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ABSTRACT 

We present two contributions for improving the accessibility 

of touch screens for people with motor impairments. First, 

we provide an exploration of the touch behaviors of 10 

people with motor impairments, e.g., we describe how 

touching with the back or sides of the hand, with multiple 

fingers, or with the knuckles creates varied multi-point 

touches. Second, we introduce Smart Touch, a novel 

template-matching technique for touch input that maps any 

number of arbitrary contact-areas to a user’s intended (𝑥, 𝑦) 

target location. The result is that users with motor 

impairments can touch however their abilities allow, and 

Smart Touch will resolve their intended touch point. Smart 

Touch therefore allows users to touch targets in whichever 

ways are most comfortable and natural for them. In an 

experiment, we found that Smart Touch predicted the (𝑥, 𝑦) 

coordinates of users’ intended target locations over three 

times closer to actual intended targets than the native Land-

on and Lift-off techniques reported by the built-in touch 

sensors found in the Microsoft PixelSense interactive 

tabletop. This result is an important step toward improving 

touch accuracy for people with motor impairments and 

others for whom touch screen operation was previously 

difficult or impossible. 
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Figure 1. Touching with multiple fingers or various parts of the hand 
(left) creates various contact regions (right). Current touch screens 
are not designed to accommodate this kind of touch input when the 
user’s goal is to activate just a single (x,y) point. 

INTRODUCTION 
Touch is one of the most dominant ways users interact with 

modern computing devices. The predominance of touch can 

be attributed to the pervasiveness of touch-enabled devices, 

such as smartphones, tablets, interactive tables, interactive 

wall displays, and public kiosks. The simple and direct 

nature of touch also makes it a popular form of interaction. 

Although touch has been widely adopted, it remains largely 

inaccessible for many people with motor impairments 

[2,5,8,16,17,21,27,35]. The requirement that a user be able 

to suspend an arm, extend a finger, and land and lift 

accurately on a touch-sensitive surface is beyond the abilities 

of many people with motor impairments. Instead, many 

people with motor impairments touch inadvertently with 

multiple parts of their hand, or are able to use only the back 

of their hand or even their elbow.  Our perspective is that the 

touch screen access barrier does not inherently lie with users, 

but with the implicit ability-assumptions embedded in the 

design of touch screens. It is because the ability-assumptions 

do not match the actual abilities of many people with motor 

impairments that touch screens remain inaccessible. 

Adopting a perspective of ability-based design [42,44], we 

seek to upend these assumptions by making touch screens 

more amenable to a much wider range of users’ touch-

abilities, enabling more users to benefit from this technology. 

Previous research has investigated the accessibility of touch 

screens for people with motor impairments in both lab 

[8,10,16,17,21,35] and field settings [2,22,26,27]. However, 

little is known about the touch behavior of people who use 

various parts of their hand, not just a single finger, when 

interacting with a touch screen (Figure 1, left.) There has also 
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been little advancement into new techniques for improving 

touch performance for users with motor impairments, 

especially techniques designed to accommodate varied 

multi-touch input (see Figure 1, right.)   

To further our understanding of touch input and to improve 

touch accuracy for people with motor impairments, we 

present in this work: (1) an exploration of the touch behavior 

of 10 people with motor impairments, and (2) a novel 

template-matching algorithm for touch input called Smart 

Touch. Specifically, we identify and describe two touch 

behaviors that challenge the assumptions of current touch 

screens and, ultimately, impact their accessibility. First, 

utilizing various parts of the hand creates a multi-contact 

problem, where multiple contact areas are registered but only 

a single point is intended by the user. Second, the difficulty 

of accurately landing and lifting is exhibited by users who do 

not possess the motor control to land and lift within their 

intended target. Instead, some users go through an extended 

touch process, where the screen is used as a stabilizing 

surface against which some users slide, resulting in multiple 

touches over time as users approach their target.  

To improve upon the limitations of touch screens, we created 

Smart Touch, a novel three-step user-specific template-

matching algorithm that maps any number of arbitrary touch-

areas to a user’s intended (𝑥, 𝑦) target location. First, Smart 

Touch analyzes a user’s touch process to extract the most 

relevant touch data. Second, a template matcher is employed 

to match the extracted touch data to previously observed 

touch instances that were captured as training examples. 

Third, the location of the user’s intended (𝑥, 𝑦) target is 

predicted by adding an offset to the weighted centroid of the 

extracted touch data based on the best-matched template.  

We evaluated the effectiveness of Smart Touch using touch 

data collected from 10 participants with motor impairments. 

Our results showed that Smart Touch predicted (𝑥, 𝑦) 

coordinates of the users’ intended target locations over three 

times closer to the intended target than the native Land-on 

and Lift-off techniques reported by the built-in touch sensors 

found in the Microsoft PixelSense interactive tabletop. This 

increase in touch accuracy brings us closer to accessible and 

operable touch screens for people with motor impairments.   

The contributions of this work are: (1) an empirical 

characterization of the touch behaviors of 10 people with 

motor impairments; (2) a novel template-matching algorithm 

called Smart Touch, including a general extension of the $P 

point-cloud recognizer [36] to point-clouds with different 

point cardinalities; and (3) empirical results from a study of 

Smart Touch comparing it to the Microsoft PixelSense using 

the touch data collected from our 10 participants. This work 

takes a significant step toward realizing the vision of ability-

based design [42,44] for touch screens and for people with 

motor impairments. 

RELATED WORK 

This work is motivated by prior research on accessible touch 

screen technology, high precision touch techniques, theories 

of touch input, probabilistic input, and ability-based design.  

Understanding Touch Screen Accessibility for People 
with Motor Impairments 

There have been numerous investigations into understanding 

the accessibility of touch screens for people with motor 

impairments. Research has provided more understanding 

into the everyday use of touch screens by people with motor 

impairments [2,22,26,27]. In these investigations, touch-

enabled mobile devices have been acknowledged as 

improving independence and creating a sense of 

empowerment [2,22]. Findings also describe the accessibility 

challenges of current touch screens. Notably, in their analysis 

of YouTube videos with people physical disabilities 

interacting with touch screens, Anthony et al. [2] observed 

that individuals encountered difficulties using standard touch 

behaviors, and instead adopted a variety of different 

interaction styles, including the use of multiple fingers, 

hands, fists, and knuckles.  

In addition to touch screen use “in the wild,” researchers 

have also examined touch screen use in the lab 

[8,10,13,16,17,21,35,45]. Guerreiro et al. [16,17] explored 

how different interaction techniques and target properties 

impact the ability of users to acquire targets. Trewin et al. 

[35] found that for people with motor impairments, 

performing sliding and tapping gestures resulted in more 

errors and accidental activation of other touch screen 

features, such as zooming. They also found that users would 

slide their finger along the screen for stability as they 

approached their target. Our research builds upon and 

extends this prior research by providing an analysis of non-

single-finger touch, a form of interaction reported in 

previous research [2,35] but not thoroughly investigated.  

The research to-date in understanding touch accessibility has 

been both descriptive (detailing the difficulties of performing 

certain touch screen interactions) and prescriptive (providing 

design guidelines such as minimum widget size). Little 

advancement, however, has been made in the way of new 

algorithms, techniques, and approaches for fundamentally 

improving the accuracy of touch input for people with motor 

impairments. Notable exceptions include Biswas and 

Langdon [5], who created an algorithm to improve the 

pointing performance of users with motor impairments by 

measuring hand strength. Montague et al. [26] introduced a 

novel tap gesture recognizer to improve the accuracy of tap 

recognition on touch-enabled devices. In another invention, 

Montague et al. introduced the Shared User Modeling 

Framework [25], an adaptive framework that aimed to 

improve touch accessibility across devices and applications. 

Wacharamanotham et al. evaluated Swabbing [38], a 

technique for elderly adults to acquire targets by dragging 

their finger across a target rather than discretely tapping it. 

Unlike these techniques, which focused primarily on single 

finger touch input, Smart Touch improves touch accuracy 

while allowing users to interact with the screen in whichever 

way is most comfortable and natural for them.   



High-precision Touch Screen Interaction Techniques 

Accurately acquiring targets using a finger has been a 

limitation of touch screens since their inception, thanks in 

large part to the “fat finger” occlusion and precision 

problems [37]. As a result, researchers have developed 

several techniques to help users of any abilities to acquire 

targets. For instance, Potter et al. [29] investigated the offset-

cursor with three different selection  techniques, land-on, 

first-contact, and take-off. Sears and Shneiderman [34] 

added stabilization to the offset-cursor to improve pointing 

performance. Albinsson and Zhai [1] created Cross Keys and 

Precision-Handle, two pointing techniques that allow for 

pixel-level precision pointing. Benko et al. developed Dual 

Finger Selections [4], a collection of five techniques which 

leverage multi-touch by allowing the use of two fingers to 

acquire small targets. Shift by Vogel and Baudisch [37] is a 

technique that creates a callout when a finger occludes small 

targets, allowing such targets to be acquired quickly and 

accurately. Wigdor et al. invented LucidTouch [41], a device 

that solves the occlusion problem by allowing users to 

interact with targets by touching the back of the device.    

All of these techniques require users to possess fine motor 

control skills, making them inaccessible to many people with 

motor impairments. In contrast, Smart Touch was designed 

specifically to improve touch accuracy for users with 

reduced and poor motor control.  

Probabilistic Input 

Researchers have exploited the uncertain nature of touch 

input to improve its accuracy. Schwarz et al. proposed 

methods [31], frameworks [30], and an architecture [32] to 

handle uncertain input techniques, including touch input. Bi 

and Zhai developed Bayesian Touch [7], a statistical target 

acquisition technique based on Bayes’ rule and the bivariate 

Gaussian distribution principle of finger touch [6]. Weir et 

al. [39,40] created a machine learning approach that 

improved touch accuracy using the device’s reported (𝑥, 𝑦) 

touch location and the raw sensor data.  

Although probabilistic methods have been shown to improve 

touch accuracy, they also require the system to be target-

aware [3], requiring the system to have knowledge of all on-

screen targets. Target-aware systems are difficult to 

implement in the real-world because of the engineering and 

theoretical challenge they pose [9]. Smart Touch, however, 

is target-agnostic [43], requiring no information of the 

locations and dimensions of on-screen targets. As a result, 

Smart Touch has the potential to be much more easily 

deployed on current touch-enabled systems.   

Utilizing Users’ Mental Model of Touch 

Work by Holz and Baudisch [19,20] showed that touch 

screens introduce a systematic error by not taking into 

account users’ mental model of touch when determining their 

intended touch point. The authors were able to improve touch 

accuracy by employing a model based on the visual features 

of users’ fingers. 

Their approach demonstrated that using non-disabled users’ 

mental models of touch could improve touch accuracy. 

However, little is known about the mental models of touch 

for people with motor impairments. Our analysis provides a 

detailed view into the touch behaviors of people with motor 

impairments, while Smart Touch utilizes this knowledge to 

improve the accuracy and operability of touch screens.  

Ability-Based Design 

Our work is motivated by the concepts and principles of 

ability-based design [42,44], an approach to achieving 

accessible design that emphasizes discovering what users 

can do, instead of focusing on what they cannot do, and then 

creating systems that can adapt or be adapted to supporting 

the actual abilities of users. A key tenet of ability-based 

design is that the burden of adaptation should be placed on 

the system rather than on the user. Perhaps the best example 

of ability-based design is SUPPLE [14,15], a system that 

automatically generates user interfaces to best accommodate 

the unique mouse-pointing abilities of users. 

Smart Touch embodies the concepts and principles of ability-

based design by allowing users to touch “as they are” with 

whatever part of their hand they prefer and in the manner 

which is most comfortable and natural for them. Touch 

screens and their algorithms come to bear the burden of 

enabling a much wider range of touch-abilities to be effective 

for their operation than ever before. 

EXPLORATION OF MOTOR-IMPAIRED TOUCH  

To better understand how people with motor impairments 

interact with touch screens, we conducted a preliminary 

study where participants with motor impairments were asked 

to touch the center of a crosshairs displayed on a Microsoft 

PixelSense interactive tabletop.  

Participants 

We recruited 10 people (4 female, 6 male, average age 52.5 

years, SD=8.46) with motor impairments from a local 

organization that provides rehabilitation, job placement, and 

community living for people with physical disabilities. Six 

participants reported having greater control in their right arm 

and hand and four reported greater control in their left arm 

and hand. All participants were paid $30 for their 

participation, which lasted about one hour. Additional details 

about our participants can be found in Table 1.  

Apparatus 

Touch data was collected in an experiment testbed developed 

in C# .NET 4.5. All sessions were conducted on a Microsoft 

PixelSense interactive table running Windows 7. The testbed 

captured and logged all touch events registered by the sensor 

in the PixelSense. We selected the PixelSense as our 

platform because of the wealth of information provided by 

the touch sensor. Each registered touch is presented as an 

ellipse with a major and minor axis, and an orientation. To 

accommodate participants in wheelchairs, the PixelSense 

was placed on an adjustable-height table. The table was 

adjusted before every session to a height most comfortable 

for each participant.  



      Self-reported impairments† 

ID Age Sex Touch method Health condition Mo Sp St Tr Co Fa Gr Ho Se Dir Dis 

1 61 M Fist Cerebral Palsy            

2 37 F Fingers Cerebral Palsy            

3 42 F Fingers Spinal Cord Injury            

4 47 M Fingers Cerebral Palsy            

5 58 M Fingers Cerebral Palsy            

6 55 M Hand Cerebral Palsy            

7 63 F Fingers Cerebral Palsy            

8 51 F Fingers Cerebral Palsy            

9 59 M Fingers Multiple Sclerosis            

10 52 M Fingers & Hand Cerebral Palsy            

† Mo = slow movements, Sp = spasm, St = low strength, Tr = tremor, Co = poor coordination, Fa = rapid fatigue, Gr = difficulty gripping,  
Ho = difficulty holding, Se = lack of sensation, Dir = difficulty controlling direction, Dis = difficulty controlling distance. 

Table 1. Demographic information for our participants. Categories used for self-reporting impairments were from Findlater et al. [12].

 
Figure 2. A participant performs tasks on the Microsoft PixelSense. 

Procedure 

Seven participants engaged in study sessions in a computer 

lab at their organization and three engaged in sessions in our 

university lab.  Each session lasted approximately one hour. 

Sessions began with the experimenter explaining the 

capabilities of the PixelSense and what information would be 

collected during the session. Next, the experimenter asked 

the participant to demonstrate where he or she was most 

comfortable interacting on the screen. The experimenter then 

drew a rectangular region on the screen around the area the 

participant indicated was comfortable to reach. The size and 

placement of the region varied by participant. The 

rectangular region acted as the designated interactive space 

and targets only appeared inside that space. A crosshairs was 

then drawn by the testbed inside the interactive space.    

The participant was instructed to touch the center of the 

crosshairs in whichever way was most comfortable and 

natural for them. The experimenter asked the participant to 

demonstrate touching the crosshairs five times for practice. 

After, the data collection trials began.  

In each trial, a crosshairs was placed randomly inside the 

interactive region. A trial began when the first touch event 

was registered and ended after all registered touches had 

been removed and no new touches were detected for one 

second. This one second timeout was used to prevent trials 

from accidently advancing when registered touches would 

suddenly disappear and reappear due to the touch behavior 

of our participants. There was a three second countdown 

between trials.   

The participant was asked to complete trials at a pace that 

was most comfortable for him or her. Based on pilot testing, 

we set the maximum number of trials to 110. Due to fatigue, 

however, many of our participants could not complete all 110 

trials. Participants were instructed to complete as many trials 

as they could. On average, participants completed 94.4 trials. 

Results 

We collected a total of 944 trials from our 10 participants. 

Eleven trials were discarded because of a sensor error in 

reporting participants’ lift-off locations. In total, 932 trials 

were analyzed; see Table 2 for the number of trials 

completed by each participant. In the following sections, we 

provide an analysis of the collected touch data, detailing how 

various aspects of our participants’ touch behavior affects 

their ability to interact with touch screens. 

Concurrent Touches 

Across all participants, the average number of concurrent 

touches (i.e., the number of simultaneous touches registered 

by the sensor at any given time) was 2.30 (SD=1.38). To 

calculate the average number of concurrent touches, we 

portioned each trial into frames (a definition of a “frame” is 

provided in the next section) and we counted the number of 

active touches in each frame. 

 
Figure 3. P6 interacting with the PixelSense. P6 is using the entire 
left edge of his hand to interact with the touch screen.  

Many of our participants averaged more than one concurrent 

touch during a given trial. The presence of multiple 

concurrent touches is a result of the use of multiple fingers 

(see Figure 1) and various parts of the hand (Figure 3) when 

interacting with the screen. Distributions of the average 

number of concurrent touches for each participant are shown 

in Figure 4.  



 
Figure 4. Distribution of the average number of concurrent touches 
per trial. Due to their touch behavior, participants impacted the 
screen with various parts of the hand, resulting in multiple registered 
touches.    

Trial Duration 

The average duration of a trial across our participants was 

1870.82 ms (SD=3029.16). A trial began when the first touch 

event was registered and ended when all registered touches 

were removed. (The one second timeout used to ensure trials 

did not advance prematurely was not included in the trial 

duration.) Our results show that average target acquisition 

times for many of our participants are much longer for 

motor-impaired users than for what the literature reports for 

non-disabled users (600 ms to 1200 ms, depending on target 

size [28]). Mean trial duration times per participant are 

shown in Table 2.   

Touch-Down and Touch-Up 

In current touch screen systems, a target is acquired when a 

user successfully lands and lifts within the target bounds. To 

see how accurately our participants could land and lift near 

the displayed crosshairs in each trial, we measured the 

distance from the center of the ellipses that represent the first 

and last registered touches to the center of each crosshairs. 

The mean touch-down distance for our participants was 

9.71 cm (SD=8.69), and the mean touch-up distance was 

9.97 cm (SD=10.25). On the Microsoft PixelSense, a 

centimeter corresponded to about 22 pixels. Mean distances  

 
Figure 5. Distribution of distances between the touch-down (top) and 
touch-up (bottom) locations to the target center. Note that the 
distances are measured in centimeters. A centimeter on the Microsoft 
PixelSense is equivalent to about 22 pixels.  

for touch-up and touch-down are shown in Table 2. Figure 5 

shows the distribution of our participants’ touch-down and 

touch-up distances. 

Discussion 

Our data provides some important insights into the touch 

behavior of users with motor impairments. With respect to 

ID Trials        TD (cm)         TU  (cm)          CT     Time (ms) 

Table 2. The number of trials 
completed by each participant, the 
mean touch-down (TD) and mean 
touch-up (TU) distance to target 
center, the mean of the average 
number of concurrent touches per 
trial (CT), and the mean trial 
duration (Time). Standard 
deviations are shown in 

parentheses. 

1 100 27.03 (8.68) 34.51 (7.09) 2.06 (0.65) 3528.16 (2123.80) 

2 110 7.29 (3.72) 7.17 (4.13) 1.90 (0.66) 259.57 (302.61) 

3 110 8.89 (3.26) 8.09 (3.16) 1.89 (0.48) 398.49 (518.51) 

4 82 1.64 (0.83) 1.98 (0.88) 1.00 (0.00) 1841.21 (1925.17) 

5 76 7.93 (2.17) 8.16 (2.50) 2.93 (0.98) 2520.36 (1064.16) 

6 50 17.14 (3.56) 14.40 (4.96) 3.10 (0.73) 8477.38 (5679.49) 

7 84 1.43 (1.10) 0.76 (1.10) 1.35 (0.38) 867.46 (175.40) 

8 110 5.50 (4.89) 5.00 (5.01) 1.66 (0.45) 235.15 (210.88) 

9 110 7.56 (5.23) 6.84 (5.59) 1.92 (0.47) 290.53 (191.90) 

10 100 14.13 (6.34) 12.94 (4.62) 5.48 (1.01) 4206.29 (4343.25) 



touch-down and touch-up events, our participants’ average 

touch-down and touch-up distances from the target center 

were much higher than those reported in previous studies for 

non-disabled users; for instance, the average error offset for 

the non-disabled participants in Holz and Baudisch’s study 

was only 4 mm [20], compared to 97+ mm in our study. The 

much higher touch distances exhibited by our participants is 

a result of two observed behaviors. The first is that 

participants accidently impacted the screen with their palm 

or other fingers before they were prepared to touch the 

crosshairs. The same is true as they lifted their fingers or 

hand off the screen. Prematurely impacting the screen is a 

behavior also observed in other studies exploring touch 

screen use by people with motor impairments [35]. The 

second behavior is that participants would use the screen for 

support by sliding on it as they approached their target. 

Participants who used this approach experienced difficulties 

moving their hand and arm freely through the air. 

Participants would also use the screen for stability during 

lift-off, as they would move their hand away from the target 

and lift once it was comfortable for them. As a result of 

exhibiting these two behaviors, the touch-down and touch-

up locations registered by the system were quite far from the 

intended target. The landing and lifting distances were well 

beyond the widths of current touch screen widgets. For 

example, a typical 50 pixel button on the Microsoft 

PixelSense measures only 2.31 cm wide, a mere 23.79% of 

our average distance from target. Even previously 

recommended target sizes for motor-impaired users would 

not be large enough to accommodate the touch behaviors of 

our participants; for example, see Guerreiro et al. [17], who 

recommended a minimum target size of 12 mm.  

Another behavior exhibited by our participants was dragging 

multiple fingers and various parts of the hand while 

interacting with the screen. Some participants tried to use a 

single finger, but lacked the dexterity to touch with a fully 

extended finger. Instead, multiple fingers and parts of the 

hand impacted the screen throughout the trial, resulting in 

multiple concurrent touches. Other participants were unable 

to extend and fully control any of their fingers, using the fist 

or hand to interact with the screen. This behavior also 

resulted in multiple concurrent touches, as the system 

attempted to fit contact points to the various parts of the hand 

touching the screen (Figure 6). Current touch screen systems 

are not designed to accommodate varied multi-touch input 

for target acquisition tasks and previous research has found 

that it is common for users with motor impairments to 

accidently trigger multi-touch gestures when inadvertently 

touching with more than one finger [35].   

To improve touch screen accuracy, we must view the touch 

behavior of people with motor impairments holistically. 

Current touch screens place too much emphasis on the first 

and last contact points a user makes on the screen. Current 

touch screens also assume users can touch the screen with a 

fully extended finger, resulting in one contact point the 

system can use to infer which target the user is trying to  

 

Figure 6. Touch input frames from participants P1, P5, P6, and P10. 
Ellipses represent contact areas captured by the PixelSense. 

acquire. Instead of focusing on the land-on and lift-off 

locations of a single contact point, systems need to take into 

account the user’s entire touch process. A user’s touch 

process includes all the touch events that occur between the 

first and last contacts a user makes with the screen.  

Leveraging what we have learned from our exploration of 

motor-impaired touch, we created Smart Touch, a three-step 

user-specific template-matching algorithm that takes 

advantage of all the touch information provided in a user’s 

touch process to improve touch accuracy for people with 

motor impairments.  

THE DESIGN OF SMART TOUCH 

Smart Touch is a three-step user-specific template-matching 

algorithm that: (1) analyzes a user’s touch process to extract 

the most relevant touch data, (2) matches that data to 

previously observed training examples (the templates), and 

(3) resolves the user’s intended (𝑥, 𝑦) touch point. Template-

matching of touch patterns is employed to match the 

extracted touch data to previously observed touch instances. 

The location of the user’s intended target is predicted by 

adding an (𝑥, 𝑦) offset to the weighted centroid of the 

extracted touch data. In this section, we describe the design 

of our Smart Touch algorithm in detail.  

Pose Extraction 

The first step in our Smart Touch algorithm is to analyze the 

user’s entire touch process to extract the most relevant touch 

data. The touch process begins when the user first contacts 

the screen and ends once all registered touches have been 

removed. The touch process of users with motor impairments 

is typically longer and includes more touches than the touch 

process of non-disabled users. Our touch behavior 

exploration reported above describes why we cannot rely 

solely on the first and last touch locations as indicators of 

where the user is intending to touch. Instead, we must rely 

on all of the information provided throughout the user’s 

touch process. The steps to extract the touch data are 

explained in more detail below.  



Step 1: Deconstruct the Touch Process into Frames 

To extract the most relevant touch data, we first deconstruct 

the touch process into frames (Figure 7). A frame contains 

all of the captured touch data (i.e., the properties of the 

ellipses that represent the touches registered by the 

PixelSense) present at a given time throughout the touch 

process. A new frame is created every time a new touch is 

added, lost, or changed. A change event occurs when any of 

the properties of the ellipse representing the touch is 

changed, such as the center of the ellipse changing locations.   

 
Figure 7. Each frame represents a unique point in time in the user’s 
touch process. Every time a touch is added, changed, or lost, a new 
frame is created. This figure displays a typical touch process 
performed by our participants.  

Step 2: Evaluate the Stability of Touch Frames 

After partitioning the touch process into frames, we must 

decide on the frame from which to extract the touch data for 

matching. Based on observations made during our touch 

behavior exploration, we noticed that many of our 

participants tended to dwell when they neared their target. 

We decided that it is at this time that we want to extract the 

touch data. Dwelling results in neighboring frames having 

touches with similar properties. We call frames that exhibit 

small differences from the frames that precedes them stable. 

Conversely, frames that vary greatly from the frames that 

precede them are considered unstable. For a frame to be 

labeled as “stable,” it must be stable in two respects, 

movement and shape.  

Two stability scores, one each for movement and shape, are 

assigned to each frame. The movement stability score is 

assigned based on the difference between the location of the 

weighted-centroids of the ellipses that represent the touches 

in the frame being scored and the frame that precedes it. The 

shape stability score is assigned based on the difference 

between the sum of the area of the ellipses that represent the 

touches in the frame being scored and the frame that precedes 

it. A frame is considered movement- or shape-stable if its 

movement or shape scores are less than 3% of the sum of all 

movement and shape scores for all the frames in the touch 

process, a threshold that we found empirically to work well. 

A frame that is both movement- and shape-stable is 

categorized as stable overall (Figure 8). 

Step 3: Frame Selection 

After all frames have been categorized as stable or unstable, 

we iterate over all frames to find consecutive stable frames. 

For each set of consecutive stable frames, we determine their 

lifespans by subtracting the timestamps of the last and first 

frames in each set. Touch data is extracted from the frame 

that occurs halfway (with respect to time) through the life of 

 
Figure 8. Each of seven frames is labeled stable (highlighted) or 
unstable (gray) with respect to movement and shape. Frames that 
are both movement- and shape-stable are categorized as stable 
overall. 

the set of stable frames with the longest lifespan (Figure 9). 

The extracted touch data is called the indicative pose. The 

touch data in the indicative pose is then sent to a template-

matcher to compare the pose to previously observed poses. 

In the next section, we detail our pose-matching algorithm.  

 

Figure 9. The lifespan of each set of consecutive stable frames is 
calculated. Touch data is extracted from the frame that is present 
halfway through the set of stable frames with the longest lifespan.  

Pose Matching 

Once the touch data has been extracted as the indicative pose 

for the touch process, we compare it to templates of 

previously extracted poses (a pose is simply a frame of 

extracted touch data.) In this section, we detail the steps 

involved in our template-matching process. 

Translating the Pose 

All extracted touch data—poses serving as templates and the 

pose serving as the candidate—are translated to a common 

reference point. First, a bounding box is fit to the touch data 

in each pose. The top-left corner of the bounding box is then 

 

Figure 10. Touch data from two poses translated to the origin, 
prepared to undergo the template-matching process. 



translated to the reference point (0,0). Translation allows 

poses to be compared regardless of where touches occur on 

the touch screen (see Figure 10).  

Extending $P from Point-Matching to Ellipse-Matching 

At this point, the candidate pose C and the templates T have 

all been translated. Next, we want to find the template that 

most closely resembles the candidate. To match a candidate 

to a template, we extended the $P point-cloud stroke gesture 

recognizer [36]. The $P recognizer decomposes stroke 

gestures into point-clouds and uses a nearest-neighbor point-

correspondence algorithm to match a candidate gesture to a 

set of templates. To match the candidate point-cloud C to a 

given template point-cloud T, a function M matches each 

point in C to exactly one point in T. The goodness of M is 

defined as the sum of Euclidean distances for all pairs of 

points (Eq. 1). 

∑ ||𝐶𝑖 − 𝑇𝑗||  =  ∑ √(𝐶𝑖 . 𝑥 −  𝑇𝑗 . 𝑥)2 + (𝐶𝑖 . 𝑦 − 𝑇𝑗 . 𝑦)2       (1)

𝑛

𝑖=1

𝑛

𝑖=1

 

Our template-matcher utilizes the underlying behavior of $P 

to match each of the touch instances (i.e., the ellipses) in C 

to a touch instance in T. However, we had to extend the 

functionality of the $P template-matcher in two ways. First, 

the template-matcher had to account for the shape properties 

of the contact areas, which are ellipses. Unlike a point, which 

only consists of an (𝑥, 𝑦) coordinate, an ellipse has a major 

and minor axis, an orientation, and a center (𝑥, 𝑦) location. 

As a result, our scoring function cannot rely solely on the 

Euclidean distance between the centers of the ellipses in each 

pose. To account for the properties of ellipses, we extended 

$P’s Euclidean distance formula: the distance between two 

ellipses is defined as the amount of work required to 

transform one ellipse into another. Therefore, the distance D 

between ellipses a and b is the sum of the Euclidean distance 

between their centers, the difference between their major and 

minor axes, and the angular distance in degrees [43] between 

the orientation of the two ellipses (Eq. 2). 

𝐷 =  𝑤1 ∗ 𝜕 +  𝑤2 ∗ 𝑀 + 𝑤3 ∗ 𝑚 +  𝑤4 ∗  𝜃,                     (2) 

where ∑ 𝑤𝑖 = 1.00, and 

𝜕 =  √[(𝑎𝑥 − 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑦)
2

], where x and y are the 

center x- and y-coordinates of the ellipse,  

𝑀 = |𝑎𝑀 − 𝑏𝑀|, where M is the major axis length, 

𝑚 =  |𝑎𝑚 − 𝑏𝑚|, where m is the minor axis length, and 

𝜃 = |(|180 −  𝑎𝜃 +  𝑏𝜃  | mod 360) − 180|, where 𝜃 is the 

ellipse orientation in degrees. (See [43] for the origins of this 

angular distance formula.) Optimizing weights resulted in 

roughly equal weighting, so for simplicity each 𝑤𝑖  was set to 

0.25.  

The second extension to $P was to allow it to accommodate 

poses with an unequal number of ellipses. In the original $P 

recognizer, stroke gestures were resampled so that the 

candidate stroke and the template strokes always had the 

same number of points. This resampling procedure allowed 

each point in the candidate to match exactly one point in the 

template. Resampling all poses to have the same number of 

touches would not work in our case, as removing or adding 

touches would result in a loss of valuable information about 

a user’s touch process. And unlike stroke gestures, our 

touches do not have a path through space that they 

necessarily follow. Because we could not guarantee that C 

and T would have the same number of ellipses, we devised a 

recursive variant of $P’s point-cloud matching algorithm that 

allows for an unequal number of ellipses between the 

candidate and the template. The pseudocode for our 

recursive $P implementation can be found at the following 

link: http://bit.ly/10wbHmW. The gist of the algorithm is that 

ellipses in one pose can serve as the best-matched ellipse for 

multiple ellipses in the other pose; poses with very different 

ellipse counts are penalized appropriately; and ellipses that 

go entirely unmatched also increase distances appropriately. 

At the end of the pose-matching process, an N-best list is 

generated and the template with the lowest distance score 

represents the best match. After the candidate has been 

matched to a template, the candidate is translated back to its 

original position on the table. Then Smart Touch predicts the 

location of the user’s intended touch point, described next. 

Predicting the User’s Intended Touch Point 

Embedded in each template is an (𝑥, 𝑦) offset representing 

where the user’s intended target was located at the time of 

the template’s creation. (Training examples present a 

crosshairs so the intended target is known.) The (𝑥, 𝑦) offset 

is encoded as the distance from the weighted centroid of the 

template’s pose to the target’s center. This offset is then 

added to the weighted centroid of the candidate, with the 

resulting (𝑥, 𝑦) coordinate representing Smart Touch’s 

predicted intended touch location. 

EVALUATION OF SMART TOUCH 

To determine how accurately Smart Touch can predict a 

user’s intended touch point, we performed an evaluation of 

Smart Touch using the data collected from our 10 

participants, described above in our exploration of touch 

behavior. Smart Touch was used to extract one pose per trial 

for each trial performed by our 10 participants. As a result, 

each participant had the same number of poses available for 

testing as the number of trials he or she completed in our 

exploration of touch behavior study.  

Design and Analysis 

We conducted an initial experiment to determine at which 

number of templates Smart Touch was able to most 

accurately predict the participants’ intended touch location. 

The initial experiment was a within-subjects design with the 

following factor and levels: 

 Number of training examples E: 10, 20, 30, 40 

The second experiment compared the best version of Smart 

Touch from the initial experiment to the land-on and lift-off 

http://bit.ly/10wbHmW


locations reported by the PixelSense. The second experiment 

was a within-subjects design with the following factor and 

levels: 

 Selection Technique: Smart Touch, Land-on, Lift-off 

Land-on uses the centroid of the ellipse representing the first 

touch to contact the screen and Lift-off uses the centroid of 

the ellipse representing the last touch to leave the screen. 

Land-on and Lift-off are the selection schemes current touch 

screens use to determine if a target has been selected, as a 

user must successfully land and lift within a target’s bounds. 

We treated each of these as separate techniques for the sake 

of measuring distance from an intended touch point (a 

crosshairs). We did not use area targets (e.g., buttons) as we 

were interested not in target hit-rates but in distance from a 

presented (𝑥, 𝑦)  point.  

To conduct our evaluations, we used a testing procedure 

based on the methods used in machine learning [24] and 

followed in prior template-matching work [46]. Of the given 

number of poses T performed by each participant (see Table 

2), E poses were randomly extracted and treated as training 

examples. E was systematically increased from 10 to 40 in 

steps of 10. Of the remaining T – E poses left, one pose was 

randomly selected and treated as the candidate. Then it was 

matched against the library of E training examples (of 

course, the candidate could never serve as a template within 

the same trial.) For the first experiment, this procedure was 

performed 100 times for each participant per level of E. In 

total, 10 (participants) × 100 (trials) × 4 (E values) = 4000 

matching tests were conducted. For the second experiment, 

this procedure was performed 100 times for each participant, 

resulting in 10 (participants) × 100 (trials) = 1000 matching 

tests.  

The dependent variable of interest in both experiments was 

Error Offset, measured by the Euclidean distance between 

the center of the crosshairs in each trial (the actual known 

target) and the produced (𝑥, 𝑦)  location reported by Smart 

Touch in the first experiment, and by each Selection 

Technique in the second experiment. Error Offset was 

analyzed with a mixed-effects model analysis of variance 

[23]. Our model used fixed-effects for number of training 

examples E in the initial experiment, for Selection Technique 

in the second experiment, and for Trial (nested within 

number of training examples) in both experiments. Subject 

was a random effect to accommodate for repeated measures 

in both experiments. Although mixed-effects model analyses 

of variance retain large denominator degrees of freedom, 

such analyses make detection of significance no easier than 

traditional fixed-effects ANOVAs.  

Results 

This section presents the results of our first experiment to see 

which level of E provided the most accurate version of Smart 

Touch. It also presents results of our second experiment to 

see how well the best version of Smart Touch could predict 

the location of our participants’ intended touch compared to 

the native touch sensor’s reporting of Land-on and Lift-off. 

In the first experiment, mean distances from the intended 

crosshairs for each level of E are shown in Table 3. There 

was a significant effect of the number of training examples 

E (F3,3591=4.53, p<.01) on Error Offset. To correct for 

multiple pairwise comparisons, we used Holm’s sequential 

Bonferroni procedure [18]. Pairwise comparisons showed 

that E=30 was significantly more accurate than E=10 and 

E=20 (p<.05). Although E=30 was not significantly more 

accurate than E=40, we decided to use E=30 as the value for 

Smart Touch in the second experiment due to its lower 

average Error Offset compared to E=40. 

Number of 
examples E 

Smart Touch            
Error Offset (cm) 

10 3.53 (3.65) 

20 3.30 (3.69) 

30 3.01 (3.31) 

40 3.23 (4.39) 

Table 3. Overall means for Error Offset (lower is better) for Smart 
Touch by number of training examples. Standard deviations are 
shown in parentheses. 

In the second experiment, there was a significant effect of 

Selection Technique (F2,2889=505.76, p<.0001) on Error 

Offset. Pairwise comparisons showed that Smart Touch (at 

E=30) was significantly more accurate than both Land-on 

and Lift-off (p<.0001). Smart Touch predicted (𝑥, 𝑦) touch 

locations that were 30.71% and 28.26% of the distance to the 

target as the Land-on and Lift-off techniques, respectively. 

Put another way, Smart Touch predicted distances that were 

over three times closer to the intended targets than the native 

sensor techniques. In raw distance terms, this was 3.01 cm 

from the intended crosshairs for Smart Touch, and 9.80 cm 

and 10.65 cm for Land-on and Lift-off, respectively. Overall 

means and participant-specific error offsets are shown in 

Table 4. 

 Error Offset (cm) 

ID 
Smart Touch 

(E=30) 
Land-on  Lift-off  

1 6.39 (5.54) 26.15 (8.75) 35.34 (6.75) 

2 2.71 (2.25) 7.33 (3.56) 6.94 (3.78) 

3 3.88 (2.21) 9.39 (3.02) 8.47 (2.63) 

4 1.04 (0.89) 1.67 (0.93) 1.96 (0.94) 

5 1.73 (1.76) 7.87 (2.47) 7.99 (2.74) 

6 5.09 (3.58) 17.07 (3.67) 16.50 (11.73) 

7 1.02 (0.85) 1.15 (1.50) 1.75 (6.47) 

8 1.77 (1.83) 5.24 (5.01) 4.21 (5.11) 

9 2.21 (1.58) 7.14 (5.85) 7.91 (7.08) 

10 4.29 (4.01) 14.98 (5.71) 15.49 (8.74) 

MEAN  3.01 (3.31) 9.80 (8.59) 10.65 (11.41) 

Table 4. Overall means for Error Offset by Selection Technique for 
each participant (lower is better). Standard deviations are shown in 
parentheses. Smart Touch was much better than Land-on and Lift-
off in predicting the location of the participants’ intended target.  



DISCUSSION 

We wanted to discover if our Smart Touch algorithm could 

improve the touch accuracy of participants with motor 

impairments using the touch data collected during our touch 

behavior exploration. Our experiment results show that at 

3.01 cm of error offset, Smart Touch is significantly better 

than both Land-on and Lift-off in predicting the locations of 

users’ intended touch-points. With only 30 templates, which 

take under 8 minutes to collect, the average Smart Touch 

error offset across all 10 participants was over three times 

closer to intended crosshairs than the Land-on and Lift-off 

techniques. On average, Smart Touch was closer to the 

crosshairs for all 10 participants than either of the two native 

sensor techniques. Although not all participants were able to 

complete all 110 trials due to fatigue, we found no indication 

that fatigue negatively impacted the results of our 

experiment. The touch behavior of our participants remained 

quite consistent throughout all of the completed trials.   

The average Land-on and Lift-off error offsets of 9.80 cm 

and 10.65 cm produced by our participants are far outside the 

range of current touch screen widgets. Prior work has found 

common touch screen widgets to range between 2.6 mm and 

4.8 mm [28]. For the majority of our participants, even the 

recommended widget sizes for users with motor impairments 

(between 1.2 cm and 1.7 cm [17]) would not be big enough 

to provide an increase in touch accuracy when using either 

Land-on or Lift-off. However, with Smart Touch, by 

increasing accessible widget sizes to 3 cm, 7 of our 10 

participants could successfully interact with a tabletop 

device. And due to the large screen size, tabletop 

applications could afford to render 3 cm large touch targets. 

Our data shows that with 30 templates, we are able to provide 

significant increases in touch accuracy. Thirty touch 

examples can be collected from a user in under 8 minutes 

when he or she first begins to use a touch screen device. As 

tools and techniques that enable data collection “in the wild” 

are developed and deployed [11], Smart Touch could 

unobtrusively collect training examples as users interact with 

their touch screen devices over time.  

Limitations 

One limitation of this work is the generalizability of the 

touch behaviors exhibited by users on the Microsoft 

PixelSense to other touch screen devices, like phones or 

tablets, which have smaller form factors than interactive 

tables. It is possible that the ergonomics of the PixelSense 

influenced our participants’ touch behavior, although we 

were proactive in preventing any negative effects the 

PixelSense may have had on our participants’ abilities to 

interact with the screen. Other researchers have noted that 

users employ similar behaviors across touch screen types, 

but these researchers did not investigate touch to the extent 

provided in this paper [2,17,35].  

Another limitation is the generalizability of our Smart Touch 

algorithm to other touch screen devices. The wealth of touch 

data provided by the PixelSense was the reason it was chosen 

for the current study. We believe we can achieve similar 

results on other touch screen devices, such as the Apple iPad, 

even if the reported touch data is not as complete as what is 

reported by the PixelSense. Our belief stems from the 

resilience of our matching algorithm to changes in the 

weights of Eq. 2. Presumably this means the algorithm can 

be made effective even if, say, minor axes are not reported 

for ellipses. 

FUTURE WORK 

Future studies would include investigating the effectiveness 

of Smart Touch on touch screen mobile devices, such as 

smartphones and tablets. It would also be interesting to see 

how well Smart Touch performs with less accurate touch 

screen systems. Retrieving accurate touch readings, such as 

the orientation of a touch or the size of the major and minor 

axes of the ellipse fitted to the touch contact area, may be 

more difficult to acquire on certain capacitive-sensing 

mobile devices. We may, however, be able to utilize other 

sensor information to improve the Smart Touch algorithm, 

such as the amount of force applied to the screen.  

Another direction of work would test the effectiveness of 

Smart Touch for non-disabled users experiencing situational 

impairments [33]. Although Smart Touch was designed for 

people with motor impairments, the core principle of 

leveraging users’ touch behavior to improve touch accuracy 

could also be applied to non-disabled users under the effects 

of a situational impairment, such as while walking.  

CONCLUSION 

We have explored the touch behavior of 10 people with 

motor impairments and identified two key behaviors that 

impact touch screen accessibility. One behavior is that touch 

screens presume users can interact with the screen using a 

single fully extended finger. A second behavior is that touch 

screens presume users possess the fine motor-control skills 

to both land and lift within the bounds of a target. With Smart 

Touch, we have made progress on both of these challenges, 

cutting distances to intended targets by over a third compared 

to the locations reported by the native touch sensor. In so 

doing, we have championed ability-based design [42,44], 

which strives to allow people to use the abilities they have, 

and make devices and interfaces support those abilities as 

they are. Smart Touch brings us an important step closer to 

fully accessible and operable touch screens for all people of 

all abilities. 
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