Practical Applications of SAT

Today

Past 2 lectures

- The theory and mechanics of SAT solving

Today

- Practical applications of SAT
- Variants of the SAT problem
- Motivating the next lecture on SMT

A brief history of SAT solving and applications

Bounded Model Checking (BMC) \& Configuration Management

Bounded Model Checking (in general)

Given a system and a property, BMC checks if the property is satisfied by all executions of the system with $\leq k$ steps, on all inputs of size $\leq n$.

We will focus on safety properties (i.e., making sure a bad state, such as an assertion violation, is not reached).

Bounded Model Checking (in general)

Testing: checks a few executions of arbitrary size
low confidence
low human labor

The small scope hypothesis: most bugs can be triggered with small inputs and executions.

Verification: checks all executions of every size

BMC: checks all
executions of
size $\leq k$

BMC by example

BMC by example

```
int daysToYear(int days) {
    int year = 1980;
    while (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
        if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
                days -= 365;
            year += 1;
        }
        assert days < oldDays;
    }
    return year;
}
```


The Zune Bug: on

December 3I, 2008, all first generation Zune players from Microsoft became unresponsive because of this code. What's wrong?

Infinite loop triggered on the last day of every leap year.

A desired safety property: the value of the days variable decreases in every loop iteration.

BMC step I of 4: finitize loops

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
            if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
                days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```

- Unwind all loops k times (e.g., $\mathrm{k}=\mathrm{l}$), and add an unwinding assertion at the end.
- If a CEX violates a program assertion, we have found a buggy behavior of length $\leq k$.
- If a CEX violates an unwinding assertion, the program has no buggy behavior of length $\leq k$, but it may have a longer one.
- If there is no CEX, the program is correct for all k !

BMC step I of 4: finitize loops \& inline calls

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year))
            if (days > 366) {
                days -= 366;
                year += 1;
            }
            } else {
                days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```

Assume call to isLeapYear is inlined (replaced with the procedure body). We'll keep it for readability.

BMC step 2 of 4: eliminate side effects

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
            if (days > 366) {
                days -= 366;
                year += 1;
            }
            } else {
                days -= 365;
            year += 1;
            }
            assert days < oldDays;
            assert days <= 365;
    }
    return year;
}
```


BMC step 2 of 4: eliminate side effects

```
int days;
int year = 1980;
if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
            if (days > 366) {
            days = days - 366;
            year = year + 1;
            }
    } else {
            days = days - 365;
            year = year + 1;
    }
    assert days < oldDays;
    assert days <= 365;
}
return year;
```

Convert to Static Single Assignment (SSA) form:

BMC step 2 of 4: eliminate side effects

```
int days0;
```

int days0;
int year0 = 1980;
int year0 = 1980;
if (days0 > 365) {
if (days0 > 365) {
int oldDays0 = days0;
int oldDays0 = days0;
if (isLeapYear(yearo)) {
if (isLeapYear(yearo)) {
if (days0 > 366) {
if (days0 > 366) {
days}1 = days0 - 366
days}1 = days0 - 366
year_ = year0 + 1;
year_ = year0 + 1;
}
}
} else {
} else {
days}3 = days0 - 365
days}3 = days0 - 365
year3 = year0 + 1;
year3 = year0 + 1;
}
}
assert days4 < oldDays0;
assert days4 < oldDays0;
assert days4 <= 365;
assert days4 <= 365;
}
}
return year5;

```
return year5;
```


Convert to Static Single

 Assignment (SSA) form:- Replace each assignment to a variable v with a definition of a fresh variable v_{i}.
- Change uses of variables so that they refer to the correct definition (version).

BMC step 2 of 4: eliminate side effects

```
int days0;
int year0 = 1980;
boolean go = (days0 > 365);
int oldDays0 = days0;
boolean g}\mp@subsup{g}{1}{}= isLeapYear(year0)
boolean g2 = days0 > 366;
days}
year1 = year0 + 1;
days}2=\varphi(\mp@subsup{g}{1}{}&& g2, days1, days0)
year_ = \varphi(g1 && g2, year1, year0);
days}3= days0 - 365
year3 = year0 + 1;
days}4=\varphi(\mp@subsup{g}{1}{},\mp@subsup{days}{2}{\prime},\mp@subsup{\mathrm{ days}3}{3}{)}
```



```
assert days4 < oldDays0;
assert days4 <= 365;
year5 = \varphi(g0, year4, year0);
return year5;
```


Convert to Static Single

Assignment (SSA) form:

- Replace each assignment to a variable v with a definition of a fresh variable v_{i}.
- Change uses of variables so that they refer to the correct definition (version).
- Make conditional dependences explicit with gated ϕ nodes.

BMC step 2 of 4: eliminate side effects

```
int days0;
int year0 = 1980;
boolean go = (days0 > 365);
int oldDays0 = days0;
boolean g}\mp@subsup{g}{1}{}= isLeapYear(year0)
boolean g2 = days0 > 366;
days}
year}\mp@subsup{\mp@code{1}}{= = year0 + 1;}{
days}2=\varphi(\mp@subsup{g}{1}{}&& g2, days1, days0)
year_ = \varphi(g1 && g2, year1, year0);
days}3= days0 - 365
year3 = year0 + 1;
days4 = \varphi(g1, days2, days3);
```



```
assert days4 < oldDays0;
assert days4 <= 365;
year5 = \varphi(g0, year4, year0);
return year5;
int dayso;
int yearo = 1980;
boolean \(g_{0}=\left(d a y s_{0}>365\right)\);
int oldDays 0 = days0;
boolean \(\mathrm{g}_{1}=\) isLeapYear(yearo);
boolean \(\mathrm{g}_{2}=\) days0 > 366;
days \(_{1}=\) days \(_{0}-366 ;\)
year \(_{1}=\) year \({ }_{0}+1\);
days \(_{2}=\varphi\left(g_{1} \& \& g_{2}\right.\), days \(_{1}\), days \(\left._{0}\right) ;\)
year \(_{2}=\varphi\left(g_{1} \& \& g_{2}\right.\), year \(_{1}\), year \()\);
days \(_{3}=\) days \(_{0}-365\);
year \(_{3}=\) year0 + 1;
days \(_{4}=\varphi\left(g_{1}\right.\), days \(_{2}\), days \(\left._{3}\right) ;\)
year \(_{4}=\varphi\left(g_{1}\right.\), year \(_{2}\), year \(\left.r_{3}\right)\);
assert days 4 < oldDays 0 ;
assert days 4 <= 365;
year \(r_{5}=\varphi\left(g_{0}, \text { year }_{4}, \text { year }\right)_{0}\);
return years;
```

```
int days0;
int year0 = 1980;
if (days0 > 365) {
    int oldDays0 = days0;
    if (isLeapYear(yearo)) {
        if (days0 > 366) {
            days}1 = days0 - 366
            year1 = year0 + 1;
        }
    } else {
        days3 = days0 - 365;
        year3 = year0 + 1;
    }
    assert days4 < oldDays0;
    assert days4 <= 365;
}
return years;
```


BMC step 3 of 4: convert into equations

```
int days0;
int yearo = 1980;
boolean go = (days0 > 365);
int oldDays0 = days0;
boolean g}\mp@subsup{g}{1}{}= isLeapYear(yearo)
boolean g2 = days0 > 366;
days}
year1 = year0 + 1;
days}2=\varphi(\mp@subsup{g}{1}{}&&\mp@subsup{g}{2}{},\mp@subsup{\mathrm{ days}}{1}{},\mp@subsup{d}{}{\mathrm{ days}
year_ }=\varphi(\mp@subsup{g}{1}{}&&\mp@subsup{g}{2}{},\mp@subsup{y}{}{\mathrm{ year1}
days}3=\mp@subsup{d}{}{\mathrm{ days}0 - 365;
year3 = year0 + 1;
days4 = \varphi(g1, days2, days3);
year4 = \varphi(g}\mp@subsup{g}{1}{},\mp@subsup{year}{2}{\prime},\mp@subsup{\mathrm{ year3}}{3}{\prime})
assert days4 < oldDays0;
assert days4 <= 365;
year5 = \varphi(g0, year4, year0);
return year5;
```

We can now read off the equations that encode the program semantics, and the assertions to be checked.

BMC step 3 of 4: convert into equations

```
int year0 = 1980;
boolean go = (days0 > 365);
int oldDays0 = days0;
boolean g}\mp@subsup{g}{1}{}= isLeapYear(year0)
boolean g}\mp@subsup{g}{2}{}=\mathrm{ days0 > 366;
days}1= days0 - 366
year1 = year0 + 1;
days}2=\varphi(\mp@subsup{g}{1}{}&&\mp@subsup{g}{2}{},\mp@subsup{\mathrm{ days}}{1}{},\mp@subsup{d}{}{\mathrm{ days}
```



```
days}3=\mp@subsup{d}{}{\mathrm{ days}}0-365
year3 = year0 + 1;
days4 = \varphi(g1, days2, days}3)
year4 = \varphi(g), year2, year3);
assert days4 < oldDayso;
assert days4 <= 365;
```

We can now read off the equations that encode the program semantics...

BMC step 3 of 4: convert into equations

```
yearo = 1980;
go = (days0 > 365);
oldDays0 = days0;
g
g}\mp@subsup{g}{2}{= dayS0 > 366;
days}1 = days0 - 366
year}\mp@subsup{\mp@code{1}}{= = year }{0}+1
days}2=\varphi(\mp@subsup{g}{1}{}&& g2, days1, days0)
year_ = \varphi(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days}4=\varphi(\mp@subsup{g}{1}{},\mp@subsup{days}{2}{\prime},\mp@subsup{\mathrm{ days}}{3}{})
year4 = \varphi(g}\mp@subsup{g}{1}{},\mp@subsup{\mathrm{ year2}}{2}{\prime},\mp@subsup{\mathrm{ year3}}{3}{\prime})
assert days4 < oldDayso;
assert days4 <= 365;
```

We can now read off the equations that encode the program semantics...

BMC step 3 of 4: convert into equations

```
yearo = 1980
go = (days0 > 365)^
oldDays0 = days0 ^
g
g
days}1=\mp@subsup{days}{0}{-
year_ = yearo + 1 ^
days}2=\varphi(\mp@subsup{g}{1}{}\wedge g g, daysi, days0) ^
year2 = \varphi(g1 ^ g2, year1, year0) ^
days}
year3 = year0 + 1 ^
days}4=\varphi(\mp@subsup{g}{1}{}, days2, days3) ^
```



```
assert days4 < oldDayso;
assert days4 <= 365;
```

We can now read off the equations that encode the program semantics...

BMC step 3 of 4: convert into equations

```
yearo = 1980
go = (days0 > 365)^
oldDays0 = days0 ^
g
g
days}\mp@subsup{\mp@code{1 }}{= days0 - 366}{0
year1 = year0 + 1 ^
days}2= ite(g1 ^ g2, days1, days0) ^
year2 = ite(g}\mp@subsup{g}{1}{}\wedge\mp@subsup{g}{2}{\prime},\mp@subsup{y}{ear}{1}, year0) ^
days}3=\mp@subsup{d}{}{\mathrm{ days}0 - 365 ^
year3 = yearo + 1 ^
days4 = ite(g}\mp@subsup{g}{1}{},\mp@subsup{\mathrm{ days}}{2}{},\mp@subsup{\mathrm{ days}3}{3}{)}^
```



```
assert days4 < oldDayso;
assert days4 <= 365;
```

We can now read off the equations that encode the program semantics...

BMC step 3 of 4: convert into equations

```
yearo = 1980
go = (days0 > 365)^
oldDays0 = days0 ^
g
g
days}\mp@subsup{\mp@code{1 }}{= days0 - 366}{0
year_1 = year0 + 1 ^
days}2= ite(g1 ^ g2, days1, days0) ^
year2 = ite(g}\mp@subsup{g}{1}{}\wedge\mp@subsup{g}{2}{},\mp@subsup{y}{0}{\prime}\mp@subsup{y}{1}{\prime}, yea\mp@subsup{r}{0}{}) 
days}3=\mathrm{ days0 - 365 ^
year3 = year0 + 1 ^
days4 = ite(g1, days2, days3) ^
year4 = ite(g1, year2, year3) ^
(\neg(days4 < oldDays %) v
    \neg(days}4<<=365)
```

We can now read off the equations that encode the program semantics, and the assertions to be checked.

A solution to this formula is a sound counterexample: an interpretation for all logical variables that satisfies the program semantics (for up to k unwindings) but violates at least one of the assertions.

BMC step 4 of 4: convert into CNF

$$
\begin{aligned}
& \text { year }_{1}=\text { year } 0+1 \\
& \text { year }_{0}={ }_{313029}^{000} \ldots 000
\end{aligned}
$$

Represent numbers as arrays of bits.
Use one boolean variable per bit for each number.

Introduce new clauses to constrain bits in year, to match bits in the sum.

BMC counterexample for $k=I$

```
int daysToYear(int days) { days=366
    int year = 1980;
    while (days > 365) {
        if (isLeapYear(year)) {
            if (days > 366) {
                days -= 366;
                year += 1;
            }
            } else {
                days -= 365;
            year += 1;
            }
    }
    return year;
}
```


Bounded Model Checking (BMC) \& Configuration Management

Configuration Management

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as

Maven

SAT

Pseudo-Boolean Constraints

Partial (Weighted) MaxSAT few conflicting components from the current configuration as possible.

Deciding if a component can be installed

To install a, CNF constraints are:
$(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$ $(\neg b \vee d) \wedge$
$(\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge$
$(\neg d \vee \neg e) \wedge$
$(\neg y \vee z) \wedge$
$a \wedge z$

Conflict: d and e cannot both be installed.

Optimal installation

$$
\begin{aligned}
& (\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge \\
& (\neg b \vee d) \wedge \\
& (\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge \\
& (\neg d \vee \neg e) \wedge \\
& (\neg y \vee z) \wedge \\
& a \wedge z
\end{aligned}
$$

Assume f and g are 5MB and $2 M B$ each, and all other components are IMB. How to install a, while minimizing total size?

Optimal installation

Pseudo-boolean solvers accept a linear function to minimize, in addition to a (weighted) CNF.

$$
\begin{aligned}
& \min c_{\mid} x_{1}+\ldots+c_{n} x_{n} \\
& a_{| |} x_{\mid}+\ldots+a_{\mid n} x_{n} \geq b_{\mid} \wedge \ldots \wedge \\
& a_{k \mid} x_{\mid}+\ldots+a_{k n} x_{n} \geq b_{k}
\end{aligned}
$$

Assume f and g are 5MB and $2 M B$ each, and all other components are IMB. How to install a, while minimizing total size?

```
(\nega\veeb) ^(\nega \vee c) ^( }a\textrm{a}\vee z)
(\negb \vee d) ^
(\negc\veed\veee)}\wedge(\negc\veef\veeg)
(\negd \vee ᄀe) ^
(\negy \veez)^
a ^ z
```


Optimal installation

Assume f and g are 5MB and $2 M B$ each, and all other components are IMB. How to install a, while minimizing total size?

Pseudo-boolean solvers accept a linear function to minimize, in addition to a (weighted) CNF.

$$
\begin{aligned}
& \min a+b+c+d+e+5 f+2 g+y+0 z \\
& (-a+b \geq 0) \wedge(-a+c \geq 0) \wedge(-a+z \geq 0) \wedge \\
& (-b+d \geq 0) \wedge \\
& (-c+d+e \geq 0) \wedge(-c+f+g \geq 0) \wedge \\
& (-d+-e \geq-I) \wedge \\
& (-y+z \geq 0) \wedge \\
& (a \geq l) \wedge(z \geq l)
\end{aligned}
$$

Installation in the presence of conflicts

a cannot be installed because it requires b, which requires d, which conflicts with e.

Partial MaxSAT solver takes as input a set of hard clauses and a set of soft clauses, and it produces an assignment that satisfies all hard clauses and the greatest number of soft clauses.

To install a, while minimizing the number of removed components, Partial MaxSAT constraints are:
hard: $(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$ $(\neg b \vee d) \wedge$
$(\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge$
$(\neg d \vee \neg e) \wedge(\neg y \vee z) \wedge a$
soft: $\quad e \wedge z$

Summary

Today

- SAT solvers have been used successfully in many applications \& domains
- But reducing problems to SAT is a lot like programming in assembly ...
- We need higher-level logics!

Next lecture

- On to richer logics: introduction to Satisfiability Modulo Theories (SMT)

