Symbolic Execution



Today

Last lecture

* Verification with Dafny

Today
- Symbolic execution: strongest postconditions for finite programs

+ Concolic testing



The spectrum of program validation tools

& Symbolic Execution

E.g., JPF, Klee
Concolic Testing &

Whitebox Fuzzing E.g., SAGE, Pex, CUTE, DART

Confidence

Cost (programmer effort, time, expertise)



A brief history of symbolic execution

1976: A system to generate test data and symbolically
execute programs (Lori Clarke)

1976: Symbolic execution and program testing (James King)

2005-present: practical symbolic execution
» Using SMT solvers
* Heuristics to control exponential explosion
- Heap modeling and reasoning about pointers
* Environment modeling

* Dealing with solver limitations



Symbolic execution: basic idea

XA
def f ( ) -
e X, Yy):
if (x > y): A>B/ \ASB
X =X+Y x~»A+B X A
y =X -y
X=X-Y yr B yr B
if (x —y > 0): true l feasible
assert false
return (x, y) x»A+B
yr A
Execute the program on symbolic values. true l
Symbolic state maps variables to symbolic values. % B
Path condition is a quantifier-free formula over yrA
the symbolic inputs that encodes all branch B-A>0 / \B _A <0
decisions taken so far.
All paths in the program form its execution tree X 8 X+ B
P Prog , y - A y A

in which some paths are feasible and some are

infeasible. infeasible feasible



Symbolic execution: practical issues

Loops and recursion: infinite execution trees

Path explosion: exponentially many paths

Heap modeling: symbolic data structures and pointers
Solver limitations: dealing with complex PCs

Environment modeling: dealing with native / system / library calls



Loops and recursion

Dealing with infinite execution trees:
- Finitize paths by unrolling loops and recursion (bounded verification)

- Finitize paths by limiting the size of PCs (bounded verification)

 Use loop invariants (verification)

init;
assert I;
init; havoc targets(B);
while (C) { assume I;
B; if (C) {
I3 B;
assert P; assert I;

assume false:

}

assert P;



Path explosion

Achieving good coverage in the presence of exponentially many paths:
* Select next branch at random
- Select next branch based on coverage

* Interleave symbolic execution with random testing

° %3 %3

symbolic execution random testing interleaved execution



Heap modeling

Modeling symbolic heap values and pointers

- Bit-precise memory modeling with the theory of arrays
(EXE, Klee, SAGE)

- Lazy concretization (JPF)

» Concolic lazy concretization (CUTE)



Heap modeling: lazy concretization

class Node {
int elem;
Node next;

}

n = symbolic(Node);
X = n.next;

A0
ne AO elem:?
next:?
AO.next = null AO.next =Al
AO.next = A0
n~ AOQ n~ A0 n~ AOQ
x  null x ~» A0 xp Al
A0 A0 A0 Al
elem:? elem:? elem:? elem:?

next: null next: AO next: Al next:?



Heap modeling:

concolic testing

Concrete PC
typedef struct cell { il
int v; p-= x>0 A p=null
struct cell xnext; X 236 p
} cell; A0
int f(int v) { next: null pP AO x>0 A P-#T)U” A
return 2xv + 1; v: 634 X+ 236 bv #2x + |
; A0
' i next: null ~ A0 x>0 A pznull A
int testme(cell *p, int x) { : P by =2x+ 1 A
if (x > 0) v: 3 X P |
if (p !'= NULL) p.next #p
if (f(x) == p->v) A0 . 0 p
if (p—>next == p) next: AQO pr A0 X A pFnull A
assert false; 3 < | bv=2x+ 1 A
return 0; Ve p.next = p
¥

Execute concretely and
symbolically. Negate last decision
and solve for new inputs.



Solver limitations

Reducing the demands on the solver:
*  On-the-fly expression simplification
* Incremental solving
» Solution caching

- Substituting concrete values for symbolic in complex PCs (CUTE)



Environment modeling

Dealing with system / native / library calls:
- Partial state concretization

 Manual models of the environment (Klee)



summary

Today

* Practical symbolic execution and concolic testing

NeXxt lecture

- Angelic execution



