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Angelic Execution



Today

Last lecture
• Symbolic execution

Today  
• Solvers as angelic oracles
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So far, we have used solvers as demonic oracles

Verifier

Spec S

Solver

P ∧ ¬S

An input i on which P violates S

Program P



But solvers can also act as angelic oracles

Angelic 
Interpreter

Solver

P ∧ S

A trace of P that satisfies S

P() { 
 y = choose(); 
 … 
 assert S; 
}

1. Definitions 
2. Implementations 
3. Applications



Angelic non-determinism, two ways

Angelic choice:  
choose(T)

Specification statement:  
x1, …, xn ← [pre, post]

Robert Floyd, 1967 Carroll Morgan, 1988

A programming abstraction

Non-deterministically 
chooses a value of (finite) 
type T so that the program 
terminates successfully.

Designed to abstract away the 
details of backtracking search.



Angelic non-determinism, two ways

Angelic choice:  
choose(T)

Specification statement:  
x1, …, xn ← [pre, post]

Robert Floyd, 1967 Carroll Morgan, 1988

A programming abstraction A refinement abstraction

Non-deterministically 
modifies the values of frame 
variables x1, …, xn so that post 
holds in the next state if pre 
holds in the current state.

Designed to enable derivation 
of programs from 
specifications via step-wise 
refinement.



Angelic non-determinism, two ways: an example

Angelic choice:  
choose(T)

Specification statement:  
x1, …, xn ← [pre, post]

s = 16 
r = choose(int) 
if (r ≥ 0) 
  assert r*r ≤ s < (r+1)*(r+1) 
else 
  assert r*r ≤ s < (r-1)*(r-1) 

s = 16 
r ← [true,  
     (r ≥ 0 ∧  
      r*r ≤ s < (r+1)*(r+1)) ∨ 
     (r < 0 ∧ 
      r*r ≤ s < (r-1)*(r-1))] 

Interleaves imperative and angelic 
execution.   As a result, 
implementation requires global 
constraint solving.

Alternates between angelic and 
imperative execution.  As a result,  
implementation requires only local 
constraint solving.

“Angelic Interpretation” “Mixed Interpretation”



Mixed interpretation with a model finder (1/4)

Java program with Alloy 
specification statements

Squander PBnJ

http://people.csail.mit.edu/aleks/squander/
http://www.hesam.us/planb/


Mixed interpretation with a model finder (2/4)

Specification statements 
describing insertion of a 
new node z into a binary 
search tree.

Call to the Squander mixed interpreter 
ensures that the state of this tree and the 
node z is mutated so that the insertion 
specification is satisfied when the insert 
method returns.

Execution steps: 
• Serialize the relevant part of the heap to 

a universe and bounds
• Use Kodkod to solve the specs against 

the resulting universe / bounds 
• Deserialize the solution (if any) and 

update the heap accordingly

@Requires(“z.key !in this.nodes.key”) 
@Ensures(“this.nodes = @old(this.nodes) + z”) 
@Modifies(“this.root,  
           this.nodes.left | _<1> = null, 
           this.nodes.right | _<1> = null”) 

public void insert(Node z) { 
  Squander.exe(this, z); } 



Mixed interpretation with a model finder (3/4)

@Requires(“z.key !in this.nodes.key”) 
@Ensures(“this.nodes = @old(this.nodes) + z”) 
@Modifies(“this.root,  
           this.nodes.left | _<1> = null, 
           this.nodes.right | _<1> = null”) 

public void insert(Node z) { 
  Squander.exe(this, z); } 

n3 
key: 6

n1 
key: 5

n2 
key: 0

n4 
key: 1

left right

root
t1

T = {⟨t1⟩}

N = {⟨n1⟩, …, ⟨n4⟩}

null = {⟨null⟩}

this = {⟨t1⟩}

z = {⟨n4⟩}

ints = {⟨0⟩, ⟨1⟩, ⟨5⟩, ⟨6⟩ }

reachable objects

keyold = {⟨n1, 5⟩, …, ⟨n4, 1⟩}

rootold = {⟨t1, n1⟩}

leftold = {⟨n1, n2⟩, …, ⟨n4, null⟩}

rightold = {⟨n1, n3⟩, …, ⟨n4, null⟩}

pre-state

{} ⊆ root ⊆                          
{t1} × {n1, …, n4, null}

{⟨n1, n2⟩} ⊆ left ⊆                 
{n2, n3, n4} × {n1, …, n4, null}

{⟨n1, n3⟩} ⊆ right ⊆                
{n2, n3, n4} × {n1, …, n4, null}

post-state
this

z



Mixed interpretation with a model finder (4/4)

@Requires(“z.key !in this.nodes.key”) 
@Ensures(“this.nodes = @old(this.nodes) + z”) 
@Modifies(“this.root,  
           this.nodes.left | _<1> = null, 
           this.nodes.right | _<1> = null”) 

public void insert(Node z) { 
  Squander.exe(this, z); } 

Many more features (e.g., support for 
obtaining all solutions, support for data 
abstraction, etc.).

See Unifying Execution of Declarative 
and Imperative Code for details.

Incompleteness due to 
finitization:  Squander 
bounds the number of 
new instances of a given 
type that Kodkod can 
create to satisfy the 
specification.

http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1985863


Leon

Mixed interpretation with an SMT solver (1/3)

Scala program with 
PureScala 

specifications

Kaplan

PureScala is a pure, 
Turing complete subset 
of Scala that supports 
unbounded datatypes 
and arbitrary recursive 
functions.

http://dl.acm.org/citation.cfm?id=2103675


Mixed interpretation with an SMT solver (2/3)

@spec def noneDivides(from: Int, j: Int) : Boolean { 
  from == j ||  
  (j % from != 0 && noneDivides(from+1, j)) 
} 

@spec def isPrime(i: Int) : Boolean { 
  i >= 2 && noneDivides(2, i) 
} 

val primes =  
((isPrime(_Int)) minimizing  
 ((x:Int) => x)).findAll  

> primes.take(10).toList 
List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29) 

Recursive specification 
functions.  Mutual 
recursion also allowed.

Call the Kaplan mixed interpreter 
to obtain the first 10 primes.

Two execution modes: 
• Eager:  uses Leon to find a 

satisfying assignment for a given 
specification.

• Lazy:  accumulates specifications, 
checking their feasibility, until the 
programmer asks for the value of a 
logical variable.  The variable is 
then frozen (permanently bound) 
to the returned value.



Mixed interpretation with an SMT solver (3/3)

Many more features (e.g., support 
for optimization).

See Constraints as Control for 
details.

Incompleteness due to 
undecidability of 
PureScala. 

@spec def noneDivides(from: Int, j: Int) : Boolean { 
  from == j ||  
  (j % from != 0 && noneDivides(from+1, j)) 
} 

@spec def isPrime(i: Int) : Boolean { 
  i >= 2 && noneDivides(2, i) 
} 

val primes =  
((isPrime(_Int)) minimizing  
 ((x:Int) => x)).findAll  

> primes.take(10).toList 
List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29) 

http://dl.acm.org/citation.cfm?id=2103675


Angelic interpretation with a solver

s = 16 
r = choose(int) 
if (r ≥ 0) 
  assert r*r ≤ s < (r+1)*(r+1) 
else 
  assert r*r ≤ s < (r-1)*(r-1) 

Execution steps: 
• Translate to the entire program to 

constraints using either BMC or SE.
• Query the solver for one or all 

solutions that satisfy the constraints.
• Convert each solution to a valid 

program trace (represented, e.g., as 
a sequence of choices made by the 
oracle in a given execution).



Applications of angelic execution

Declarative mocking [Samimi et al., ISSTA’13]

Angelic debugging [Chandra et al., ICSE’11]

Imperative/declarative programming [Milicevic et al., ICSE’11]

Algorithm development [Bodik et al., POPL’10]

Dynamic program repair [Samimi et al., ECOOP’10]

Test case generation [Khurshid et al., ASE’01]

…



Summary

Today
• Angelic nondeterminism with specifications 

statements and angelic choice

• Angelic execution with model finders and 
SMT solvers

• Applications of angelic execution

Next lecture
• Program synthesis


