
CSE507
Computer-Aided Reasoning for Software

Reasoning about Programs II

Overview

Last lecture
• Reasoning about (partial) correctness with Hoare Logic

Today
• Automating Hoare Logic with verification condition

generation

Reminders
• HW2 is due tonight.

to
pi

cs

Recap: Imperative Programming Language (IMP)

Expression E

• Z | V | E1 + E2 | E1 * E2

Conditional C

• true | false | E1 = E2 | E1 ≤ E2

Statement S

• skip (Skip)

• abort (Abort)

• V := E (Assignment)

• S1; S2 (Composition)

• if C then S1 else S2 (If)

• while C do S (While)

Recap: inference rules for Hoare logic

⊢ {P1} S {Q1} P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

⊢ {P} skip {P}

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R} ⊢ {R} S2 {Q}

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q} ⊢ {P∧¬C} S2 {Q}

⊢ {P} if C then S1 else S2 {Q}

⊢ {P∧C} S {P}

⊢ {P} while C do S {P∧¬C}

loop invariant

⊢ {true} abort {false}

Challenge: manual proof construction is tedious!

Hoare Logic proofs are highly
manual:

• When to apply the rule of
consequence?

• What loop invariants to use?

{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n}
{x+1≤ n} // consequence
x := x + 1
{x ≤ n} // assignment

{x ≤ n ∧ x ≥ n} // while
{x = n} // consequence

{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n}

x := x + 1

{x = n} // postcondition

Challenge: manual proof construction is tedious!

{x ≤ n} // precondition
while (x < n) do

{x ≤ n } // loop invariant

x := x + 1

{x = n} // postcondition

Hoare Logic proofs are highly
manual:

• When to apply the rule of
consequence?

• What loop invariants to use?

We can automate much of the
proof process with verification
condition generation!

• But loop invariants still need to
be provided …

Automating Hoare logic with VC generation

Program annotated with
pre/post conditions, loop

invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

A formula φ generated
automatically from the
annotated program.

The program satisfies the
specification if φ is valid.

Automating Hoare logic with VC generation

Forwards computation:

• Starting from the precondition, generate
formulas to prove the postcondition.

• Based on computing strongest
postconditions (sp).

Backwards computation:

• Starting from the postcondition,
generate formulas to prove the
precondition.

• Based on computing weakest liberal
preconditions (wp).

Program annotated with
pre/post conditions, loop

invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

Intermediate Verification
Language (IVL)

VC generation with WP and SP

sp(S, P)
• The strongest predicate that holds for

states produced by executing S on a state
satisfying P.

wp(S, Q)
• The weakest predicate that guarantees Q

will hold for states produced by executing
S on a state satisfying that predicate.

{P} S {Q} is valid if
• P ⇒ wp(S, Q) or

• sp(S, P) ⇒ Q

Symbolic execution, covered
in next lecture, computes SPs
for finite programs (no
unbounded loops).

Today, we’ll see how to
compute weakest liberal
preconditions (WP) for IMP.

This lets us verify partial
correctness properties.

VC generation with WP

Program annotated with
pre/post conditions, loop

invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

Intermediate Verification
Language (IVL)

VC generation with WP: from IMP to IVL

Program annotated with
pre/post conditions, loop

invariants (IMP)

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

Intermediate Verification
Language (IVL)

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S |

if C then S else S |

while C {I} do S

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S |

if C then S else S |

assert C | assume C | havoc V

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S |

if C then S else S |

while C {I} do S

{P} S {Q}

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S |

if C then S else S |

while C {I} do S

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S |

if C then S else S |

assert C | assume C | havoc V

VC generation with WP: loop-free code

Program annotated with
pre/post conditions, loop

invariants (IMP)

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

Intermediate Verification
Language (IVL)

{P} S {Q}

VC generation with WP: loop-free code

wp(S, Q):
• wp(skip, Q) = Q

• wp(abort, Q) = true

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q))

VC generation with WP: what about loops?

wp(S, Q):
• wp(skip, Q) = Q

• wp(abort, Q) = true

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q))

• wp(while C {I} do S, Q) = ?✗

A fixpoint! In general,
cannot be expressed as a
syntactic construction in
terms of the postcondition.

Use loop invariants to
approximate loop behavior.
Then check each invariant is
correct and strong enough.

Use loop invariants to
approximate loop behavior.
Then check each invariant is
correct and strong enough.

while C {I} do S

assert I;

havoc x; … // for each loop target x

assume I;

if C

then S; assert I; assume false;

else skip;

wp(S, Q):
• wp(assert C, Q) = C ∧ Q

• wp(assume C, Q) = C → Q

• wp(havoc x, Q) = ∀ x . Q

VC generation with WP: what about loops?

Cut the loop.

VC generation with WP: putting it all together

wp(S, Q):
• wp(skip, Q) = Q

• wp(abort, Q) = true

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) =
(C → wp(S1, Q)) ∧ (¬C → wp(S2, Q))

• wp(assert C, Q) = C ∧ Q

• wp(assume C, Q) = C → Q

• wp(havoc x, Q) = ∀ x . Q

1. Translate IMP to IVL by
cutting loops.

2. Compute WP for IVL.

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the
following formula is valid

P → wp(SIVL, Q)

The other direction doesn’t hold
because loop invariants may not be
strong enough or they may be
incorrect. Might get false alarms.

Summary

Today
• Automating Hoare Logic with VCG based on WPs

Next lecture
• Guest lecture by Rustan Leino!

• Verification with Dafny, Boogie, and Z3.

• On Zoom, see Canvas for the link.

