Computer-Aided Reasoning for Software

Reasoning about Programs II

Overview

Last lecture

• Reasoning about (partial) correctness with Hoare Logic

Today

Automating Hoare Logic with verification condition generation

Reminders

• HW2 is due tonight.

Recap: Imperative Programming Language (IMP)

Expression E

• $Z | V | E_1 + E_2 | E_1 * E_2$

Conditional C

• true | false | $E_1 = E_2 | E_1 \le E_2$

Statement S

- skip (Skip)
- **abort** (Abort)
- V := E (Assignment)
- S₁; S₂ (Composition)
- if C then S_1 else S_2 (lf)
- while C do S (While)

Recap: inference rules for Hoare logic

 \vdash {P} skip {P}

 $\begin{array}{c} \vdash \{P\} \ S_1 \, \{R\} & \vdash \{R\} \ S_2 \, \{Q\} \\ \\ \vdash \{P\} \ S_1; \, S_2 \, \{Q\} \end{array} \end{array}$

⊢ {true} **abort** {false}

 $\vdash \{P \land C\} S_1 \{Q\} \vdash \{P \land \neg C\} S_2 \{Q\}$

 \vdash {P} if C then S₁ else S₂ {Q}

 $\vdash \{Q[E/x]\} := E \{Q\}$

 $\vdash \{P_1\} S \{Q_1\} \quad P \Rightarrow P_1 \quad Q_1 \Rightarrow Q$ $\vdash \{P\} S \{Q\}$

Challenge: manual proof construction is tedious!

 $\{x \le n\}$ while (x < n) do $\{x \le n \land x < n\}$ $\{x+l \le n\}$ x := x + l $\{x \le n\}$ $\{x \le n \land x \ge n\}$ $\{x \le n \land x \ge n\}$ $\{x = n\}$

- // consequence
 // assignment
- // while
- // consequence

Hoare Logic proofs are highly manual:

- When to apply the rule of consequence?
- What loop invariants to use?

Challenge: manual proof construction is tedious!

{x ≤ n} while (x < n) do	// precondition	Hoare Logic proofs are highly manual:
{ x ≤ n }	// loop invariant	 When to apply the rule of consequence?
x := x + I		• What loop invariants to use?
{x = n}	// postcondition	We can automate much of the proof process with verification condition generation!
		 But loop invariants still need to be provided

Automating Hoare logic with VC generation

Program annotated with pre/post conditions, loop invariants

Verification Condition Generator (VCG)

> verification condition (VC)

> > **SMT** solver

A formula φ generated automatically from the annotated program.

The program satisfies the specification if ϕ is valid.

Automating Hoare logic with VC generation

Forwards computation:

- Starting from the precondition, generate formulas to prove the postcondition.
- Based on computing strongest postconditions (sp).

Backwards computation:

- Starting from the postcondition, generate formulas to prove the precondition.
- Based on computing weakest liberal preconditions (wp).

VC generation with WP and SP

sp(S, P)

 The strongest predicate that holds for states produced by executing S on a state satisfying P. Symbolic execution, covered in next lecture, computes SPs for finite programs (no unbounded loops).

wp(S, Q)

 The weakest predicate that guarantees Q will hold for states produced by executing -S on a state satisfying that predicate.

{P} S {Q} is valid if

- $P \Rightarrow wp(S, Q)$ or
- $sp(S, P) \Rightarrow Q$

Today, we'll see how to compute weakest liberal preconditions (WP) for IMP.

This lets us verify partial correctness properties.

VC generation with WP

VC generation with WP: from IMP to IVL

- E = Z |V| E + E | E * E {P} S {Q}
- $C \coloneqq true \mid false \mid E = E \mid E \leq E$
- S = skip | abort | V := E | S; S |

if C then S else S | while C {I} do S

- $\mathsf{E} \coloneqq \mathsf{Z} | \mathsf{V} | \mathsf{E} + \mathsf{E} | \mathsf{E} * \mathsf{E}$
- $C = true | false | E = E | E \le E$
- S == **skip** | **abort** | V := E | S; S |

if C then S else S

 $\textbf{assert} \ C \mid \textbf{assume} \ C \mid \textbf{havoc} \ \forall$

VC generation with WP: loop-free code

VC generation with WP: loop-free code

wp(S, Q):

- wp(skip, Q) = Q
- wp(**abort**, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2, Q) = (C \rightarrow wp(S_1, Q)) \land (\neg C \rightarrow wp(S_2, Q))

VC generation with WP: what about loops?

wp(S, Q):

- wp(skip, Q) = Q
- wp(**abort**, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2, Q) = (C \rightarrow wp(S_1, Q)) \land (\neg C \rightarrow wp(S_2, Q))
- wp(while C {|} do S, Q) = X

A fixpoint! In general, cannot be expressed as a syntactic construction in terms of the postcondition. Use loop invariants to approximate loop behavior. Then check each invariant is correct and strong enough.

VC generation with WP: what about loops?

while C {I} do S

Cut the loop.

assert l;

havoc x; ... // for each loop target x **assume** I;

if C

then S; assert I; assume false;
else skip;

Use loop invariants to approximate loop behavior. Then check each invariant is correct and strong enough. wp(S, Q):

- wp(assert C, Q) = C \land Q
- wp(**assume** C, Q) = C \rightarrow Q
- wp(havoc x, Q) = $\forall x . Q$

VC generation with WP: putting it all together

wp(S, Q):

- wp(skip, Q) = Q
- wp(**abort**, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S₁ else S₂, Q) = (C \rightarrow wp(S₁, Q)) \land (\neg C \rightarrow wp(S₂, Q))
- wp(assert C, Q) = C \land Q
- wp(assume C, Q) = C \rightarrow Q
- wp(havoc x, Q) = $\forall x . Q$

- I. Translate IMP to IVL by cutting loops.
- 2. Compute WP for IVL.

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the following formula is valid

 $P \rightarrow wp(S_{IVL}, Q)$

The other direction doesn't hold because loop invariants may not be strong enough or they may be incorrect. Might get false alarms.

Summary

Today

• Automating Hoare Logic with VCG based on WPs

Next lecture

- Guest lecture by Rustan Leino!
- Verification with Dafny, Boogie, and Z3.
- On Zoom, see Canvas for the link.

