Combining Theories

Today

Last lecture

- A survey of theory solvers and deciding $T=$ with congruence closure

Today

- Deciding a combination of theories

Recall: Satisfiability Modulo Theories (SMT)

Combining theories with Nelson-Oppen

> We'll see how to combine two theories. Easy to generalize to n .

The combination problem is undecidable for arbitrary (decidable) theories. It becomes decidable under Nelson-Oppen restrictions.

Nelson-Oppen restrictions

T_{1} and T_{2} can be combined when

- Both are decidable, quantifier-free conjunctive fragments
- Equality ($=$) is the only interpreted symbol in the intersection of their signatures: $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
- Both are stably infinite

A theory T is stably infinite if for every satisfiable $\boldsymbol{\Sigma}_{\mathrm{T}}$-formula F , there is a T model that satisfies F and that has a universe of infinite cardinality.

Examples of (non-)stably infinite theories

$$
\begin{aligned}
& \Sigma_{\mathrm{T}}:\{\mathrm{a}, \mathrm{~b},=\} \\
& \mathrm{A}_{\mathrm{T}}: \quad \forall \mathrm{x} \cdot \mathrm{x}=\mathrm{a} \vee \mathrm{x}=\mathrm{b}
\end{aligned}
$$

Overview of Nelson-Oppen

$\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F

Purification

Σ_{1}-formula F_{1}

Σ_{2}-formula F_{2}

Equality Propagation

Overview of purification

Transforms a $\left(\boldsymbol{\Sigma}_{1} \cup \boldsymbol{\Sigma}_{2}\right)$-formula \mathbf{F} into an equisatisfiable formula $F_{1} \wedge F_{2}$ with F_{1} in T_{1} and F_{2} in T_{2}

Repeat until fix point:

- If f is in T_{i} and t is not, and u is fresh: $\mathrm{F}[f(\ldots, \mathrm{t}, \ldots)] \rightarrow \mathrm{F}[\mathrm{f}(\ldots, \mathrm{u}, \ldots)] \wedge \mathrm{u}=\mathrm{t}$
- If p is in T_{i} and t is not, and v is fresh: $\mathrm{F}[p(\ldots, \mathrm{t}, \ldots)] \rightarrow \mathrm{F}[\mathrm{p}(\ldots, \mathrm{v}, \ldots)] \wedge \mathrm{v}=\mathrm{t}$

$$
x \leqslant f(x)+1
$$

Another purification example

Transforms a $\left(\boldsymbol{\Sigma}_{1} \cup \boldsymbol{\Sigma}_{\mathbf{2}}\right)$-formula \mathbf{F} into an equisatisfiable formula $F_{1} \wedge F_{2}$ with F_{1} in T_{1} and F_{2} in T_{2}

Repeat until fix point:

- If f is in T_{i} and t is not, and u is fresh: $\mathrm{F}[f(\ldots, \mathrm{t}, \ldots)] \rightarrow \mathrm{F}[\mathrm{f}(\ldots, \mathrm{u}, \ldots)] \wedge \mathrm{u}=\mathrm{t}$
- If p is in T_{i} and t is not, and v is fresh: $\mathrm{F}[p(\ldots, \mathrm{t}, \ldots)] \rightarrow \mathrm{F}[\mathrm{p}(\ldots, \mathrm{v}, \ldots)] \wedge \mathrm{v}=\mathrm{t}$

$$
f(x+g(y)) \leqslant g(a)+f(b)
$$

Purification

Σ_{R}
$\Sigma=$

Another purification example

Transforms a $\left(\boldsymbol{\Sigma}_{1} \cup \boldsymbol{\Sigma}_{2}\right)$-formula \boldsymbol{F} into an equisatisfiable formula $F_{1} \wedge F_{2}$ with F_{1} in T_{1} and F_{2} in T_{2}

Repeat until fix point:

- If f is in T_{i} and t is not, and u is fresh: $F[f(\ldots, t, \ldots)] \rightarrow F[f(\ldots, u, \ldots)] \wedge u=t$
- If p is in T_{i} and t is not, and v is fresh: $\mathrm{F}[p(\ldots, \mathrm{t}, \ldots)] \rightarrow \mathrm{F}[\mathrm{p}(\ldots, \mathrm{v}, \ldots)] \wedge \mathrm{v}=\mathrm{t}$

$$
f\left(x+u_{1}\right) \leqslant u_{2}+u_{3}
$$

Purification

$\Sigma_{\mathrm{R}} \quad \Sigma=$
$u_{1}=g(y)$
$u_{2}=g(a)$
$u_{3}=f(b)$

Another purification example

Transforms a $\left(\boldsymbol{\Sigma}_{1} \cup \boldsymbol{\Sigma}_{\mathbf{2}}\right)$-formula \mathbf{F} into an equisatisfiable formula $F_{1} \wedge F_{2}$ with F_{1} in T_{1} and F_{2} in T_{2}

Repeat until fix point:

- If f is in T_{i} and t is not, and u is fresh: $F[f(\ldots, t, \ldots)] \rightarrow F[f(\ldots, u, \ldots)] \wedge u=t$
- If p is in T_{i} and t is not, and v is fresh: $F[p(\ldots, t, \ldots)] \rightarrow F[p(\ldots, v, \ldots)] \wedge v=t$

$$
f\left(u_{4}\right) \leqslant u_{2}+u_{3}
$$

Purification

Another purification example

Transforms a $\left(\boldsymbol{\Sigma}_{1} \cup \boldsymbol{\Sigma}_{2}\right)$-formula \mathbf{F} into an equisatisfiable formula $F_{1} \wedge F_{2}$ with F_{1} in T_{1} and F_{2} in T_{2}

Repeat until fix point:

- If f is in T_{i} and t is not, and u is fresh: $\mathrm{F}[f(\ldots, \mathrm{t}, \ldots)] \rightarrow \mathrm{F}[\mathrm{f}(\ldots, \mathrm{u}, \ldots)] \wedge \mathrm{u}=\mathrm{t}$
- If p is in T_{i} and t is not, and v is fresh: $F[p(\ldots, t, \ldots)] \rightarrow F[p(\ldots, v, \ldots)] \wedge v=t$

Purification

Shared and local constants

A constant is shared if it occurs in both F_{1} and F_{2}, and it is local otherwise.

Purification

Shared: $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$
Local: $\quad\{x, y, a, b\}$

$$
\begin{aligned}
& \mathrm{u}_{4}=\mathrm{x}+\mathrm{u}_{1} \\
& \mathrm{u}_{5} \leqslant \mathrm{u}_{2}+\mathrm{u}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{1}=\mathrm{g}(\mathrm{y}) \\
& \mathrm{u}_{2}=\mathrm{g}(\mathrm{a}) \\
& \mathrm{u}_{3}=\mathrm{f}(\mathrm{~b}) \\
& \mathrm{u}_{5}=\mathrm{f}\left(\mathrm{u}_{4}\right)
\end{aligned}
$$

Overview of Nelson-Oppen

$\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F

Purification

Σ_{1}-formula F_{1}
Σ_{2}-formula F_{2}

Overview of Nelson-Oppen

($\Sigma_{1} \cup \Sigma_{2}$)-formula F

Purification

Σ_{1}-formula F_{1}

Σ_{2}-formula F_{2}

Equality Propagation

- Convex theories
- Non-convex theories

Convex theories

A theory T is convex if for every conjunctive formula F, the following holds:

If $F \Rightarrow x_{1}=y_{1} \vee \ldots \vee x_{n}=y_{n}$ for a finite $n>I$, then $F \Rightarrow x_{i}=y_{i}$ for some $i \in\{1, \ldots, n\}$.

If F implies a disjunction of equalities, then it also implies at least one of the equalities.

Examples of (non-)convex theories

Equality and uninterpreted functions ($\mathrm{T}=$)

Linear real arithmetic (T_{R})

Nelson-Oppen for convex theories

Nelson-Oppen-Convex(F)
I. Purify F into $F_{1} \wedge F_{2}$
2. Run T_{1}-solver on F_{1} and T_{2}-solver on F_{2} and return UNSAT if either is unsatisfiable
3. If there are shared constants x and y such that $F_{i} \Rightarrow x=y$ but F_{j} does not
I. $F_{j} \leftarrow F_{j} \wedge x=y$
2. Go to step 2.
4. Return SAT

Is F satisfiable if both F_{1} and F_{2} are satisfiable?

No: $x=I \wedge 2=x+y \wedge f(x) \neq f(y)$

Nelson-Oppen for convex theories: example

Nelson-Oppen-Convex(F)
I. Purify F into $F_{1} \wedge F_{2}$
2. Run T_{1}-solver on F_{1} and T_{2}-solver on F_{2} and return UNSAT if either is unsatisfiable
3. If there are shared constants x and y such that $F_{i} \Rightarrow x=y$ but F_{j} does not
I. $F_{j} \leftarrow F_{j} \wedge x=y$
2. Go to step 2.
4. Return SAT

$\begin{gathered} f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge \\ y+z \leq x \wedge 0 \leq z \end{gathered}$	
$\begin{aligned} & x \leq y \wedge \\ & y+z \leq x \wedge 0 \\ & \leq z \wedge \\ & w=u-v \end{aligned}$	$\begin{aligned} & f(w) \neq f(z) \wedge \\ & u=f(x) \wedge \\ & v=f(y) \end{aligned}$
$\begin{aligned} & x=y \wedge \\ & u=v \wedge \\ & w=z \wedge \end{aligned}$	$\begin{aligned} & x=y \wedge \\ & u=v \wedge \\ & w=z \wedge \\ & \text { UNSAT } \end{aligned}$
Σ_{R}	

This doesn't work for non-convex theories

Nelson-Oppen-Convex(F)
I. Purify F into $F_{1} \wedge F_{2}$
2. Run T_{1}-solver on F_{1} and T_{2}-solver on F_{2} and return UNSAT if either is unsatisfiable
3. If there are shared constants x and y such that $F_{i} \Rightarrow x=y$ but F_{j} does not
I. $F_{j} \leftarrow F_{j} \wedge x=y$
2. Go to step 2.
4. Return SAT

$\text { X } \begin{gathered} 1 \leq x \wedge x \leq 2 \wedge \\ f(x) \neq f(1) \wedge f(x) \neq f(2) \end{gathered}$	
$\begin{aligned} & \mathrm{I} \leq \mathrm{x} \wedge \\ & \mathrm{x} \leq 2 \wedge \\ & \mathrm{z}_{1}=1 \wedge \\ & \mathrm{z}_{2}=2 \end{aligned}$	$\begin{aligned} & f(x) \neq f\left(z_{1}\right) \wedge \\ & f(x) \neq f\left(z_{2}\right) \end{aligned}$
SAT	SAT
Σz	

This doesn't work for non-convex theories

Nelson-Oppen-Convex(F)
I. Purify F into $F_{1} \wedge F_{2}$
2. Run T_{1}-solver on F_{1} and T_{2}-solver on F_{2} and return UNSAT if either is unsatisfiable
3. If there are shared constants x and y such that $F_{i} \Rightarrow x=y$ but F_{j} does not
I. $F_{j} \leftarrow F_{j} \wedge x=y$
2. Go to step 2.
4. Return SAT

If T is non-convex, it may imply a disjunction of equalities without implying any single equality.

We have to propagate disjunctions as well as individual equalities. Which disjunctions? How do we propagate disjunctions to theory solvers which reason only about conjunctions?

Nelson-Oppen for non-convex theories

Nelson-Oppen(F)
I. Purify F into $F_{1} \wedge F_{2}$
2. Run T_{1}-solver on F_{1} and T_{2}-solver on F_{2} and return UNSAT if either is unsatisfiable
3. If there are shared constants x and y such that F_{i} $\Rightarrow x=y$ but F_{j} does not
I. $\mathrm{F}_{\mathrm{j}} \leftarrow \mathrm{F}_{\mathrm{j}} \wedge \mathrm{x}=\mathrm{y}$
2. Go to step 2.
4. If $F_{i} \Rightarrow x_{1}=y_{\mid} \vee \ldots \vee x_{n}=y_{n}$ but F_{j} does not, then if Nelson-OpPEN ($F_{\mathrm{i}} \wedge \mathrm{F}_{\mathrm{j}} \wedge \mathrm{x}_{\mathrm{k}}=y_{\mathrm{k}}$) outputs SAT for any k, return SAT. Otherwise, return UNSAT.
5. Return SAT

Propagate a minimal disjunction.

Nelson-Oppen for non-convex theories: example

$\begin{gathered} I \leq x \wedge x \leq 2 \wedge \\ f(x) \neq f(I) \wedge f(x) \neq f(2) \end{gathered}$	
$1 \leq x \wedge$	$\left.f(\mathrm{x}) \neq \mathrm{f}(\mathrm{z})^{\prime}\right) \wedge$
$x \leq 2 \wedge$	$f(x) \neq f\left(z_{2}\right)$
$\mathrm{z}_{1}=1 \wedge$	
$\mathrm{z}_{2}=2$	
$\left(\mathrm{x}=\mathrm{z}_{1} \vee \mathrm{x}=\mathrm{z}_{2}\right) \wedge$	
Σ_{z}	

$1 \leq x \wedge$	$f(x) \neq f\left(z_{I}\right) \wedge$
$x \leq 2 \wedge$	$f(x) \neq f\left(z_{2}\right)$
$z_{1}=1 \wedge$	
$\mathrm{z}_{2}=2$	
$x=z_{1}$	$x=z_{1} \wedge$
	UNSAT
$1 \leq x \wedge$	$\begin{aligned} & f(x) \neq f\left(z_{1}\right) \wedge \\ & f(x) \neq f\left(z_{2}\right) \end{aligned}$
$x \leq 2 \wedge$	
$z_{1}=1 \wedge$	
$z_{2}=2$	
$x=z_{2}$	$x=z_{2} \wedge$
	UNSAT

Soundness and completeness of Nelson-Oppen

If the theories T_{1} and T_{2} satisfy Nelson-Open restrictions, then the combination procedure returns UNSAT for a formula F in $T_{1} \cup T_{2}$ iff F is unsatisfiable modulo $T_{1} \cup T_{2}$.

Complexity of Nelson-Oppen

If decision procedures for convex theories T_{1} and T_{2} have polynomial time complexity, so does their Nelson-Oppen combination.

If decision procedures for non-convex theories T_{1} and T_{2} have NP time complexity, so does their NelsonOppen combination.

Summary

Today

- Sound and complete procedure for a combination of restricted theories
- Stably infinite, conjunctive, quantifier-free with signatures that are disjoint except for $=$

Next lecture

- Deciding satisfiability of arbitrary boolean combinations of quantifier-free first-order formulas

