
CSE507
Computer-Aided Reasoning for Software

Angelic Execution

Today

Last lecture
• Symbolic execution

Today
• Solvers as angelic oracles

to
pi

cs

So far, we have used solvers as demonic oracles

Verifier

Spec S

Solver

P ∧ ¬S

An input i on which P violates S

Program P

But solvers can also act as angelic oracles

Angelic
Interpreter

Solver

P ∧ S

A trace of P that satisfies S

P() {
 y = choose();
 …
 assert S;
}

1. Definitions
2. Implementations
3. Applications

Angelic non-determinism, two ways

Angelic choice:
choose(T)

Specification statement:
x1, …, xn ← [pre, post]

Robert Floyd, 1967 Carroll Morgan, 1988

A programming abstraction

Non-deterministically
chooses a value of (finite)
type T so that the program
terminates successfully.

Designed to abstract away the
details of backtracking search.

Angelic non-determinism, two ways

Angelic choice:
choose(T)

Specification statement:
x1, …, xn ← [pre, post]

Robert Floyd, 1967 Carroll Morgan, 1988

A programming abstraction A refinement abstraction

Non-deterministically
modifies the values of frame
variables x1, …, xn so that post
holds in the next state if pre
holds in the current state.

Designed to enable derivation
of programs from
specifications via step-wise
refinement.

Angelic non-determinism, two ways: an example

Angelic choice:
choose(T)

Specification statement:
x1, …, xn ← [pre, post]

s = 16
r = choose(int)
if (r ≥ 0)
 assert r*r ≤ s < (r+1)*(r+1)
else
 assert r*r ≤ s < (r-1)*(r-1)

s = 16
r ← [true,
 (r ≥ 0 ∧
 r*r ≤ s < (r+1)*(r+1)) ∨
 (r < 0 ∧
 r*r ≤ s < (r-1)*(r-1))]

Interleaves imperative and angelic
execution. As a result,
implementation requires global
constraint solving.

Alternates between angelic and
imperative execution. As a result,
implementation requires only local
constraint solving.

“Angelic Interpretation” “Mixed Interpretation”

Mixed interpretation with a model finder (1/4)

Java program with Alloy
specification statements

Squander PBnJ

http://people.csail.mit.edu/aleks/squander/
http://www.hesam.us/planb/

Mixed interpretation with a model finder (2/4)

Specification statements
describing insertion of a
new node z into a binary
search tree.

Call to the Squander mixed interpreter
ensures that the state of this tree and the
node z is mutated so that the insertion
specification is satisfied when the insert
method returns.

Execution steps:
• Serialize the relevant part of the heap to

a universe and bounds
• Use Kodkod to solve the specs against

the resulting universe / bounds
• Deserialize the solution (if any) and

update the heap accordingly

@Requires(“z.key !in this.nodes.key”)
@Ensures(“this.nodes = @old(this.nodes) + z”)
@Modifies(“this.root,
 this.nodes.left | _<1> = null,
 this.nodes.right | _<1> = null”)

public void insert(Node z) {
 Squander.exe(this, z); }

Mixed interpretation with a model finder (3/4)

@Requires(“z.key !in this.nodes.key”)
@Ensures(“this.nodes = @old(this.nodes) + z”)
@Modifies(“this.root,
 this.nodes.left | _<1> = null,
 this.nodes.right | _<1> = null”)

public void insert(Node z) {
 Squander.exe(this, z); }

n3
key: 6

n1
key: 5

n2
key: 0

n4
key: 1

left right

root
t1

T = {⟨t1⟩}

N = {⟨n1⟩, …, ⟨n4⟩}

null = {⟨null⟩}

this = {⟨t1⟩}

z = {⟨n4⟩}

ints = {⟨0⟩, ⟨1⟩, ⟨5⟩, ⟨6⟩ }

reachable objects

keyold = {⟨n1, 5⟩, …, ⟨n4, 1⟩}

rootold = {⟨t1, n1⟩}

leftold = {⟨n1, n2⟩, …, ⟨n4, null⟩}

rightold = {⟨n1, n3⟩, …, ⟨n4, null⟩}

pre-state

{} ⊆ root ⊆
{t1} × {n1, …, n4, null}

{⟨n1, n2⟩} ⊆ left ⊆
{n2, n3, n4} × {n1, …, n4, null}

{⟨n1, n3⟩} ⊆ right ⊆
{n2, n3, n4} × {n1, …, n4, null}

post-state
this

z

Mixed interpretation with a model finder (4/4)

@Requires(“z.key !in this.nodes.key”)
@Ensures(“this.nodes = @old(this.nodes) + z”)
@Modifies(“this.root,
 this.nodes.left | _<1> = null,
 this.nodes.right | _<1> = null”)

public void insert(Node z) {
 Squander.exe(this, z); }

Many more features (e.g., support for
obtaining all solutions, support for data
abstraction, etc.).

See Unifying Execution of Declarative
and Imperative Code for details.

Incompleteness due to
finitization: Squander
bounds the number of
new instances of a given
type that Kodkod can
create to satisfy the
specification.

http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1985863

Leon

Mixed interpretation with an SMT solver (1/3)

Scala program with
PureScala

specifications

Kaplan

PureScala is a pure,
Turing complete subset
of Scala that supports
unbounded datatypes
and arbitrary recursive
functions.

http://dl.acm.org/citation.cfm?id=2103675

Mixed interpretation with an SMT solver (2/3)

@spec def noneDivides(from: Int, j: Int) : Boolean {
 from == j ||
 (j % from != 0 && noneDivides(from+1, j))
}

@spec def isPrime(i: Int) : Boolean {
 i >= 2 && noneDivides(2, i)
}

val primes =
((isPrime(_Int)) minimizing
 ((x:Int) => x)).findAll

> primes.take(10).toList
List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

Recursive specification
functions. Mutual
recursion also allowed.

Call the Kaplan mixed interpreter
to obtain the first 10 primes.

Two execution modes:
• Eager: uses Leon to find a

satisfying assignment for a given
specification.

• Lazy: accumulates specifications,
checking their feasibility, until the
programmer asks for the value of a
logical variable. The variable is
then frozen (permanently bound)
to the returned value.

Mixed interpretation with an SMT solver (3/3)

Many more features (e.g., support
for optimization).

See Constraints as Control for
details.

Incompleteness due to
undecidability of
PureScala.

@spec def noneDivides(from: Int, j: Int) : Boolean {
 from == j ||
 (j % from != 0 && noneDivides(from+1, j))
}

@spec def isPrime(i: Int) : Boolean {
 i >= 2 && noneDivides(2, i)
}

val primes =
((isPrime(_Int)) minimizing
 ((x:Int) => x)).findAll

> primes.take(10).toList
List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

http://dl.acm.org/citation.cfm?id=2103675

Angelic interpretation with a solver

s = 16
r = choose(int)
if (r ≥ 0)
 assert r*r ≤ s < (r+1)*(r+1)
else
 assert r*r ≤ s < (r-1)*(r-1)

Execution steps:
• Translate to the entire program to

constraints using either BMC or SE.
• Query the solver for one or all

solutions that satisfy the constraints.
• Convert each solution to a valid

program trace (represented, e.g., as
a sequence of choices made by the
oracle in a given execution).

Applications of angelic execution

Declarative mocking [Samimi et al., ISSTA’13]

Angelic debugging [Chandra et al., ICSE’11]

Imperative/declarative programming [Milicevic et al., ICSE’11]

Algorithm development [Bodik et al., POPL’10]

Dynamic program repair [Samimi et al., ECOOP’10]

Test case generation [Khurshid et al., ASE’01]

…

Summary

Today
• Angelic nondeterminism with specifications

statements and angelic choice

• Angelic execution with model finders and
SMT solvers

• Applications of angelic execution

Next lecture
• Program synthesis

