
CSE507
Computer-Aided Reasoning for Software

Reasoning about Programs II



Overview

Last lecture
• Reasoning about (partial) correctness with Hoare Logic

Today  
• Automating Hoare Logic with verification condition 

generation

Reminders
• HW2 is due tonight.
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Recap: Imperative Programming Language (IMP)

Expression E 

• Z | V | E1 + E2 | E1 * E2

Conditional C 

• true | false | E1 = E2 | E1 ≤ E2

Statement S 

• skip (Skip)

• abort (Abort)

• V := E (Assignment)

• S1; S2 (Composition)

• if C then S1 else S2 (If)

• while C do S (While)



Recap: inference rules for Hoare logic

⊢ {P1} S {Q1} P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

         

⊢ {P} skip {P}

             

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R} ⊢ {R} S2 {Q}  

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q} ⊢ {P∧¬C} S2 {Q}

⊢ {P} if C then S1 else S2 {Q}

⊢ {P∧C} S {P}   

⊢ {P} while C do S {P∧¬C}

loop invariant

         

⊢ {true} abort {false}



Challenge: manual proof construction is tedious!

Hoare Logic proofs are highly 
manual: 

• When to apply the rule of 
consequence?

• What loop invariants to use?

{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n}
{x+1≤ n} // consequence
x := x + 1
{x ≤ n}  // assignment

{x ≤ n ∧ x ≥ n}   // while
{x = n} // consequence



{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n}

x := x + 1

{x = n} // postcondition

Challenge: manual proof construction is tedious!

{x ≤ n} // precondition
while (x < n) do

{x ≤ n } // loop invariant 

x := x + 1

{x = n} // postcondition

Hoare Logic proofs are highly 
manual: 

• When to apply the rule of 
consequence?

• What loop invariants to use?

We can automate much of the 
proof process with verification 
condition generation! 

• But loop invariants still need to 
be provided …



Automating Hoare logic with VC generation

Program annotated with 
pre/post conditions, loop 

invariants

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)

A formula φ generated 
automatically from the 
annotated program.

The program satisfies the 
specification if φ is valid.



Automating Hoare logic with VC generation

Forwards computation: 

• Starting from the precondition, generate 
formulas to prove the postcondition.

• Based on computing strongest 
postconditions (sp).

Backwards computation: 

• Starting from the postcondition, 
generate formulas to prove the 
precondition.

• Based on computing weakest liberal 
preconditions  (wp).

Program annotated with 
pre/post conditions, loop 

invariants

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)

Intermediate Verification 
Language (IVL)



VC generation with WP and SP

sp(S, P)
• The strongest predicate that holds for 

states produced by executing S on a state 
satisfying P.

wp(S, Q)
• The weakest predicate that guarantees Q 

will hold for states produced by executing 
S on a state satisfying that predicate.

{P} S {Q} is valid if
• P ⇒ wp(S, Q) or

• sp(S, P) ⇒ Q

Symbolic execution, covered 
in next lecture, computes SPs 
for finite programs (no 
unbounded loops).

Today, we’ll see how to 
compute weakest liberal 
preconditions (WP) for IMP.

This lets us verify partial 
correctness properties.



VC generation with WP

Program annotated with 
pre/post conditions, loop 

invariants

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)

Intermediate Verification 
Language (IVL)



VC generation with WP: from IMP to IVL

Program annotated with 
pre/post conditions, loop 

invariants (IMP)

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)

Intermediate Verification 
Language (IVL)

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S | 

if C then S else S | 

while C {I} do S

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S | 

if C then S else S | 

assert C | assume C | havoc V

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S | 

if C then S else S | 

while C {I} do S

{P} S {Q}



E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S | 

if C then S else S | 

while C {I} do S

E ⩴ Z | V | E + E | E * E

C ⩴ true | false | E = E | E ≤ E

S ⩴ skip| abort | V := E | S; S | 

if C then S else S | 

assert C | assume C | havoc V

VC generation with WP: loop-free code

Program annotated with 
pre/post conditions, loop 

invariants (IMP)

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)

Intermediate Verification 
Language (IVL)

{P} S {Q}



VC generation with WP: loop-free code

wp(S, Q):
• wp(skip, Q) = Q

• wp(abort, Q) = true

• wp(x := E, Q) = Q[E / x] 

• wp(S1; S2, Q) = wp(S1, wp(S2, Q)) 

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q)) 



VC generation with WP: what about loops?

wp(S, Q):
• wp(skip, Q) = Q

• wp(abort, Q) = true

• wp(x := E, Q) = Q[E / x] 

• wp(S1; S2, Q) = wp(S1, wp(S2, Q)) 

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q)) 

• wp(while C {I} do S, Q) = ?✗

A fixpoint! In general, 
cannot be expressed as a 
syntactic construction in 
terms of the postcondition.

Use loop invariants to 
approximate loop behavior. 
Then check each invariant is 
correct and strong enough.



Use loop invariants to 
approximate loop behavior. 
Then check each invariant is 
correct and strong enough.

while C {I} do S

assert I;

havoc x; … // for each loop target x 

assume I; 

if C 

then S; assert I; assume false;  

else skip;

wp(S, Q):
• wp(assert C, Q) = C ∧ Q

• wp(assume C, Q) = C → Q

• wp(havoc x, Q) = ∀ x . Q 

VC generation with WP: what about loops?

Cut the loop.



VC generation with WP: putting it all together

wp(S, Q):
• wp(skip, Q) = Q

• wp(abort, Q) = true

• wp(x := E, Q) = Q[E / x] 

• wp(S1; S2, Q) = wp(S1, wp(S2, Q)) 

• wp(if C then S1 else S2, Q) =       
(C → wp(S1, Q)) ∧ (¬C → wp(S2, Q)) 

• wp(assert C, Q) = C ∧ Q

• wp(assume C, Q) = C → Q

• wp(havoc x, Q) = ∀ x . Q

1. Translate IMP to IVL by 
cutting loops.

2. Compute WP for IVL.



Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the 
following formula is valid

P → wp(SIVL, Q)

The other direction doesn’t hold 
because loop invariants may not be 
strong enough or they may be 
incorrect.  Might get false alarms.



Summary

Today
• Automating Hoare Logic with VCG based on WPs

Next lecture
• Guest lecture by Rustan Leino!

• Verification with Dafny, Boogie, and Z3.

• On Zoom, see Canvas for the link.


