Reasoning about Programs Il

Overview

Last lecture

- Reasoning about (partial) correctness with Hoare Logic

Today
- Automating Hoare Logic with verification condition

generation

Reminders

- HW2 is due tonight.

Recap: Imperative Programming Language (IMP)

Expression E

- Z|V|EI+E|E *E
Conditional C

* true |false |EI=E2 | EI = E

Statement S

- skip (Skip)

- abort (Abort)

- V:=E (Assignment)
- Si;S (Composition)

- if C then S, else S; (If)
- whileCdo S (While)

Recap: inference rules for Hoare logic

= {P} S| {R} - {R} $,{Q}
— {P} skip {P} — {P} Si; S {Q}

— {true} abort {false} = {PAC} S {Q} - {PA-C} S, {Q}

— {P} if C then S, else S, {Q}

- {Q[E/x]} x := E{Q}

F{P1}S{Qi} P=P QI =0Q — {PAC} S {P}
~ {P} S {Q} — {P} while C do S {PA~C}

loop invariant

Challenge: manual proof construction is tedious!

Hoare Logic proofs are highly

{x =n}

while (x < n) do T
{x=nAx<n} * When to apply the rule of
{x+I=<n} /| consequence consequence?
X=X+ | * What loop invariants to use?
{x = n} [/ assighment

{x=nAXx=n} I/ while

{x = n} /| consequence

Challenge: manual proof construction is tedious!

Hoare Logic proofs are highly

{x = n} /] precondition I
while (x < n) do manual
{x=n } /I loop invariant * When to apply the rule of
consequence!
x=x+1 * What loop invariants to use?
We can automate much of the
{x = n} /I postcondition proof process with verification

condition generation!

* But loop invariants still need to
be provided ...

Automating Hoare logic with VC generation

Program annotated with
pre/post conditions, loop
Invariants

Verification Condition
Generator (VCG)

verification
condition (VC)

SMT solver

A formula ¢ generated
automatically from the
annotated program.

The program satisfies the
specification if @ is valid.

Automating Hoare logic with VC generation

Program annotated with
pre/post conditions, loop
Invariants

Intermediate Verification
Language (IVL)

Verification Condition
Generator (VCG)

verification
condition (VC)

SMT solver

Forwards computation:

- Starting from the precondition, generate

formulas to prove the postcondition.

- Based on computing strongest

postconditions (sp).

Backwards computation:

- Starting from the postcondition,

generate formulas to prove the
precondition.

- Based on computing weakest liberal
preconditions (wp).

VC generation with WP and SP

sp(S, P) Symbolic execution, covered
in next lecture, computes SPs
for finite programs (no
unbounded loops).

+ The strongest predicate that holds for
states produced by executing S on a state
satisfying P.

wp(S; Q)
Today, we'll see how to
* The weakest predicate that guarantees Q compute weakest liberal

will hold for states produced by executing - preconditions (WP) for IMP

S on a state satisfying that predicate.
This lets us verify partial

{P} S {Q} is valid if correctness properties.
* P=wp(S,Q)or
- sp(S,P) = Q

VC generation with WP

Program annotated with
pre/post conditions, loop
invariants

Intermediate Verification
Language (IVL)

Verification Condition
Generator (VCG)

verification
condition (VC)

SMT solver

VC generation with WP: from IMP to IVL

Program annotated with
pre/post conditions, loop
invariants (IMP)

Intermediate Verification
Language (IVL)

E«==Z|V|E+E|E*E {P} S {Q}
C:=true|false |[E=E|E<E
S == skip|abort| V:=E |S;S |

if C then S else S |

while C{l} do S

E«==Z|V|E+E|E*E
C:==true|false |E=E|E<E
S == skip|abort| V:=E |S;S |

if CthenS else S|

assert C | assume C | havocV

VC generation with WP: loop-free code

Program annotated with {P} S {Q}
pre/post conditions, loop
invariants (IMF) S:= skip|abort| V:=E [$;$ |

Intermediate Verification if C then S else S |
Language (IVL)

Verification Condition
Generator (VCG)

S == skip|abort| V:=E |§;S |
if CthenS else S|

VC generation with WP: loop-free code

wp(S; Q):
- wp(skip,Q) = Q
- wp(abort, Q) = true
- wp(x:=E Q) =Q[E/X]
* wp(S1;S2, Q) = wp(Si, wp(S2, Q))
- wp(if C then S, else S, Q) = (C — wp(S1, Q)) A (AC — wp(S2, Q))

VC generation with WP: what about loops?

wp(S; Q):
* wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x:=E Q) =Q[E/X]
* Wp(S1;52, Q) = wp(S1, wp(52, Q))
- wp(if C then S, else S, Q) = (C — wp(S1, Q) A (7C — wp(S2, Q))

* wp(whileC doS5,Q)=X

A fixpoint! In general, Use loop invariants to
cannot be expressed as a approximate loop behavior.
syntactic construction in Then check each invariant is

terms of the postcondition. correct and strong enough.

VC generation with WP: what about loops?

while C{l} do S

Cut the loop.

assert |;

havoc x; ... // for each loop target x
assume |;

if C

then §; assert |; assume false;
else skip;

Use loop invariants to
approximate loop behavior.
Then check each invariant is
correct and strong enough.

wp(S; Q):
- wp(assert C,Q)=CAQ
- wp(assume C,Q)=C—->Q
- wp(havoc x,Q) = v x.Q

VC generation with WP: putting it all together

|. Translate IMP to IVL b
wp(S : Y
PG, Q) cutting loops.

- wp(skip,Q) = Q

- wp(abort, Q) = true

- wp(x:=E Q) =Q[E/X]

* wp(S1;S2, Q) = wp(S1, wp(S2, Q))

- wp(if C then §, else S, Q) =
(C — wp(S1,Q)) A (7C — wp(S2, Q))

- wp(assert C,Q)=CAQ

2. Compute WP for IVL.

- wp(assume C,Q)=C - Q
- wp(havoc x,Q) = v x.Q

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the
following formula is valid

P — wp(Siv,, Q)

The other direction doesn’t hold
because loop invariants may not be
strong enough or they may be
incorrect. Might get false alarms.

summary

Today
- Automating Hoare Logic with VCG based on VWPs

Next lecture
* Guest lecture by Rustan Leino!
* Verification with Dafny, Boogie, and Z3.

« On Zoom, see Canvas for the link.

