A Survey of Theory Solvers

Today

Last lecture

- Introduction to Satisfiability Modulo Theories (SMT)

Today

- A quick survey of theory solvers
- An in-depth look at the core theory solver (theory of equality and uninterpreted functions)

Reminders

- HWI due tonight.
- Project proposal due next week. Find a partner and start brainstorming if you haven't already!

Recall: Satisfiability Modulo Theories (SMT)

A brief survey of common theory solvers

$$
\frac{x=g(y)}{\text { Core solver }}
$$

$2 \mathrm{i}+\mathrm{j} \leq 5$
Theory solver

$\mathrm{a}[\mathrm{i}]=\mathrm{x}$
solver
Theory solver

A brief survey of common theory solvers

$$
x=g(y)
$$

Equality and UF

$a[i]=x$
Arrays

- Conjunctions of linear constraints over R
- Can be decided in polynomial time, but in practice solved with the General Simplex method (worst case exponential)
- Can also be decided with Fourier-Motzkin elimination (exponential)

A brief survey of common theory solvers

$$
x=g(y)
$$

Equality and UF

$a[i]=x$
Arrays

- Conjunctions of linear constraints over Z
- Branch-and-cut (based on Simplex)
- Omega Test (extension of Fourier-Motzkin)
- Small-Domain Encoding used for arbitrary combinations of linear constraints over Z
- NP-complete

A brief survey of common theory solvers

$$
\frac{x=g(y)}{\text { Equality and UF }}
$$

$a[i]=x$
Arrays

- Arbitrary combination of constraints over bitvectors
- Bit blasting (reduction to SAT)
- NP-complete

A brief survey of common theory solvers

$$
x=g(y)
$$

Equality and UF

$a[i]=x$
Arrays

- Conjunctions of constraints over read/write terms in the theory of arrays
- Reduce to T= satisfiability
- NP-complete (because the reduction introduces disjunctions)

A brief survey of common theory solvers

- Conjunctions of

$$
x=g(y)
$$

Equality and UF equality constraints over uninterpreted functions

- Congruence closure
- Polynomial time

$2 \mathrm{i}+\mathrm{j} \leq 5$
Linear Integer Arithmetic

$a[i]=x$
Arrays

Theory of equality and UF (T=)

Signature (all symbols)

- $\{=, \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{f}, \mathrm{g}, \ldots, \mathrm{K}, \mathrm{X}, \ldots\}$

Axioms

- reflexivity: $\forall x . x=x$
- symmetry: $\forall x, y . x=y \rightarrow y=x$
- transitivity: $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
- congruence: $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} .\left(\left.\wedge\right|_{\leq i \leq n} x_{i}=y_{i}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$
X congruence: $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n \cdot}\left(\left.\wedge\right|_{\text {sisn }} x_{i}=y_{i}\right) \rightarrow p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)$

Replace predicates with equality constraints over functions:

- introduce a fresh constant T
- for each predicate p, introduce a fresh function f_{p}
- $p\left(x_{1}, \ldots, x_{n}\right) \rightarrow f_{p}\left(x_{1}, \ldots, x_{n}\right)=T$

Is a conjunction of $\mathbf{T}=$ literals satisfiable?

$$
f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a
$$

Is a conjunction of $T=$ literals satisfiable?

$$
f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a
$$

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

$$
\begin{aligned}
& f^{4}(a) \\
& f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a \\
& f^{5}(a) \quad f^{2}(a) \\
& f^{3}(a) \quad a
\end{aligned}
$$

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

$$
f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a
$$

$$
f^{5}(a) \quad f^{2}(a) \quad f^{4}(a)
$$

$$
f^{3}(a) \quad a \quad f(a)
$$

Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences
- If F has a negative literal $t_{1} \neq t_{2}$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

```
UNSAT
\[
f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a
\]
\[
f^{5}(a) \quad f^{2}(a) \quad f^{4}(a)
\]
\[
f^{3}(a) \quad a \quad f(a)
\]
```


Congruence closure algorithm: another example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences
- If F has a negative literal $t_{1} \neq t_{2}$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

Congruence closure algorithm: another example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences
- If F has a negative literal $t_{1} \neq t_{2}$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

Congruence closure algorithm: another example

- Place each subterm of F into its own congruence class
- For each positive literal $t_{1}=t_{2}$ in F
- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences
- If F has a negative literal $t_{1} \neq t_{2}$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

Congruence closure algorithm: definitions

A binary relation R is an equivalence relation if it is reflexive, symmetric, and transitive.

An equivalence relation R is a congruence relation if for every n-ary function f

$$
\forall \bar{x}, \bar{y} . \wedge R\left(x_{i}, y_{i}\right) \rightarrow R(f(\bar{x}), f(\bar{y}))
$$

The equivalence class of an element $s \in S$ under an equivalence relation R :

$$
\left\{s^{\prime} \in S \mid R\left(s, s^{\prime}\right)\right\}
$$

An equivalence class is called a congruence class if R is a congruence relation.

What is the equivalence class of 9 under $\equiv 3$?

Congruence closure algorithm: definitions

The equivalence closure R^{E} of a binary relation R is the smallest equivalence relation that contains R.

What is the equivalence closure of $R=\{\langle a, b\rangle,\langle b, c\rangle,\langle d, d\rangle\}$?
$R^{E}=\{\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle,\langle d, d\rangle$
$\langle a, b\rangle,\langle b, a\rangle,\langle b, c\rangle,\langle c, b\rangle$,
$\langle a, c\rangle,\langle c, a\rangle\}$

Congruence closure algorithm: definitions

The equivalence closure R^{E} of a binary relation R is the smallest equivalence relation that contains R.
The congruence closure R^{C} of a binary relation R is the smallest congruence relation that contains R.

The congruence closure algorithm computes the congruence closure of the equality relation over terms asserted by a conjunctive quantifier-free formula in $T=$.

Congruence closure algorithm: data structure

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: data structure

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

- Represent subterms with a DAG

Congruence closure algorithm: data structure

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

- Represent subterms with a DAG
- Each node has a find pointer to another node in its congruence class (or to itself if it is the representative)

Congruence closure algorithm: data structure

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

- Represent subterms with a DAG
- Each node has a find pointer to another node in its congruence class (or to itself if it is the representative)
- Each representative has a ccp field that stores all parents of all nodes in its congruence class.

Congruence closure algorithm: union-find

- FIND returns the representative of a node's equivalence class by following find pointers until it finds a self-loop.
- UNION combines equivalence classes for nodes i_{1} and i_{2} :
- $n_{1}, n_{2} \leftarrow \operatorname{FIND}\left(\mathrm{i}_{1}\right), \operatorname{FIND}\left(\mathrm{i}_{2}\right)$
- n_{1}.find $\leftarrow \mathrm{n}_{2}$
$\cdot \mathrm{n}_{2} . \mathrm{CCP} \leftarrow \mathrm{n}_{1 . \mathrm{CCP}} \cup \mathrm{n}_{2} . \mathrm{CCP}$
- $\mathrm{n}_{1 .} \mathrm{CcP} \leftarrow \varnothing$

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

What is UNION(I, 2)?

Congruence closure algorithm: union-find

- FIND returns the representative of a node's equivalence class by following find pointers until it finds a self-loop.
- UNION combines equivalence classes for nodes i_{1} and i_{2} :
- $n_{1}, n_{2} \leftarrow \operatorname{FIND}\left(\mathrm{i}_{1}\right), \operatorname{Find}\left(\mathrm{i}_{2}\right)$
- n_{1}.find $\leftarrow \mathrm{n}_{2}$
- $\mathrm{n}_{2} . \mathrm{CCP} \leftarrow \mathrm{n}_{1 .} \mathrm{CCP} \cup \mathrm{n}_{2} . \mathrm{CCP}$
- $\mathrm{n}_{1 .} \mathrm{CcP} \leftarrow \varnothing$

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

M.C.

What is $\operatorname{UNION}(1,2)$?

Congruence closure algorithm: congruent

- CONGRUENT takes as input two nodes and returns true iff their
- functions are the same
- corresponding arguments are in the same congruence class

CONGRUENT(I, 2)?

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: merge

```
Merge ( \(i_{1}, i_{2}\) )
    \(n_{1}, n_{2} \leftarrow \operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    P1, P2 \(\leftarrow \mathrm{n}_{1 .} . \mathrm{CCP}, \mathrm{n}_{2} . \mathrm{CCP}\)
    \(\operatorname{UNION}\left(n_{1}, n_{2}\right)\)
    for each \(\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{p}_{1} \times \mathrm{p}_{2}\)
        if \(\operatorname{FIND}\left(\mathrm{t}_{1}\right) \neq \operatorname{FIND}\left(\mathrm{t}_{2}\right) \wedge \operatorname{CONGRUENT}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\)
        then \(\operatorname{Merge}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\)
```

$f(a, b)=a \wedge f(f(a, b), b) \neq a$

Congruence closure algorithm: merge

```
Merge ( \(\mathrm{i}_{1}, \mathrm{i}_{2}\) )
    \(n_{1}, n_{2} \leftarrow \operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    P1, P2 \(\leftarrow \mathrm{n}_{1 .} . \mathrm{CCP}, \mathrm{n}_{2} . \mathrm{CCP}\)
    \(\operatorname{UNION}\left(n_{1}, n_{2}\right)\)
    for each \(\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{p}_{1} \times \mathrm{p}_{2}\)
        if \(\operatorname{FIND}\left(\mathrm{t}_{1}\right) \neq \operatorname{FIND}\left(\mathrm{t}_{2}\right) \wedge \operatorname{CONGRUENT}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\)
        then \(\operatorname{Merge}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\)
```

$f(a, b)=a \wedge f(f(a, b), b) \neq a$

Congruence closure algorithm: merge

```
Merge ( \(\mathrm{i}_{1}, \mathrm{i}_{2}\) )
    \(n_{1}, n_{2} \leftarrow \operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    P1, P2 \(\leftarrow \mathrm{n}_{1 .} . \mathrm{CCP}, \mathrm{n}_{2} . \mathrm{CCP}\)
    \(\operatorname{UNION}\left(n_{1}, n_{2}\right)\)
    for each \(t_{1}, t_{2} \in p_{1} \times p_{2}\)
        if \(\operatorname{FIND}\left(\mathrm{t}_{1}\right) \neq \operatorname{FIND}\left(\mathrm{t}_{2}\right) \wedge \operatorname{CONGRUENT}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\)
        then \(\operatorname{Merge}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\)
```

$f(a, b)=a \wedge f(f(a, b), b) \neq a$

Congruence closure algorithm: deciding T=

Decide (F)

construct the DAG for F's subterms for $s_{i}=t_{i} \in F$
$\operatorname{Merge}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$
for $\mathrm{s}_{\mathrm{i} \neq \mathrm{t}} \mathrm{t}_{\mathrm{i}} \in \mathrm{F}$
if $\operatorname{FIND}\left(\mathrm{s}_{\mathrm{i}}\right)=\operatorname{FIND}\left(\mathrm{t}_{\mathrm{i}}\right)$ then return UNSAT return SAT

Congruence closure algorithm: deciding T=

Decide (F)

$f(a, b)=a \wedge f(f(a, b), b) \neq a$
construct the DAG for F's subterms for $s_{i}=t_{i} \in F$
$\operatorname{Merge}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$
for $s_{i \neq} t_{i} \in F$
if $\operatorname{FIND}\left(\mathrm{s}_{\mathrm{i}}\right)=\operatorname{FIND}\left(\mathrm{t}_{\mathrm{i}}\right)$ then return UNSAT return SAT

Congruence closure algorithm: deciding T=

Decide (F)

construct the DAG for F's subterms
for $s_{i}=t_{i} \in F$
$\operatorname{Merge}\left(\mathrm{s}, \mathrm{t}_{\mathrm{i}}\right)$
for $s_{i \neq} t_{i} \in F$
if $\operatorname{FIND}\left(\mathrm{s}_{\mathrm{i}}\right)=\operatorname{FIND}\left(\mathrm{t}_{\mathrm{i}}\right)$ then return UNSAT return SAT

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Summary

Today

- A brief survey of theory solvers
- Congruence closure algorithm for deciding conjunctive $T=$ formulas

Next lecture

- Combining (decision procedures for different) theories

