames

To extract the most relevant touch data, we first deconstruct

the touch process into frames (Figure 7). A frame contains

all of the captured touch data (i.e., the properties of the

ellipses that represent the touches registered by the

PixelSense) present at a given time throughout the touch

process. A new frame is created every time a new touch is

added, lost, or changed. A change event occurs when any of

the properties of the ellipse representing the touch is

changed, such as the center of the ellipse changing locations.

Figure 7. Each frame represents a unique point in time in the user’s
touch process. Every time a touch is added, changed, or lost, a new
frame is created. This figure displays a typical touch process
performed by our participants.

Step 2: Evaluate the Stability of Touch Frames

After partitioning the touch process into frames, we must

decide on the frame from which to extract the touch data for

matching. Based on observations made during our touch

behavior exploration, we noticed that many of our

participants tended to dwell when they neared their target.

We decided that it is at this time that we want to extract the

touch data. Dwelling results in neighboring frames having

touches with similar properties. We call frames that exhibit

small differences from the frames that precedes them stable.

Conversely, frames that vary greatly from the frames that

precede them are considered unstable. For a frame to be

labeled as “stable,” it must be stable in two respects,

movement and shape.

Two stability scores, one each for movement and shape, are

assigned to each frame. The movement stability score is

assigned based on the difference between the location of the

weighted-centroids of the ellipses that represent the touches

in the frame being scored and the frame that precedes it. The

shape stability score is assigned based on the difference

between the sum of the area of the ellipses that represent the

touches in the frame being scored and the frame that precedes

it. A frame is considered movement- or shape-stable if its

movement or shape scores are less than 3% of the sum of all

movement and shape scores for all the frames in the touch

process, a threshold that we found empirically to work well.

A frame that is both movement- and shape-stable is

categorized as stable overall (Figure 8).

Step 3: Frame Selection

After all frames have been categorized as stable or unstable,

we iterate over all frames to find consecutive stable frames.

For each set of consecutive stable frames, we determine their

lifespans by subtracting the timestamps of the last and first

frames in each set. Touch data is extracted from the frame

that occurs halfway (with respect to time) through the life of

Figure 8. Each of seven frames is labeled stable (highlighted) or
unstable (gray) with respect to movement and shape. Frames that
are both movement- and shape-stable are categorized as stable
overall.

the set of stable frames with the longest lifespan (Figure 9).

The extracted touch data is called the indicative pose. The

touch data in the indicative pose is then sent to a template-

matcher to compare the pose to previously observed poses.

In the next section, we detail our pose-matching algorithm.

Figure 9. The lifespan of each set of consecutive stable frames is
calculated. Touch data is extracted from the frame that is present
halfway through the set of stable frames with the longest lifespan.

Pose Matching

Once the touch data has been extracted as the indicative pose

for the touch process, we compare it to templates of

previously extracted poses (a pose is simply a frame of

extracted touch data.) In this section, we detail the steps

involved in our template-matching process.

Translating the Pose

All extracted touch data—poses serving as templates and the

pose serving as the candidate—are translated to a common

reference point. First, a bounding box is fit to the touch data

in each pose. The top-left corner of the bounding box is then

Figure 10. Touch data from two poses translated to the origin,
prepared to undergo the template-matching process.

translated to the reference point (0,0). Translation allows

poses to be compared regardless of where touches occur on

the touch screen (see Figure 10).

Extending $P from Point-Matching to Ellipse-Matching

At this point, the candidate pose C and the templates T have

all been translated. Next, we want to find the template that

most closely resembles the candidate. To match a candidate

to a template, we extended the $P point-cloud stroke gesture

recognizer [36]. The $P recognizer decomposes stroke

gestures into point-clouds and uses a nearest-neighbor point-

correspondence algorithm to match a candidate gesture to a

set of templates. To match the candidate point-cloud C to a

given template point-cloud T, a function M matches each

point in C to exactly one point in T. The goodness of M is

defined as the sum of Euclidean distances for all pairs of

points (Eq. 1).

∑ ||𝐶𝑖 − 𝑇𝑗|| = ∑ √(𝐶𝑖 . 𝑥 − 𝑇𝑗 . 𝑥)2 + (𝐶𝑖 . 𝑦 − 𝑇𝑗 . 𝑦)2 (1)

𝑛

𝑖=1

𝑛

𝑖=1

Our template-matcher utilizes the underlying behavior of $P

to match each of the touch instances (i.e., the ellipses) in C

to a touch instance in T. However, we had to extend the

functionality of the $P template-matcher in two ways. First,

the template-matcher had to account for the shape properties

of the contact areas, which are ellipses. Unlike a point, which

only consists of an (𝑥, 𝑦) coordinate, an ellipse has a major

and minor axis, an orientation, and a center (𝑥, 𝑦) location.

As a result, our scoring function cannot rely solely on the

Euclidean distance between the centers of the ellipses in each

pose. To account for the properties of ellipses, we extended

$P’s Euclidean distance formula: the distance between two

ellipses is defined as the amount of work required to

transform one ellipse into another. Therefore, the distance D

between ellipses a and b is the sum of the Euclidean distance

between their centers, the difference between their major and

minor axes, and the angular distance in degrees [43] between

the orientation of the two ellipses (Eq. 2).

𝐷 = 𝑤1 ∗ 𝜕 + 𝑤2 ∗ 𝑀 + 𝑤3 ∗ 𝑚 + 𝑤4 ∗ 𝜃, (2)

where ∑ 𝑤𝑖 = 1.00, and

𝜕 = √[(𝑎𝑥 − 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑦)
2

], where x and y are the

center x- and y-coordinates of the ellipse,

𝑀 = |𝑎𝑀 − 𝑏𝑀|, where M is the major axis length,

𝑚 = |𝑎𝑚 − 𝑏𝑚|, where m is the minor axis length, and

𝜃 = |(|180 − 𝑎𝜃 + 𝑏𝜃 | mod 360) − 180|, where 𝜃 is the

ellipse orientation in degrees. (See [43] for the origins of this

angular distance formula.) Optimizing weights resulted in

roughly equal weighting, so for simplicity each 𝑤𝑖 was set to

0.25.

The second extension to $P was to allow it to accommodate

poses with an unequal number of ellipses. In the original $P

recognizer, stroke gestures were resampled so that the

candidate stroke and the template strokes always had the

same number of points. This resampling procedure allowed

each point in the candidate to match exactly one point in the

template. Resampling all poses to have the same number of

touches would not work in our case, as removing or adding

touches would result in a loss of valuable information about

a user’s touch process. And unlike stroke gestures, our

touches do not have a path through space that they

necessarily follow. Because we could not guarantee that C

and T would have the same number of ellipses, we devised a

recursive variant of $P’s point-cloud matching algorithm that

allows for an unequal number of ellipses between the

candidate and the template. The pseudocode for our

recursive $P implementation can be found at the following

link: http://bit.ly/10wbHmW. The gist of the algorithm is that

ellipses in one pose can serve as the best-matched ellipse for

multiple ellipses in the other pose; poses with very different

ellipse counts are penalized appropriately; and ellipses that

go entirely unmatched also increase distances appropriately.

At the end of the pose-matching process, an N-best list is

generated and the template with the lowest distance score

represents the best match. After the candidate has been

matched to a template, the candidate is translated back to its

original position on the table. Then Smart Touch predicts the

location of the user’s intended touch point, described next.

Predicting the User’s Intended Touch Point

Embedded in each template is an (𝑥, 𝑦) offset representing

where the user’s intended target was located at the time of

the template’s creation. (Training examples present a

crosshairs so the intended target is known.) The (𝑥, 𝑦) offset

is encoded as the distance from the weighted centroid of the

template’s pose to the target’s center. This offset is then

added to the weighted centroid of the candidate, with the

resulting (𝑥, 𝑦) coordinate representing Smart Touch’s

predicted intended touch location.

EVALUATION OF SMART TOUCH

To determine how accurately Smart Touch can predict a

user’s intended touch point, we performed an evaluation of

Smart Touch using the data collected from our 10

participants, described above in our exploration of touch

behavior. Smart Touch was used to extract one pose per trial

for each trial performed by our 10 participants. As a result,

each participant had the same number of poses available for

testing as the number of trials he or she completed in our

exploration of touch behavior study.

Design and Analysis

We conducted an initial experiment to determine at which

number of templates Smart Touch was able to most

accurately predict the participants’ intended touch location.

The initial experiment was a within-subjects design with the

following factor and levels:

 Number of training examples E: 10, 20, 30, 40

The second experiment compared the best version of Smart

Touch from the initial experiment to the land-on and lift-off

http://bit.ly/10wbHmW

locations reported by the PixelSense. The second experiment

was a within-subjects design with the following factor and

levels:

 Selection Technique: Smart Touch, Land-on, Lift-off

Land-on uses the centroid of the ellipse representing the first

touch to contact the screen and Lift-off uses the centroid of

the ellipse representing the last touch to leave the screen.

Land-on and Lift-off are the selection schemes current touch

screens use to determine if a target has been selected, as a

user must successfully land and lift within a target’s bounds.

We treated each of these as separate techniques for the sake

of measuring distance from an intended touch point (a

crosshairs). We did not use area targets (e.g., buttons) as we

were interested not in target hit-rates but in distance from a

presented (𝑥, 𝑦) point.

To conduct our evaluations, we used a testing procedure

based on the methods used in machine learning [24] and

followed in prior template-matching work [46]. Of the given

number of poses T performed by each participant (see Table

2), E poses were randomly extracted and treated as training

examples. E was systematically increased from 10 to 40 in

steps of 10. Of the remaining T – E poses left, one pose was

randomly selected and treated as the candidate. Then it was

matched against the library of E training examples (of

course, the candidate could never serve as a template within

the same trial.) For the first experiment, this procedure was

performed 100 times for each participant per level of E. In

total, 10 (participants) × 100 (trials) × 4 (E values) = 4000

matching tests were conducted. For the second experiment,

this procedure was performed 100 times for each participant,

resulting in 10 (participants) × 100 (trials) = 1000 matching

tests.

The dependent variable of interest in both experiments was

Error Offset, measured by the Euclidean distance between

the center of the crosshairs in each trial (the actual known

target) and the produced (𝑥, 𝑦) location reported by Smart

Touch in the first experiment, and by each Selection

Technique in the second experiment. Error Offset was

analyzed with a mixed-effects model analysis of variance

[23]. Our model used fixed-effects for number of training

examples E in the initial experiment, for Selection Technique

in the second experiment, and for Trial (nested within

number of training examples) in both experiments. Subject

was a random effect to accommodate for repeated measures

in both experiments. Although mixed-effects model analyses

of variance retain large denominator degrees of freedom,

such analyses make detection of significance no easier than

traditional fixed-effects ANOVAs.

Results

This section presents the results of our first experiment to see

which level of E provided the most accurate version of Smart

Touch. It also presents results of our second experiment to

see how well the best version of Smart Touch could predict

the location of our participants’ intended touch compared to

the native touch sensor’s reporting of Land-on and Lift-off.

In the first experiment, mean distances from the intended

crosshairs for each level of E are shown in Table 3. There

was a significant effect of the number of training examples

E (F3,3591=4.53, p<.01) on Error Offset. To correct for

multiple pairwise comparisons, we used Holm’s sequential

Bonferroni procedure [18]. Pairwise comparisons showed

that E=30 was significantly more accurate than E=10 and

E=20 (p<.05). Although E=30 was not significantly more

accurate than E=40, we decided to use E=30 as the value for

Smart Touch in the second experiment due to its lower

average Error Offset compared to E=40.

Number of
examples E

Smart Touch
Error Offset (cm)

10 3.53 (3.65)

20 3.30 (3.69)

30 3.01 (3.31)

40 3.23 (4.39)

Table 3. Overall means for Error Offset (lower is better) for Smart
Touch by number of training examples. Standard deviations are
shown in parentheses.

In the second experiment, there was a significant effect of

Selection Technique (F2,2889=505.76, p<.0001) on Error

Offset. Pairwise comparisons showed that Smart Touch (at

E=30) was significantly more accurate than both Land-on

and Lift-off (p<.0001). Smart Touch predicted (𝑥, 𝑦) touch

locations that were 30.71% and 28.26% of the distance to the

target as the Land-on and Lift-off techniques, respectively.

Put another way, Smart Touch predicted distances that were

over three times closer to the intended targets than the native

sensor techniques. In raw distance terms, this was 3.01 cm

from the intended crosshairs for Smart Touch, and 9.80 cm

and 10.65 cm for Land-on and Lift-off, respectively. Overall

means and participant-specific error offsets are shown in

Table 4.

 Error Offset (cm)

ID
Smart Touch

(E=30)
Land-on Lift-off

1 6.39 (5.54) 26.15 (8.75) 35.34 (6.75)

2 2.71 (2.25) 7.33 (3.56) 6.94 (3.78)

3 3.88 (2.21) 9.39 (3.02) 8.47 (2.63)

4 1.04 (0.89) 1.67 (0.93) 1.96 (0.94)

5 1.73 (1.76) 7.87 (2.47) 7.99 (2.74)

6 5.09 (3.58) 17.07 (3.67) 16.50 (11.73)

7 1.02 (0.85) 1.15 (1.50) 1.75 (6.47)

8 1.77 (1.83) 5.24 (5.01) 4.21 (5.11)

9 2.21 (1.58) 7.14 (5.85) 7.91 (7.08)

10 4.29 (4.01) 14.98 (5.71) 15.49 (8.74)

MEAN 3.01 (3.31) 9.80 (8.59) 10.65 (11.41)

Table 4. Overall means for Error Offset by Selection Technique for
each participant (lower is better). Standard deviations are shown in
parentheses. Smart Touch was much better than Land-on and Lift-
off in predicting the location of the participants’ intended target.

DISCUSSION

We wanted to discover if our Smart Touch algorithm could

improve the touch accuracy of participants with motor

impairments using the touch data collected during our touch

behavior exploration. Our experiment results show that at

3.01 cm of error offset, Smart Touch is significantly better

than both Land-on and Lift-off in predicting the locations of

users’ intended touch-points. With only 30 templates, which

take under 8 minutes to collect, the average Smart Touch

error offset across all 10 participants was over three times

closer to intended crosshairs than the Land-on and Lift-off

techniques. On average, Smart Touch was closer to the

crosshairs for all 10 participants than either of the two native

sensor techniques. Although not all participants were able to

complete all 110 trials due to fatigue, we found no indication

that fatigue negatively impacted the results of our

experiment. The touch behavior of our participants remained

quite consistent throughout all of the completed trials.

The average Land-on and Lift-off error offsets of 9.80 cm

and 10.65 cm produced by our participants are far outside the

range of current touch screen widgets. Prior work has found

common touch screen widgets to range between 2.6 mm and

4.8 mm [28]. For the majority of our participants, even the

recommended widget sizes for users with motor impairments

(between 1.2 cm and 1.7 cm [17]) would not be big enough

to provide an increase in touch accuracy when using either

Land-on or Lift-off. However, with Smart Touch, by

increasing accessible widget sizes to 3 cm, 7 of our 10

participants could successfully interact with a tabletop

device. And due to the large screen size, tabletop

applications could afford to render 3 cm large touch targets.

Our data shows that with 30 templates, we are able to provide

significant increases in touch accuracy. Thirty touch

examples can be collected from a user in under 8 minutes

when he or she first begins to use a touch screen device. As

tools and techniques that enable data collection “in the wild”

are developed and deployed [11], Smart Touch could

unobtrusively collect training examples as users interact with

their touch screen devices over time.

Limitations

One limitation of this work is the generalizability of the

touch behaviors exhibited by users on the Microsoft

PixelSense to other touch screen devices, like phones or

tablets, which have smaller form factors than interactive

tables. It is possible that the ergonomics of the PixelSense

influenced our participants’ touch behavior, although we

were proactive in preventing any negative effects the

PixelSense may have had on our participants’ abilities to

interact with the screen. Other researchers have noted that

users employ similar behaviors across touch screen types,

but these researchers did not investigate touch to the extent

provided in this paper [2,17,35].

Another limitation is the generalizability of our Smart Touch

algorithm to other touch screen devices. The wealth of touch

data provided by the PixelSense was the reason it was chosen

for the current study. We believe we can achieve similar

results on other touch screen devices, such as the Apple iPad,

even if the reported touch data is not as complete as what is

reported by the PixelSense. Our belief stems from the

resilience of our matching algorithm to changes in the

weights of Eq. 2. Presumably this means the algorithm can

be made effective even if, say, minor axes are not reported

for ellipses.

FUTURE WORK

Future studies would include investigating the effectiveness

of Smart Touch on touch screen mobile devices, such as

smartphones and tablets. It would also be interesting to see

how well Smart Touch performs with less accurate touch

screen systems. Retrieving accurate touch readings, such as

the orientation of a touch or the size of the major and minor

axes of the ellipse fitted to the touch contact area, may be

more difficult to acquire on certain capacitive-sensing

mobile devices. We may, however, be able to utilize other

sensor information to improve the Smart Touch algorithm,

such as the amount of force applied to the screen.

Another direction of work would test the effectiveness of

Smart Touch for non-disabled users experiencing situational

impairments [33]. Although Smart Touch was designed for

people with motor impairments, the core principle of

leveraging users’ touch behavior to improve touch accuracy

could also be applied to non-disabled users under the effects

of a situational impairment, such as while walking.

CONCLUSION

We have explored the touch behavior of 10 people with

motor impairments and identified two key behaviors that

impact touch screen accessibility. One behavior is that touch

screens presume users can interact with the screen using a

single fully extended finger. A second behavior is that touch

screens presume users possess the fine motor-control skills

to both land and lift within the bounds of a target. With Smart

Touch, we have made progress on both of these challenges,

cutting distances to intended targets by over a third compared

to the locations reported by the native touch sensor. In so

doing, we have championed ability-based design [42,44],

which strives to allow people to use the abilities they have,

and make devices and interfaces support those abilities as

they are. Smart Touch brings us an important step closer to

fully accessible and operable touch screens for all people of

all abilities.

ACKNOWLEDGEMENTS

The authors thank Alex I. Jansen, Gabriel Laigo, the staff at

Provail, and all of our participants. This work was supported

in part by National Science Foundation grants IIS-0952786

and IIS-1217627, and by a Google Research Award. R.-D.

Vatavu acknowledges support from the project PN-II-RU-

TE-2014-4-1187 financed by UEFISCDI, Romania. Any

opinions, findings, conclusions or recommendations

expressed in this work are those of the authors and do not

necessarily reflect those of any supporter.

REFERENCES

1. Pär-Anders Albinsson and Shumin Zhai. 2003. High

precision touch screen interaction. Proceedings of the

ACM Conference on Human Factors in Computing

Systems (CHI '03), ACM Press, 105–112.

 http://doi.org/10.1145/642611.642631

2. Lisa Anthony, YooJin Kim, and Leah Findlater. 2013.

Analyzing user-generated Youtube videos to understand

touchscreen use by people with motor impairments.

Proceedings of the ACM Conference on Human Factors

in Computing Systems (CHI '13), ACM Press, 1223–

1232.

 http://doi.org/10.1145/2470654.2466158

3. Ravin Balakrishnan. 2004. “Beating” Fitts’ law: Virtual

enhancements for pointing facilitation. International

Journal of Human-Computer Studies 61, 6: 857–874.

http://doi.org/10.1016/j.ijhcs.2004.09.002

4. Hrvoje Benko, Andrew D. Wilson, and Patrick

Baudisch. 2006. Precise selection techniques for multi-

touch screens. Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI '06), ACM,

1263–1272. http://doi.org/10.1145/1124772.1124963

5. Pradipta Biswas and Patrick Langdon. 2012.

Developing multimodal adaptation algorithm for

mobility impaired users by evaluating their hand

strength. International Journal of Human-Computer

Interaction 28, 9: 576–596.

 http://doi.org/10.1080/10447318.2011.636294

6. Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts

law: Modeling finger touch with Fitts’ law. Proceedings

of the ACM Conference on Human Factors in

Computing Systems (CHI '13), ACM, 1363–1372.

http://doi.org/10.1145/2470654.2466180

7. Xiaojun Bi and Shumin Zhai. 2013. Bayesian touch: A

statistical criterion of target selection with finger touch.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST '13), ACM Press, 51–

60. http://doi.org/10.1145/2501988.2502058

8. Karen B. Chen, Anne B. Savage, Amrish O. Chourasia,

Douglas A. Wiegmann, and Mary E. Sesto. 2013. Touch

screen performance by individuals with and without

motor control disabilities. Applied Ergonomics 44, 2:

297–302. http://doi.org/10.1016/j.apergo.2012.08.004

9. Morgan Dixon, James Fogarty, and Jacob Wobbrock.

2012. A general-purpose target-aware pointing

enhancement using pixel-level analysis of graphical

interfaces. Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI '12), ACM

Press, 3167–3176.

 http://doi.org/10.1145/2207676.2208734

10. Sacha N. Duff, Curt B. Irwin, Jennifer L. Skye, Mary E.

Sesto, and Douglas A. Wiegmann. 2010. The effect of

disability and approach on touch screen performance

during a number entry task. Proceedings of the Human

Factors and Ergonomics Society, 566–570.

11. Abigail Evans and Jacob Wobbrock. 2012. Taming wild

behavior: The input observer for obtaining text entry and

mouse pointing measures from everyday computer use.

Proceedings of the ACM Conference on Human Factors

in Computing Systems (CHI '12), ACM, 1947–1956.

http://doi.org/10.1145/2207676.2208338

12. Leah Findlater, Alex Jansen, Kristen Shinohara, Morgan

Dixon, Peter Kamb, Joshua Rakita, and Jacob O.

Wobbrock. 2010. Enhanced area cursors: Reducing fine

pointing demands for people with motor impairments.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST '10), ACM Press, 153–

162. http://doi.org/10.1145/1866029.1866055

13. Jon Froehlich, Jacob O. Wobbrock, and Shaun K. Kane.

2007. Barrier pointing: Using physical edges to assist

target acquisition on mobile device touch screens.

Proceedings of the ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS '07), ACM

Press, 19–26. http://doi.org/10.1145/1296843.1296849

14. Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S.

Weld. 2007. Automatically generating user interfaces

adapted to users’ motor and vision capabilities.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST '07), ACM Press, 231–

240. http://doi.org/10.1145/1294211.1294253

15. Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S.

Weld. 2008. Improving the performance of motor-

impaired users with automatically-generated, ability-

based interfaces. Proceedings of the ACM Conference

on Human Factors in Computing Systems (CHI '08),

ACM, 1257–1266.

 http://doi.org/10.1145/1357054.1357250

16. Tiago João Vieira Guerreiro, Hugo Nicolau, Joaquim

Jorge, and Daniel Gonçalves. 2010. Assessing mobile

touch interfaces for tetraplegics. Proceedings of the

ACM Conference on Human Computer Interaction with

Mobile Devices and Services (MobileHCI '10), ACM

Press, 31–34. http://doi.org/10.1145/1851600.1851608

17. Tiago Guerreiro, Hugo Nicolau, Joaquim Jorge, and

Daniel Gonçalves. 2010. Towards accessible touch

interfaces. Proceedings of the ACM SIGACCESS

Conference on Computers and Accessibility (ASSETS

'10), ACM, 19–26.

 http://doi.org/10.1145/1878803.1878809

18. Sture Holm. 1979. A simple sequentially rejective

multiple test procedure. Scandinavian Journal of

Statistics 6, 2: 65–70.

19. Christian Holz and Patrick Baudisch. 2010. The

generalized perceived input point model and how to

double touch accuracy by extracting fingerprints.

Proceedings of the ACM Conference on Human Factors

in Computing Systems (CHI '10), ACM, 581–590.

http://doi.org/10.1145/1753326.1753413

20. Christian Holz and Patrick Baudisch. 2011.

Understanding touch. Proceedings of the ACM

Conference on Human Factors in Computing Systems

(CHI '11), ACM, 2501–2510.

 http://doi.org/10.1145/1978942.1979308

21. Curt B. Irwin and Mary E. Sesto. 2012. Performance

and touch characteristics of disabled and non-disabled

participants during a reciprocal tapping task using touch

screen technology. Applied Ergonomics 43, 6: 1038–

1043. http://doi.org/10.1016/j.apergo.2012.03.003

22. Shaun K. Kane, Chandrika Jayant, Jacob O. Wobbrock,

and Richard E. Ladner. 2009. Freedom to roam: A study

of mobile device adoption and accessibility for people

with visual and motor disabilities. Proceedings of the

ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS '09), ACM, 115–122.

http://doi.org/10.1145/1639642.1639663

23. R. C. Littell, P. R. Henry, and C. B. Ammerman. 1998.

Statistical analysis of repeated measures data using SAS

procedures. Journal of Animal Science 76, 4: 1216–

1231.

24. Tom M. Mitchell. 1997. Machine Learning. McGraw-

Hill Education, New York.

25. Kyle Montague, Vicki L. Hanson, and Andy Cobley.

2012. Designing for individuals: Usable touch-screen

interaction through shared user models. Proceedings of

the ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS '12), ACM Press, 151–158.

http://doi.org/10.1145/2384916.2384943

26. Kyle Montague, Hugo Nicolau, and Vicki L. Hanson.

2014. Motor-impaired touchscreen interactions in the

wild. Proceedings of the ACM SIGACCESS Conference

on Computers and Accessibility (ASSETS '14), ACM,

123–130. http://doi.org/10.1145/2661334.2661362

27. Maia Naftali and Leah Findlater. 2014. Accessibility in

context: Understanding the truly mobile experience of

smartphone users with motor impairments. Proceedings

of the ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS '14), ACM Press, 209–216.

http://doi.org/10.1145/2661334.2661372

28. Pekka Parhi, Amy K. Karlson, and Benjamin B.

Bederson. 2006. Target size study for one-handed

thumb use on small touchscreen devices. Proceedings

of the ACM Conference on Human-computer

Interaction with Mobile Devices and Services

(MobileHCI '06), ACM Press, 203–210.

 http://doi.org/10.1145/1152215.1152260

29. R. L. Potter, L. J. Weldon, and B. Shneiderman. 1988.

Improving the accuracy of touch screens: An

experimental evaluation of three strategies. Proceedings

of the ACM Conference on Human Factors in

Computing Systems (CHI '88), ACM, 27–32.

http://doi.org/10.1145/57167.57171

30. Julia Schwarz, Scott Hudson, Jennifer Mankoff, and

Andrew D. Wilson. 2010. A framework for robust and

flexible handling of inputs with uncertainty.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST '10), ACM Press, 47–

56. http://doi.org/10.1145/1866029.1866039

31. Julia Schwarz, Jennifer Mankoff, and Scott Hudson.

2011. Monte Carlo methods for managing interactive

state, action and feedback under uncertainty.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST '11), ACM, 235–244.

http://doi.org/10.1145/2047196.2047227

32. Julia Schwarz, Jennifer Mankoff, and Scott E. Hudson.

2015. An architecture for generating interactive

feedback in probabilistic user interfaces. Proceedings of

the ACM Conference on Human Factors in Computing

Systems (CHI '15), ACM Press, 2545–2554.

 http://doi.org/10.1145/2702123.2702228

33. Andrew Sears, Min Lin, Julie Jacko, and Yan Xiao.

2003. When computers fade … pervasive computing

and situationally-induced impairments and disabilities.

Proceedings of the 10th International Conference on

Human-Computer Interaction (HCI Int'l' 03), 1298–

1302.

34. Andrew Sears and Ben Shneiderman. 1991. High

precision touchscreens: Design strategies and

comparisons with a mouse. International Journal of

Man-Machine Studies 34, 4: 593–613.

 http://doi.org/10.1016/0020-7373(91)90037-8

35. Shari Trewin, Cal Swart, and Donna Pettick. 2013.

Physical accessibility of touchscreen smartphones.

Proceedings of the ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS '13), ACM,

19:1–19:8. http://doi.org/10.1145/2513383.2513446

36. Radu-Daniel Vatavu, Lisa Anthony, and Jacob O.

Wobbrock. 2012. Gestures as point clouds: A $P

recognizer for user interface prototypes. Proceedings of

the ACM International Conference on Multimodal

Interaction (ICMI '12), ACM, 273–280.

 http://doi.org/10.1145/2388676.2388732

37. Daniel Vogel and Patrick Baudisch. 2007. Shift: A

technique for operating pen-based interfaces using

touch. Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI '07), ACM, 657–

666. http://doi.org/10.1145/1240624.1240727

38. Chat Wacharamanotham, Jan Hurtmanns, Alexander

Mertens, Martin Kronenbuerger, Christopher Schlick,

and Jan Borchers. 2011. Evaluating swabbing: A

touchscreen input method for elderly users with tremor.

Proceedings of the ACM Conference on Human Factors

in Computing Systems (CHI '11), ACM Press, 623–626.

http://doi.org/10.1145/1978942.1979031

39. Daryl Weir. 2012. Machine learning models for

uncertain interaction. Adjunct Proceedings of the 25th

Annual ACM Symposium on User Interface Software

and Technology (UIST '12), ACM, 31–34.

http://doi.org/10.1145/2380296.2380313

40. Daryl Weir, Simon Rogers, Roderick Murray-Smith,

and Markus Löchtefeld. 2012. A user-specific machine

learning approach for improving touch accuracy on

mobile devices. Proceedings of the ACM Symposium on

User Interface Software and Technology (UIST '12),

ACM Press, 465–476.

 http://doi.org/10.1145/2380116.2380175

41. Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John

Barnwell, and Chia Shen. 2007. Lucid Touch: A see-

through mobile device. Proceedings of the ACM

Symposium on User Interface Software and Technology

(UIST '07), ACM Press, 269–278.

 http://doi.org/10.1145/1294211.1294259

42. Jacob O. Wobbrock. 2014. Improving pointing in

graphical user interfaces for people with motor

impairments through ability-based design. In Assitive

Technologies and Computer Access for Motor

Disabilities. IGI Global, Hershey, PA, 206–253.

43. Jacob O. Wobbrock, James Fogarty, Shih-Yen (Sean)

Liu, Shunichi Kimuro, and Susumu Harada. 2009. The

Angle Mouse: Target-agnostic dynamic gain

adjustment based on angular deviation. Proceedings of

the ACM Conference on Human Factors in Computing

Systems (CHI '09), ACM, 1401–1410.

 http://doi.org/10.1145/1518701.1518912

44. Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z.

Gajos, Susumu Harada, and Jon Froehlich. 2011.

Ability-based design: Concept, principles and

examples. ACM Transactions on Accessible Computing

3, 3: 9:1–9:27.

 http://doi.org/10.1145/1952383.1952384

45. Jacob O. Wobbrock, Brad A. Myers, and John A.

Kembel. 2003. EdgeWrite: A stylus-based text entry

method designed for high accuracy and stability of

motion. Proceedings of the ACM Symposium on User

Interface Software and Technology (UIST '03), ACM

Press, 61–70. http://doi.org/10.1145/964696.964703

46. Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li.

2007. Gestures without libraries, toolkits or training: A

$1 recognizer for user interface prototypes. Proceedings

of the ACM Symposium on User Interface Software and

Technology (UIST '07), ACM, 159–168.

http://doi.org/10.1145/1294211.1294238

