
CSE507
Computer-Aided Reasoning for Software

Practical Applications of SAT

Today

Past 2 lectures
• The theory and mechanics of SAT solving

Today
• Practical applications of SAT

• Variants of the SAT problem

• Motivating the next lecture on SMT

to
pi

cs

A brief history of SAT solving and applications

Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

Bounded Model Checking.
First presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola
to verify a PowerPC processor.

SAT solver on
board Deep
Space One.

zChaff, ‘01

MiniSAT, ’03 Concolic Testing, Program
Analysis, Mercedes
Product Configuration

Synthesis, Type Systems,
Bio, Configuration
Management, SMT

todayBounded Model Checking (BMC) &
Configuration Management

Bounded Model Checking (in general)

Given a system and a property,
BMC checks if the property is
satisfied by all executions of
the system with ≤k steps, on
all inputs of size ≤n.

We will focus on safety
properties (i.e., making
sure a bad state, such as an
assertion violation, is not
reached).

Bounded Model Checking (in general)

Testing: checks a
few executions
of arbitrary size

Verification: checks
all executions of
every size

BMC: checks all
executions of
size ≤k

low human labor high human labor

low confidence high confidenceThe small scope
hypothesis: most bugs
can be triggered with small
inputs and executions.

BMC by example

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {

 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }

 }
 return year;
}

 int oldDays = days;

 assert days < oldDays;

BMC by example

The Zune Bug: on
December 31, 2008, all first
generation Zune players from
Microsoft became unresponsive
because of this code. What’s
wrong?

Infinite loop triggered on the
last day of every leap year.

A desired safety property: the
value of the days variable
decreases in every loop
iteration.

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 }
 return year;
}

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 1 of 4: finitize loops

• Unwind all loops k times (e.g.,
k=1), and add an unwinding
assertion at the end.

• If a CEX violates a program
assertion, we have found a
buggy behavior of length ≤k.

• If a CEX violates an unwinding
assertion, the program has no
buggy behavior of length ≤k,
but it may have a longer one.

• If there is no CEX, the
program is correct for all k!

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 1 of 4: finitize loops & inline calls

Assume call to isLeapYear is
inlined (replaced with the
procedure body). We’ll keep it
for readability.

BMC step 2 of 4: eliminate side effects

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

int days;
int year = 1980;
if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days = days - 366;
 year = year + 1;
 }
 } else {
 days = days - 365;
 year = year + 1;
 }
 assert days < oldDays;
 assert days <= 365;
}
return year;

BMC step 2 of 4: eliminate side effects

Convert to Static Single
Assignment (SSA) form:

BMC step 2 of 4: eliminate side effects

Convert to Static Single
Assignment (SSA) form:

• Replace each assignment to a
variable v with a definition of
a fresh variable vi.

• Change uses of variables so
that they refer to the correct
definition (version).

int days0;
int year0 = 1980;
if (days0 > 365) {
 int oldDays0 = days0;
 if (isLeapYear(year0)) {
 if (days0 > 366) {
 days1 = days0 - 366;
 year1 = year0 + 1;
 }
 } else {
 days3 = days0 - 365;
 year3 = year0 + 1;
 }
 assert days4 < oldDays0;
 assert days4 <= 365;
}
return year5;

BMC step 2 of 4: eliminate side effects

Convert to Static Single
Assignment (SSA) form:

• Replace each assignment to a
variable v with a definition of
a fresh variable vi.

• Change uses of variables so
that they refer to the correct
definition (version).

• Make conditional
dependences explicit with
gated φ nodes.

int days0;
int year0 = 1980;
boolean g0 = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(year0);
boolean g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = φ(g0, year4, year0);
return year5;

int days0;
int year0 = 1980;
if (days0 > 365) {
 int oldDays0 = days0;
 if (isLeapYear(year0)) {
 if (days0 > 366) {
 days1 = days0 - 366;
 year1 = year0 + 1;
 }
 } else {
 days3 = days0 - 365;
 year3 = year0 + 1;
 }
 assert days4 < oldDays0;
 assert days4 <= 365;
}
return year5;

BMC step 2 of 4: eliminate side effects

int days0;
int year0 = 1980;
boolean g0 = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(year0);
boolean g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = φ(g0, year4, year0);
return year5;

BMC step 3 of 4: convert into equations

We can now read off the
equations that encode the
program semantics, and the
assertions to be checked.

int days0;
int year0 = 1980;
boolean g0 = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(year0);
boolean g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = φ(g0, year4, year0);
return year5;

BMC step 3 of 4: convert into equations

int year0 = 1980;
boolean g0 = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(year0);
boolean g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;

We can now read off the
equations that encode the
program semantics …

BMC step 3 of 4: convert into equations

year0 = 1980;
g0 = (days0 > 365);
oldDays0 = days0;
g1 = isLeapYear(year0);
g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;

We can now read off the
equations that encode the
program semantics …

year0 = 1980 ⋀
g0 = (days0 > 365)⋀
oldDays0 = days0 ⋀
g1 = isLeapYear(year0)⋀
g2 = days0 > 366 ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = φ(g1 ⋀ g2, days1, days0) ⋀
year2 = φ(g1 ⋀ g2, year1, year0) ⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = φ(g1, days2, days3) ⋀
year4 = φ(g1, year2, year3) ⋀
assert days4 < oldDays0;
assert days4 <= 365;

BMC step 3 of 4: convert into equations

We can now read off the
equations that encode the
program semantics …

year0 = 1980 ⋀
g0 = (days0 > 365)⋀
oldDays0 = days0 ⋀
g1 = isLeapYear(year0)⋀
g2 = days0 > 366 ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 ⋀ g2, days1, days0) ⋀
year2 = ite(g1 ⋀ g2, year1, year0) ⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3) ⋀
year4 = ite(g1, year2, year3) ⋀
assert days4 < oldDays0;
assert days4 <= 365;

BMC step 3 of 4: convert into equations

We can now read off the
equations that encode the
program semantics …

year0 = 1980 ⋀
g0 = (days0 > 365)⋀
oldDays0 = days0 ⋀
g1 = isLeapYear(year0)⋀
g2 = days0 > 366 ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 ⋀ g2, days1, days0) ⋀
year2 = ite(g1 ⋀ g2, year1, year0) ⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3) ⋀
year4 = ite(g1, year2, year3) ⋀
(¬(days4 < oldDays0) ⋁
 ¬(days4 <= 365))

BMC step 3 of 4: convert into equations

We can now read off the
equations that encode the
program semantics, and the
assertions to be checked.

A solution to this formula is a
sound counterexample: an
interpretation for all logical
variables that satisfies the
program semantics (for up to
k unwindings) but violates at
least one of the assertions.

Represent numbers as
arrays of bits.
Use one boolean variable
per bit for each number.

BMC step 4 of 4: convert into CNF

year0:31

…

s31 s1 s0

c1c2c32

year0:1 year0:00 0 1

year1 = year0 + 1

year1:31 ↔ year1:1 ↔ ↔ year1:0

year1 = year0 + 1

⋀ … ⋀ ⋀

year1 = year0 + 1

year0 = 000 … 000
31 30 29 2 1 0

Introduce new clauses to
constrain bits in year1 to
match bits in the sum.

Construct an
adder circuit
for year0 + 1.

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {

 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }

 }
 return year;
}

BMC counterexample for k=1

days = 366

todayBounded Model Checking (BMC) &
Configuration Management

Configuration Management

Given a configuration, consisting of a set
of components, their dependencies, and
conflicts:

• Decide if a new component can be
added to the configuration.

• Add the component while optimizing
some linear function.

• If the component cannot be added,
find a way to add it by removing as
few conflicting components from the
current configuration as possible.

SAT

Partial (Weighted) MaxSAT

Pseudo-Boolean Constraints

Deciding if a component can be installed

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀
a ⋀ z

z already
installed.

Optimal installation

a

b c z

y

d e f g

Assume f and g are 5MB
and 2MB each, and all
other components are
1MB. How to install a,
while minimizing total size?

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀
a ⋀ z

Optimal installation

a

b c z

y

d e f g

Assume f and g are 5MB
and 2MB each, and all
other components are
1MB. How to install a,
while minimizing total size?

Pseudo-boolean solvers accept
a linear function to minimize, in
addition to a (weighted) CNF.

min c1x1 + … + cnxn

a11x1 + … + a1nxn ≥b1 ⋀ … ⋀
ak1x1 + … + aknxn ≥bk

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀
a ⋀ z

Optimal installation

a

b c z

y

d e f g

Assume f and g are 5MB
and 2MB each, and all
other components are
1MB. How to install a,
while minimizing total size?

Pseudo-boolean solvers accept
a linear function to minimize, in
addition to a (weighted) CNF.

min a + b + c + d + e + 5f + 2g + y + 0z
(-a + b ≥0)⋀(-a + c ≥0)⋀(-a + z ≥0) ⋀
(-b + d ≥0) ⋀
(-c + d + e ≥0) ⋀ (-c + f + g ≥0) ⋀
(-d + -e ≥-1) ⋀
(-y + z ≥0) ⋀
(a ≥1) ⋀ (z ≥1)

Installation in the presence of conflicts

a

b c z

y

d e f g

To install a, while minimizing the number
of removed components, Partial MaxSAT
constraints are:

hard: (¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
 (¬b ⋁ d) ⋀

 (¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
 (¬d ⋁ ¬e) ⋀ (¬y ⋁ z) ⋀ a

soft: e ⋀ z

a cannot be installed
because it requires b,
which requires d, which
conflicts with e.

Partial MaxSAT solver takes as input a set
of hard clauses and a set of soft clauses,
and it produces an assignment that
satisfies all hard clauses and the greatest
number of soft clauses.

Summary

Today
• SAT solvers have been used successfully in many applications & domains

• But reducing problems to SAT is a lot like programming in assembly …

• We need higher-level logics!

Next lecture
• On to richer logics: introduction to Satisfiability Modulo Theories (SMT)

