Computer-Aided Reasoning for Software

A Survey of Theory Solvers
Today

Last lecture

• Introduction to Satisfiability Modulo Theories (SMT)

Today

• A quick survey of theory solvers
• An in-depth look at the core theory solver (theory of equality and uninterpreted functions)

Reminders

• HW1 due tonight.
• Project proposal due next week. Find a partner and start brainstorming if you haven’t already!
Recall: Satisfiability Modulo Theories (SMT)

\[x = g(y) \]
\[2x + y \leq 5 \]
\[(b >> 2) = c \]
\[\vdots \]
\[a[i] = x \]

Theories

First-Order Logic

SMT solver

Core solver

DPLL(T)

Theory solver

\(\text{(un)satisfiable} \)
A brief survey of common theory solvers

<table>
<thead>
<tr>
<th>Equation</th>
<th>Theory solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.3x + y \leq 5$</td>
<td>Theory solver</td>
</tr>
<tr>
<td>$2i + j \leq 5$</td>
<td>Theory solver</td>
</tr>
<tr>
<td>$(b >> 2) = c$</td>
<td>Theory solver</td>
</tr>
<tr>
<td>$a[i] = x$</td>
<td>Theory solver</td>
</tr>
</tbody>
</table>
A brief survey of common theory solvers

- $x = g(y)$
- Equality and UF

- $2.3x + y \leq 5$
 - Linear Real Arithmetic
- $2i + j \leq 5$
 - Linear Integer Arithmetic
- $(b >> 2) = c$
 - Bitvectors
- $a[i] = x$
 - Arrays

- **Conjunctions** of linear constraints over R
 - Can be decided in polynomial time, but in practice solved with the **General Simplex** method (worst case exponential)
 - Can also be decided with **Fourier-Motzkin** elimination (exponential)
A brief survey of common theory solvers

\[x = g(y) \]

Equality and UF

- \[2.3x + y \leq 5 \]
 - Linear Real Arithmetic

- \[2i + j \leq 5 \]
 - Linear Integer Arithmetic

- \[(b >> 2) = c \]
 - Bitvectors

- \[a[i] = x \]
 - Arrays

- **Conjunctions** of linear constraints over \(\mathbb{Z} \)
- **Branch-and-cut** (based on Simplex)
- **Omega Test** (extension of Fourier-Motzkin)
- **Small-Domain Encoding** used for arbitrary combinations of linear constraints over \(\mathbb{Z} \)
- NP-complete
A brief survey of common theory solvers

\[x = g(y) \]

Equality and UF

- 2.3x + y ≤ 5
 - Linear Real Arithmetic

- 2i + j ≤ 5
 - Linear Integer Arithmetic

- (b >> 2) = c
 - Bitvectors

- a[i] = x
 - Arrays

- Arbitrary combination of constraints over bitvectors
- Bit blasting (reduction to SAT)
- NP-complete
A brief survey of common theory solvers

\[x = g(y) \]
Equality and UF

- 2.3x + y ≤ 5
 - Linear Real Arithmetic
- 2i + j ≤ 5
 - Linear Integer Arithmetic
- (b >> 2) = c
 - Bitvectors
- a[i] = x
 - Arrays

- **Conjunctions** of constraints over read/write terms in the theory of arrays
- Reduce to \(T= \) satisfiability
- NP-complete (because the reduction introduces disjunctions)
A brief survey of common theory solvers

- Conjunctions of equality constraints over uninterpreted functions
- Congruence closure
- Polynomial time

\[x = g(y) \]

Equality and UF

2.3x + y \leq 5
Linear Real Arithmetic

2i + j \leq 5
Linear Integer Arithmetic

(b >> 2) = c
Bitvectors

a[i] = x
Arrays
Theory of equality and UF (T=)

Signature (all symbols)
- `{=, a, b, c, ..., f, g, ..., p, q, ...}`

Axioms
- **reflexivity:** \(\forall x. \ x = x \)
- **symmetry:** \(\forall x, y. \ x = y \rightarrow y = x \)
- **transitivity:** \(\forall x, y, z. \ x = y \land y = z \rightarrow x = z \)
- **congruence:** \(\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \ (\land_{1 \leq i \leq n} x_i = y_i) \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \)

Replace predicates with equality constraints over functions:
- introduce a fresh constant \(T \)
- for each predicate \(p \), introduce a fresh function \(f_p \)
 \(p(x_1, \ldots, x_n) \rightarrow f_p(x_1, \ldots, x_n) = T \)

X congruence: \(\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \ (\land_{1 \leq i \leq n} x_i = y_i) \rightarrow p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n) \)
Is a conjunction of T_e literals satisfiable?

\[
f(f(f(a))) = a \land f(f(f(f(a)))) = a \land f(a) \neq a
\]
Is a conjunction of $T=\text{ literals}$ satisfiable?

\[f^3(a) = a \land f^5(a) = a \land f(a) \neq a \]
• Place each subterm of F into its own congruence class

\[f^3(a) = a \land f^5(a) = a \land f(a) \neq a \]
Congruence closure algorithm: example

- Place each subterm of F into its own **congruence class**
- For each positive literal \(t_1 = t_2 \) in F
 - Merge the classes for \(t_1 \) and \(t_2 \)

\[
\begin{align*}
f^3(a) &= a \land f^5(a) = a \land f(a) \neq a
\end{align*}
\]
• Place each subterm of F into its own **congruence class**
• For each positive literal $t_1 = t_2$ in F
 • Merge the classes for t_1 and t_2

Congruence closure algorithm: example

\[
\begin{align*}
\text{f}(a) &= \text{f}(a) \\
\text{f}^3(a) &= a \\
\text{f}^5(a) &= a \\
f(a) &\neq a
\end{align*}
\]
• Place each subterm of F into its own **congruence class**
• For each positive literal $t_1 = t_2$ in F
 • Merge the classes for t_1 and t_2
 • Propagate the resulting congruences

Congruence closure algorithm: example

\[f^3(a) = a \land f^5(a) = a \land f(a) \neq a \]
• Place each subterm of F into its own **congruence class**
• For each positive literal $t_1 = t_2$ in F
 • Merge the classes for t_1 and t_2
 • Propagate the resulting congruences

Congruence closure algorithm: example

$f^2(a)$ \hspace{1cm} f(a) \hspace{1cm} f^4(a)

$f^3(a)$ \hspace{1cm} a

$f^5(a)$

$f^3(a) = a \land f^5(a) = a \land f(a) \neq a$
Place each subterm of F into its own \textbf{congruence class}.

For each positive literal $t_1 = t_2$ in F:
- Merge the classes for t_1 and t_2.
- Propagate the resulting congruences.

Congruence closure algorithm: example

$$f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$
• Place each subterm of F into its own **congruence class**
• For each positive literal $t_1 = t_2$ in F
 • Merge the classes for t_1 and t_2
 • Propagate the resulting congruences

Congruence closure algorithm: example

$$f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$
Congruence closure algorithm: example

- Place each subterm of F into its own **congruence class**
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t_1 and t_2
 - Propagate the resulting congruences

\[f^3(a) = a \land f^5(a) = a \land f(a) \neq a \]
Place each subterm of F into its own **congruence class**

For each positive literal \(t_1 = t_2 \) in F

- Merge the classes for \(t_1 \) and \(t_2 \)
- Propagate the resulting congruences

\[
\begin{align*}
f^3(a) &= a \land \ f^5(a) = a \land f(a) \neq a
\end{align*}
\]
Congruence closure algorithm: example

- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t_1 and t_2
 - Propagate the resulting congruences
- If F has a negative literal $t_1 \neq t_2$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

$\begin{align*}
 f^3(a) &= a \\
 f^5(a) &= a \\
 f(a) &\neq a
\end{align*}$
Congruence closure algorithm: another example

- Place each subterm of F into its own **congruence class**
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t_1 and t_2
 - Propagate the resulting congruences
- If F has a negative literal $t_1 \neq t_2$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT
Congruence closure algorithm: another example

- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t_1 and t_2
 - Propagate the resulting congruences
- If F has a negative literal $t_1 \neq t_2$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

$$f(x) = f(y) \land x \neq y$$
Congruence closure algorithm: another example

- Place each subterm of F into its own **congruence class**
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t_1 and t_2
 - Propagate the resulting congruences
- If F has a negative literal $t_1 \neq t_2$ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT
A binary relation \(R \) is an **equivalence relation** if it is reflexive, symmetric, and transitive.

An equivalence relation \(R \) is a **congruence relation** if for every \(n \)-ary function \(f \)

\[
\forall \bar{x}, \bar{y}. \ \land R(x_i, y_i) \rightarrow R(f(\bar{x}), f(\bar{y}))
\]

The **equivalence class** of an element \(s \in S \) under an equivalence relation \(R \):

\[
\{ \ s' \in S \mid R(s, s') \}
\]

An equivalence class is called a **congruence class** if \(R \) is a congruence relation.

What is the equivalence class of 9 under \(\equiv_3 \)?
The equivalence closure R^E of a binary relation R is the smallest equivalence relation that contains R.

What is the equivalence closure of $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle\}$?

$R^E = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle a, c \rangle, \langle c, a \rangle\}$
Congruence closure algorithm: definitions

The **equivalence closure** R^E of a binary relation R is the smallest equivalence relation that contains R.

The **congruence closure** R^C of a binary relation R is the smallest congruence relation that contains R.

The congruence closure algorithm computes the congruence closure of the equality relation over terms asserted by a conjunctive quantifier-free formula in T_\forall.
Congruence closure algorithm: data structure

\[f(a, b) = a \land f(f(a, b), b) \neq a \]
Congruence closure algorithm: data structure

- Represent subterms with a DAG

\[f(a, b) = a \land f(f(a, b), b) \neq a \]
Congruence closure algorithm: data structure

- Represent subterms with a DAG
- Each node has a **find** pointer to another node in its congruence class (or to itself if it is the **representative**)

$$f(a, b) = a \land f(f(a, b), b) \neq a$$
Congruence closure algorithm: data structure

- Represent subterms with a DAG
- Each node has a **find** pointer to another node in its congruence class (or to itself if it is the **representative**)
- Each representative has a **ccp** field that stores all parents of all nodes in its congruence class.

\[f(a, b) = a \land f(f(a, b), b) \neq a \]
Congruence closure algorithm: union-find

- **FIND** returns the representative of a node’s equivalence class by following `find` pointers until it finds a self-loop.
- **UNION** combines equivalence classes for nodes \(i_1\) and \(i_2\):
 - \(n_1, n_2 \leftarrow \text{FIND}(i_1), \text{FIND}(i_2)\)
 - \(n_1.\text{find} \leftarrow n_2\)
 - \(n_2.\text{ccp} \leftarrow n_1.\text{ccp} \cup n_2.\text{ccp}\)
 - \(n_1.\text{ccp} \leftarrow \emptyset\)

What is **UNION**(1, 2)?

\[f(a, b) = a \land f(f(a, b), b) \neq a \]
Congruence closure algorithm: union-find

- **FIND** returns the representative of a node’s equivalence class by following find pointers until it finds a self-loop.
- **UNION** combines equivalence classes for nodes \(i_1 \) and \(i_2 \):
 - \(n_1, n_2 \leftarrow \text{FIND}(i_1), \text{FIND}(i_2) \)
 - \(n_1.\text{find} \leftarrow n_2 \)
 - \(n_2.\text{ccp} \leftarrow n_1.\text{ccp} \cup n_2.\text{ccp} \)
 - \(n_1.\text{ccp} \leftarrow \emptyset \)

\[
f(a, b) = a \land f(f(a, b), b) \neq a
\]

What is **UNION**(1, 2)?
Congruence closure algorithm: congruent

- **CONGRUENT** takes as input two nodes and returns true iff their
 - functions are the same
 - corresponding arguments are in the same congruence class

\[
f(a, b) = a \land f(f(a, b), b) \neq a
\]
Congruence closure algorithm: merge

\[
\text{MERGE} (i_1, i_2)
\]

\[
n_1, n_2 \leftarrow \text{FIND}(i_1), \text{FIND}(i_2)
\]

\[
\text{if } n_1 = n_2 \text{ then return}
\]

\[
p_1, p_2 \leftarrow n_1.\text{ccp}, n_2.\text{ccp}
\]

\[
\text{UNION}(n_1, n_2)
\]

\[
\text{for each } t_1, t_2 \in p_1 \times p_2
\]

\[
\quad \text{if } \text{FIND}(t_1) \neq \text{FIND}(t_2) \land \text{CONGRUENT}(t_1, t_2)
\]

\[
\quad \text{then MERGE}(t_1, t_2)
\]

\[
f(a, b) = a \land f(f(a, b), b) \neq a
\]
Congruence closure algorithm: merge

\[
\text{MERGE } (i_1, i_2) \\
n_1, n_2 \leftarrow \text{FIND}(i_1), \text{FIND}(i_2) \\
\text{if } n_1 = n_2 \text{ then return} \\
p_1, p_2 \leftarrow n_1.\text{ccp}, n_2.\text{ccp} \\
\text{UNION}(n_1, n_2) \\
\text{for each } t_1, t_2 \in p_1 \times p_2 \\
\quad \text{if } \text{FIND}(t_1) \neq \text{FIND}(t_2) \land \text{CONGRUENT}(t_1, t_2) \\
\quad \text{then } \text{MERGE}(t_1, t_2)
\]

\[
f(a, b) = a \land f(f(a, b), b) \neq a
\]
Congruence closure algorithm: merge

\[\text{MERGE} \left(i_1, i_2 \right) \]

\[
\begin{align*}
n_1, n_2 &\leftarrow \text{FIND}(i_1), \text{FIND}(i_2) \\
\text{if } n_1 = n_2 \text{ then return} \\
p_1, p_2 &\leftarrow n_1.ccp, n_2.ccp \\
\text{UNION}(n_1, n_2) \\
\text{for each } t_1, t_2 \in p_1 \times p_2 \\
\text{if } \text{FIND}(t_1) \neq \text{FIND}(t_2) \wedge \text{CONGRUENT}(t_1, t_2) \\
\text{then } \text{MERGE}(t_1, t_2) \\
\end{align*}
\]

\[f(a, b) = a \wedge f(f(a, b), b) \neq a \]
Congruence closure algorithm: deciding $T = \neg$

DETERMINE (F)

- Construct the DAG for F’s subterms
- For $s_i = t_i \in F$
 - Merge(s_i, t_i)
- For $s_i \neq t_i \in F$
 - If $\text{FIND}(s_i) = \text{FIND}(t_i)$ then return UNSAT
- Return SAT

Example: f(a, b) = a \land f(f(a, b), b) \neq a
Congruence closure algorithm: deciding $T = f(a, b) = a \land f(f(a, b), b) \neq a$

Decide (F)

- construct the DAG for F's subterms
 - for $s_i = t_i \in F$
 - $\text{MERGE}(s_i, t_i)$
 - for $s_i \neq t_i \in F$
 - if $\text{FIND}(s_i) = \text{FIND}(t_i)$ then return UNSAT
 - return SAT
Congruence closure algorithm: deciding $T = f(a, b) = a \land f(f(a, b), b) \neq a$

Decide (F)

construct the DAG for F’s subterms

for $s_i = t_i \in F$

MERGE(s_i, t_i)

for $s_i \neq t_i \in F$

if $\text{FIND}(s_i) = \text{FIND}(t_i)$ then return UNSAT

return SAT
Summary

Today

• A brief survey of theory solvers
• Congruence closure algorithm for deciding conjunctive T_\cong formulas

Next lecture

• Combining (decision procedures for different) theories