
CSE507
Computer-Aided Reasoning for Software

A Modern SAT Solver

Today

Last lecture
• Review of propositional logic and the DPLL algorithm

Today
• The CDCL algorithm at the core of modern SAT solvers:

• 3 important extensions of DPLL
• Engineering matters

to
pi

cs

// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
 G ← BCP(F)
 if G = ⟙ then return true
 if G = ⟘ then return false
 p ← choose(vars(G))
 return DPLL(G{p ↦ ⟙}) ||
 DPLL(G{p ↦ ⟘})

A brief review of DPLL

Boolean constraint
propagation applies unit
resolution until fixed point:

β b1 ⋁…⋁ bm ⋁ ¬β
b1 ⋁…⋁ bm

β b1 ⋁…⋁ bm ⋁ β
⊤

Okay for randomly
generated CNFs, but not
for practical ones. Why?

// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
 G ← BCP(F)
 if G = ⟙ then return true
 if G = ⟘ then return false
 p ← choose(vars(G))
 return DPLL(G{p ↦ ⟙}) ||
 DPLL(G{p ↦ ⟘})

A brief review of DPLL

Chronological backtracking:
backtracks one level, even if it can
be deduced that the current PA
became doomed at a lower level.

No learning: throws away all the
work performed to conclude that the
current partial assignment (PA) is bad.
Revisits bad PAs that lead to conflict
due to the same root cause.

Naive decisions: picks an
arbitrary variable to branch on. Fails
to consider the state of the search to
make heuristically better decisions.

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

Conflict-Driven Clause Learning (CDCL)

Decision heuristics choose
the next literal to add to the
current partial assignment based
on the state of the search.

Non-chronological
backtracking: backtracks b levels,
based on the cause of the conflict.

Learning: F augmented with a
conflict clause that summarizes
the root cause of the conflict.

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

CDCL by example

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

⟨1, ¬x1 ⋁ ¬x4⟩

Conflict clause
is unit after
backtracking!

F = { c1, c2, c3, c4, c5, c6, …, c9 }
c1 : ¬x1 ⋁ x2 ⋁ ¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3 : ¬x3 ⋁ ¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6 : ¬x6 ⋁ x7 ⋁ ¬x8

…

…

F = { c1, c2, c3, c4, c5, c6, …, c9, c }
c1 : ¬x1 ⋁ x2 ⋁ ¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

c3 : ¬x3 ⋁ ¬x4

c4 : x4 ⋁ x5 ⋁ x6

c5 : ¬x5 ⋁ x7

c6 : ¬x6 ⋁ x7 ⋁ ¬x8

…

c0 : ¬x1 ⋁ ¬x4

CDCL in depth

• Definitions

• ANALYZECONFLICT

• DECIDE heuristics

• Implementation

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

Under a given partial assignment
(PA), a variable may be

• assigned (true/false literal)
• unassigned.

Basic definitions

True literals highlighted
in green; false literals
highlighted in red.

F = { c1, c2, c3, c4, c5, c6, …, c9 }
c1 : ¬x1 ⋁ x2 ⋁ ¬x4

c2 : ¬x1 ⋁ ¬x2 ⋁ x3

…

c8 : x9 ⋁ ¬x2

c9 : x9 ⋁ x10 ⋁ x3

A clause may be

• satisfied (≥1 true literal)
• unsatisfied (all false literals)
• unit (one unassigned literal, rest false)
• unresolved (otherwise)

• v ∈ V is a literal (or κ) and
the decision level at which it
entered the current PA.

• ⟨v, w⟩ ∈ E iff v ≠ w, ¬v ∈
antecedent(w), and ⟨v, w⟩ is
labeled with antecedent(w)

A unit clause c is the antecedent
of its sole unassigned literal.

Implication graph

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

Decision literal.

Implied literal.

Conflict.

An implication graph G = (V, E) is
a DAG that records the history of
decisions and the resulting
deductions derived with BCP.

Implication graph: a quick exercise

¬x5@3

x1@6

x2@6

x3@6

x4@6

κ@6

c2

c1

c2

c4

c4

c3

What clauses gave rise to
this implication graph?

c1 : ¬x1 ⋁ x2

c2 : ¬x1 ⋁ x3 ⋁ x5
c3 : ¬x2 ⋁ x4

c4 : ¬x3 ⋁ ¬x4

Implication graph: an even quicker exercise

¬x5@0

x1@6

x2@6

x3@6

x4@6

κ@6

c2

c1

c2

c4

c4

c3

What clauses gave rise to
this implication graph?

Assignments at ground
(0) level are implied by
unary clauses.

c1 : ¬x1 ⋁ x2

c2 : ¬x1 ⋁ x3 ⋁ x5
c3 : ¬x2 ⋁ x4

c4 : ¬x3 ⋁ ¬x4
ck : ¬x5

A conflict clause is implied by F and it
blocks partial assignments (PAs) that
lead to the current conflict.

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true Every cut that separates sources from

the sink defines a valid conflict clause.

Using an implication graph to analyze a conflict

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂✂

¬x1 ⋁ x7 ⋁ ¬x8 ¬x1 ⋁ ¬x4

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

Cut after the first
unique implication
point to get the shortest
conflict clause.

Using an implication graph to analyze a conflict

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂

¬x1 ⋁ ¬x4

First UIP.

Unique implication points (UIPs)

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂

¬x1 ⋁ ¬x4

A unique implication point (UIP)
is any node in the implication
graph other than the conflict that
is on all paths from the current
decision literal (lit@d) to the
conflict (κ@d).

A first UIP is the UIP that is
closest to the conflict. UIP.

ANALYZECONFLICT()
 d ← level(conflict)
 if d = 0 then return -1
 c ← antecedent(conflict)
 while !oneLitAtLevel(c, d)
 t ← lastAssignedLitAtLevel(c, d)
 v ← varOfLit(t)
 a ← antecedent(t)
 c ← resolve(a, c, v)
 b ←…
 return ⟨b, c⟩

Binary resolution rule
(a1 ⋁…⋁ an ⋁ β) (b1 ⋁…⋁ bm ⋁ ¬β)

(a1 ⋁…⋁ an ⋁ b1 ⋁…⋁ bm)

ANALYZECONFLICT: computing the conflict clause

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂

¬x1 ⋁ ¬x4

Example:
• c = c2, t = x2, v = x2, a = c1

• c = ¬x1 ⋁ x3 ⋁ ¬x4, t = x3, v = x3, a = c3

• c = ¬x1 ⋁ ¬x4, done!

ANALYZECONFLICT()
 d ← level(conflict)
 if d = 0 then return -1
 c ← antecedent(conflict)
 while !oneLitAtLevel(c, d)
 t ← lastAssignedLitAtLevel(c, d)
 v ← varOfLit(t)
 a ← antecedent(t)
 c ← resolve(a, c, v)
 b ←…
 return ⟨b, c⟩

ANALYZECONFLICT: computing backtracking level

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂

¬x1 ⋁ ¬x4

To what level should we
backtrack?

ANALYZECONFLICT()
 d ← level(conflict)
 if d = 0 then return -1
 c ← antecedent(conflict)
 while !oneLitAtLevel(c, d)
 t ← lastAssignedLitAtLevel(c, d)
 v ← varOfLit(t)
 a ← antecedent(t)
 c ← resolve(a, c, v)
 b ← assertingLevel(c)
 return ⟨b, c⟩

Second highest decision level
for any literal in c, unless c is
unary. In that case, its
asserting level is zero.

By construction, c is unit at b
(since it has only one literal
at the current level d).

ANALYZECONFLICT: computing backtracking level

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂

¬x1 ⋁ ¬x4

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

Decision heuristics

Example heuristics:

• Dynamic Largest Individual
Sum (DLIS)

• Variable State Independent
Decaying Sum (VSIDS)

Decision heuristics: DLIS

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

• Choose the literal that satisfies
the most unresolved clauses.

• Simple and intuitive.

• But expensive: complexity of
making a decision proportional
to the number of clauses.

Decision heuristics: VSIDS (zChaff)

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

• Count the number of all clauses
in which a literal appears, and
periodically divide all scores by a
constant (e.g., 2).

• Variables involved in more
recent conflicts get higher
scores.

• Constant decision time when
literals kept in a sorted list.

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

Engineering matters (a lot)

Solvers spend most of their time
in BCP, so this must be efficient.
Naive implementation won’t work
on large problems.

Most solvers heuristically discard
conflict clauses that are old, long,
irrelevant, etc. (Why won’t this
cause the solver to run forever?)

BCP with watched literals (zChaff)

CDCL(F)
 A ← {}
 if BCP(F, A) = conflict then return false
 level ← 0
 while hasUnassignedVars(F)
 level ← level + 1
 A ← A ∪ { DECIDE(F, A) }
 while BCP(F, A) = conflict
 ⟨b, c⟩ ← ANALYZECONFLICT()
 F ← F ∪ {c}
 if b < 0 then return false
 else BACKTRACK(F, A, b)
 level ← b
 return true

Based on the observation that a
clause can’t imply a new
assignment if it has more than 2
unassigned literals left.

So, pick two unassigned literals
per clause to watch.

If a watched literal is assigned, pick
another unassigned literal to
watch in its place.

If there is only one unassigned
literal, it is implied by BCP.

Summary

Today
• The CDCL algorithm extends DPLL with

• Non-chronological backtracking
• Learning
• Decision heuristics
• Engineering matters

Next lecture
• Practical applications of SAT solving

