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Computer-Aided Reasoning for Software

Practical Applications of SAT



Today

Past 2 lectures  
• The theory and mechanics of SAT solving

Today  
• Practical applications of SAT

• Variants of the SAT problem

• Motivating the next lecture on SMT
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A brief history of SAT solving and applications

Based on a slide from Vijay Ganesh
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Bounded Model Checking.  
First presented at FMCAD’98.  In an 
unusual move, the Chairs included 
an extra talk on BMC.  A 1999 paper 
describes its application at Motorola 
to verify a PowerPC processor.

SAT solver on 
board Deep 
Space One.

zChaff, ‘01

MiniSAT, ’03 Concolic Testing, Program 
Analysis, Mercedes 
Product Configuration

Synthesis, Type Systems, 
Bio, Configuration 
Management, SMT



todayBounded Model Checking (BMC) & 
Configuration Management



Bounded Model Checking (in general)

Given a system and a property, 
BMC checks if the property is 
satisfied by all executions of 
the system with ≤k steps, on 
all inputs of size ≤n.

We will focus on safety 
properties (i.e., making 
sure a bad state, such as an 
assertion violation, is not 
reached). 



Bounded Model Checking (in general)

Testing: checks a 
few executions 
of arbitrary size

Verification: checks 
all executions of 
every size

BMC: checks all 
executions of 
size ≤k

low human labor high human labor

low confidence high confidenceThe small scope 
hypothesis:  most bugs 
can be triggered with small 
inputs and executions.



BMC by example



int daysToYear(int days) { 
  int year = 1980; 
  while (days > 365) { 

    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
     
  } 
  return year; 
}

    int oldDays = days; 

    assert days < oldDays; 

BMC by example

The Zune Bug: on 
December 31, 2008, all first 
generation Zune players from 
Microsoft became unresponsive 
because of this code.  What’s 
wrong?

Infinite loop triggered on the 
last day of every leap year.  

A desired safety property:  the 
value of the days variable 
decreases in every loop 
iteration.



int daysToYear(int days) { 
  int year = 1980; 
  while (days > 365) { 
    int oldDays = days; 
    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
    assert days < oldDays; 
  } 
  return year; 
}

int daysToYear(int days) { 
  int year = 1980; 
  if (days > 365) { 
    int oldDays = days; 
    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
    assert days < oldDays; 
    assert days <= 365; 
  } 
  return year; 
}

BMC step 1 of 4:  finitize loops

• Unwind all loops k times (e.g., 
k=1), and add an unwinding 
assertion at the end.

• If a CEX violates a program 
assertion, we have found a 
buggy behavior of length ≤k.

• If a CEX violates an unwinding 
assertion, the program has no 
buggy behavior of length ≤k, 
but it may have a longer one.

• If there is no CEX, the 
program is correct for all k!



int daysToYear(int days) { 
  int year = 1980; 
  if (days > 365) { 
    int oldDays = days; 
    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
    assert days < oldDays; 
    assert days <= 365; 
  } 
  return year; 
}

BMC step 1 of 4:  finitize loops & inline calls

Assume call to isLeapYear is 
inlined (replaced with the 
procedure body).  We’ll keep it 
for readability.



BMC step 2 of 4:  eliminate side effects

int daysToYear(int days) { 
  int year = 1980; 
  if (days > 365) { 
    int oldDays = days; 
    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
    assert days < oldDays; 
    assert days <= 365; 
  } 
  return year; 
}



int days; 
int year = 1980;  
if (days > 365) { 
  int oldDays = days; 
  if (isLeapYear(year)) { 
    if (days > 366) { 
      days = days - 366; 
      year = year + 1; 
    } 
  } else { 
    days = days - 365; 
    year = year + 1; 
  } 
  assert days < oldDays; 
  assert days <= 365; 
} 
return year;

BMC step 2 of 4:  eliminate side effects

Convert to Static Single 
Assignment (SSA) form:



BMC step 2 of 4:  eliminate side effects

Convert to Static Single 
Assignment (SSA) form:

• Replace each assignment to a 
variable v with a definition of 
a fresh variable vi.

• Change uses of variables so 
that they refer to the correct 
definition (version).

int days0; 
int year0 = 1980;  
if (days0 > 365) { 
  int oldDays0 = days0; 
  if (isLeapYear(year0)) { 
    if (days0 > 366) { 
      days1 = days0 - 366; 
      year1 = year0 + 1; 
    } 
  } else { 
    days3 = days0 - 365; 
    year3 = year0 + 1; 
  } 
  assert days4 < oldDays0; 
  assert days4 <= 365; 
} 
return year5;



BMC step 2 of 4:  eliminate side effects

Convert to Static Single 
Assignment (SSA) form:

• Replace each assignment to a 
variable v with a definition of 
a fresh variable vi.

• Change uses of variables so 
that they refer to the correct 
definition (version).

• Make conditional 
dependences explicit with 
gated φ nodes.

int days0; 
int year0 = 1980; 
boolean g0 = (days0 > 365); 
int oldDays0 = days0; 
boolean g1 = isLeapYear(year0); 
boolean g2 = days0 > 366; 
days1 = days0 - 366; 
year1 = year0 + 1; 
days2 = φ(g1 && g2, days1, days0); 
year2 = φ(g1 && g2, year1, year0); 
days3 = days0 - 365; 
year3 = year0 + 1; 
days4 = φ(g1, days2, days3);  
year4 = φ(g1, year2, year3); 
assert days4 < oldDays0; 
assert days4 <= 365; 
year5 = φ(g0, year4, year0); 
return year5;



int days0; 
int year0 = 1980;  
if (days0 > 365) { 
  int oldDays0 = days0; 
  if (isLeapYear(year0)) { 
    if (days0 > 366) { 
      days1 = days0 - 366; 
      year1 = year0 + 1; 
    } 
  } else { 
    days3 = days0 - 365; 
    year3 = year0 + 1; 
  } 
  assert days4 < oldDays0; 
  assert days4 <= 365; 
} 
return year5;

BMC step 2 of 4:  eliminate side effects

int days0; 
int year0 = 1980; 
boolean g0 = (days0 > 365); 
int oldDays0 = days0; 
boolean g1 = isLeapYear(year0); 
boolean g2 = days0 > 366; 
days1 = days0 - 366; 
year1 = year0 + 1; 
days2 = φ(g1 && g2, days1, days0); 
year2 = φ(g1 && g2, year1, year0); 
days3 = days0 - 365; 
year3 = year0 + 1; 
days4 = φ(g1, days2, days3);  
year4 = φ(g1, year2, year3); 
assert days4 < oldDays0; 
assert days4 <= 365; 
year5 = φ(g0, year4, year0); 
return year5;



BMC step 3 of 4:  convert into equations

We can now read off the 
equations that encode the 
program semantics, and the 
assertions to be checked.

int days0; 
int year0 = 1980; 
boolean g0 = (days0 > 365); 
int oldDays0 = days0; 
boolean g1 = isLeapYear(year0); 
boolean g2 = days0 > 366; 
days1 = days0 - 366; 
year1 = year0 + 1; 
days2 = φ(g1 && g2, days1, days0); 
year2 = φ(g1 && g2, year1, year0); 
days3 = days0 - 365; 
year3 = year0 + 1; 
days4 = φ(g1, days2, days3);  
year4 = φ(g1, year2, year3); 
assert days4 < oldDays0; 
assert days4 <= 365; 
year5 = φ(g0, year4, year0); 
return year5;



BMC step 3 of 4:  convert into equations

int year0 = 1980; 
boolean g0 = (days0 > 365); 
int oldDays0 = days0; 
boolean g1 = isLeapYear(year0); 
boolean g2 = days0 > 366; 
days1 = days0 - 366; 
year1 = year0 + 1; 
days2 = φ(g1 && g2, days1, days0); 
year2 = φ(g1 && g2, year1, year0); 
days3 = days0 - 365; 
year3 = year0 + 1; 
days4 = φ(g1, days2, days3);  
year4 = φ(g1, year2, year3); 
assert days4 < oldDays0; 
assert days4 <= 365;

We can now read off the 
equations that encode the 
program semantics …



BMC step 3 of 4:  convert into equations

year0 = 1980; 
g0 = (days0 > 365); 
oldDays0 = days0; 
g1 = isLeapYear(year0); 
g2 = days0 > 366; 
days1 = days0 - 366; 
year1 = year0 + 1; 
days2 = φ(g1 && g2, days1, days0); 
year2 = φ(g1 && g2, year1, year0); 
days3 = days0 - 365; 
year3 = year0 + 1; 
days4 = φ(g1, days2, days3);  
year4 = φ(g1, year2, year3); 
assert days4 < oldDays0; 
assert days4 <= 365;

We can now read off the 
equations that encode the 
program semantics …



year0 = 1980 ⋀ 
g0 = (days0 > 365)⋀ 
oldDays0 = days0 ⋀ 
g1 = isLeapYear(year0)⋀ 
g2 = days0 > 366 ⋀ 
days1 = days0 - 366 ⋀ 
year1 = year0 + 1 ⋀ 
days2 = φ(g1 ⋀ g2, days1, days0) ⋀ 
year2 = φ(g1 ⋀ g2, year1, year0) ⋀ 
days3 = days0 - 365 ⋀ 
year3 = year0 + 1 ⋀ 
days4 = φ(g1, days2, days3) ⋀  
year4 = φ(g1, year2, year3) ⋀ 
assert days4 < oldDays0; 
assert days4 <= 365;

BMC step 3 of 4:  convert into equations

We can now read off the 
equations that encode the 
program semantics …



year0 = 1980 ⋀ 
g0 = (days0 > 365)⋀ 
oldDays0 = days0 ⋀ 
g1 = isLeapYear(year0)⋀ 
g2 = days0 > 366 ⋀ 
days1 = days0 - 366 ⋀ 
year1 = year0 + 1 ⋀ 
days2 = ite(g1 ⋀ g2, days1, days0) ⋀ 
year2 = ite(g1 ⋀ g2, year1, year0) ⋀ 
days3 = days0 - 365 ⋀ 
year3 = year0 + 1 ⋀ 
days4 = ite(g1, days2, days3) ⋀  
year4 = ite(g1, year2, year3) ⋀ 
assert days4 < oldDays0; 
assert days4 <= 365;

BMC step 3 of 4:  convert into equations

We can now read off the 
equations that encode the 
program semantics …



year0 = 1980 ⋀ 
g0 = (days0 > 365)⋀ 
oldDays0 = days0 ⋀ 
g1 = isLeapYear(year0)⋀ 
g2 = days0 > 366 ⋀ 
days1 = days0 - 366 ⋀ 
year1 = year0 + 1 ⋀ 
days2 = ite(g1 ⋀ g2, days1, days0) ⋀ 
year2 = ite(g1 ⋀ g2, year1, year0) ⋀ 
days3 = days0 - 365 ⋀ 
year3 = year0 + 1 ⋀ 
days4 = ite(g1, days2, days3) ⋀  
year4 = ite(g1, year2, year3) ⋀ 
(¬(days4 < oldDays0) ⋁  
 ¬(days4 <= 365))

BMC step 3 of 4:  convert into equations

We can now read off the 
equations that encode the 
program semantics, and the 
assertions to be checked.

A solution to this formula is a 
sound counterexample:  an 
interpretation for all logical 
variables that satisfies the 
program semantics (for up to 
k unwindings) but violates at 
least one of the assertions.



Represent numbers as 
arrays of bits. 
Use one boolean variable 
per bit for each number.

BMC step 4 of 4:  convert into CNF

year0:31

…

s31 s1 s0

c1c2c32

year0:1 year0:00 0 1

year1 = year0 + 1

year1:31 ↔ year1:1 ↔  ↔ year1:0

year1 = year0 + 1

⋀ … ⋀ ⋀

year1 = year0 + 1

year0 = 000 … 000
31 30 29 2 1 0

Introduce new clauses to 
constrain bits in year1 to 
match bits in the sum.

Construct an 
adder circuit 
for year0 + 1.



int daysToYear(int days) { 
  int year = 1980; 
  while (days > 365) { 

    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
     
  } 
  return year; 
}

BMC counterexample for k=1

days = 366



todayBounded Model Checking (BMC) & 
Configuration Management



Configuration Management

Given a configuration, consisting of a set 
of components, their dependencies, and 
conflicts:

• Decide if a new component can be 
added to the configuration.

• Add the component while optimizing 
some linear function.

• If the component cannot be added, 
find a way to add it by removing as 
few conflicting components from the 
current configuration as possible.

SAT

Partial (Weighted) MaxSAT

Pseudo-Boolean Constraints



Deciding if a component can be installed

a

b c z

y

d e f g

Conflict:  d and e cannot 
both be installed.

c needs f 
or g.

a depends 
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀
a ⋀ z

z already 
installed.



Optimal installation

a

b c z

y

d e f g

Assume f and g are 5MB 
and 2MB each, and all 
other components are 
1MB.  How to install a, 
while minimizing total size?

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀
a ⋀ z



Optimal installation

a

b c z

y

d e f g

Assume f and g are 5MB 
and 2MB each, and all 
other components are 
1MB.  How to install a, 
while minimizing total size?

Pseudo-boolean solvers accept 
a linear function to minimize, in 
addition to a (weighted) CNF. 

min c1x1 + … + cnxn

a11x1 + … + a1nxn ≥b1 ⋀ … ⋀ 
ak1x1 + … + aknxn ≥bk

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀
a ⋀ z



Optimal installation

a

b c z

y

d e f g

Assume f and g are 5MB 
and 2MB each, and all 
other components are 
1MB.  How to install a, 
while minimizing total size?

Pseudo-boolean solvers accept 
a linear function to minimize, in 
addition to a (weighted) CNF. 

min a + b + c + d + e + 5f  + 2g + y + 0z
(-a + b ≥0)⋀(-a + c ≥0)⋀(-a + z ≥0) ⋀
(-b + d ≥0) ⋀
(-c + d + e ≥0) ⋀ (-c + f + g ≥0) ⋀
(-d + -e ≥-1) ⋀
(-y + z ≥0) ⋀
(a ≥1) ⋀ (z ≥1)



Installation in the presence of conflicts

a

b c z

y

d e f g

To install a, while minimizing the number 
of removed components, Partial MaxSAT 
constraints are:

hard: (¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
    (¬b ⋁ d) ⋀

        (¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
        (¬d ⋁ ¬e) ⋀ (¬y ⋁ z) ⋀ a

soft:  e ⋀ z

a cannot be installed 
because it requires b, 
which requires d, which 
conflicts with e.

Partial MaxSAT solver takes as input a set 
of hard clauses and a set of soft clauses, 
and it produces an assignment that 
satisfies all hard clauses and the greatest 
number of soft clauses.



Summary

Today
• SAT solvers have been used successfully in many applications & domains

• But reducing problems to SAT is a lot like programming in assembly …

• We need higher-level logics!

Next lecture
• On to richer logics:  introduction to Satisfiability Modulo Theories (SMT)


