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Computer-Aided Reasoning for Software

A Modern SAT Solver



Today

Last lecture  
• Review of propositional logic and the DPLL algorithm

Today  
• The CDCL algorithm at the core of modern SAT solvers:

• 3 important extensions of DPLL
• Engineering matters
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// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
  G ← BCP(F)
  if G = ⟙ then return true
  if G = ⟘ then return false
  p ← choose(vars(G))
  return DPLL(G{p ↦ ⟙}) ||
              DPLL(G{p ↦ ⟘})

A brief review of DPLL

Boolean constraint 
propagation applies unit 
resolution until fixed point: 

β b1 ⋁…⋁ bm ⋁ ¬β
b1 ⋁…⋁ bm

β b1 ⋁…⋁ bm ⋁ β
⊤

Okay for randomly 
generated CNFs, but not 
for practical ones.  Why?



// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
  G ← BCP(F)
  if G = ⟙ then return true
  if G = ⟘ then return false
  p ← choose(vars(G))
  return DPLL(G{p ↦ ⟙}) ||
              DPLL(G{p ↦ ⟘})

A brief review of DPLL

Chronological backtracking:  
backtracks one level, even if it can 
be deduced that the current PA 
became doomed at a lower level.

No learning:  throws away all the 
work performed to conclude that the 
current partial assignment (PA) is bad. 
Revisits bad PAs that lead to conflict 
due to the same root cause.

Naive decisions:  picks an 
arbitrary variable to branch on.  Fails 
to consider the state of the search to 
make heuristically better decisions.



CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

Conflict-Driven Clause Learning (CDCL)

Decision heuristics choose 
the next literal to add to the 
current partial assignment based 
on the state of the search.

Non-chronological 
backtracking:  backtracks b levels, 
based on the cause of the conflict.

Learning:  F augmented with a 
conflict clause that summarizes 
the root cause of the conflict.



CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

CDCL by example
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⟨1, ¬x1 ⋁ ¬x4⟩

Conflict clause 
is unit after 
backtracking!

F = { c1, c2, c3, c4, c5, c6, …, c9 } 
c1 :  ¬x1 ⋁ x2 ⋁ ¬x4

c2 :  ¬x1 ⋁ ¬x2 ⋁ x3

c3 :  ¬x3 ⋁ ¬x4

c4 :  x4 ⋁ x5 ⋁ x6

c5 :  ¬x5 ⋁ x7

c6 :  ¬x6 ⋁ x7 ⋁ ¬x8

…

…

F = { c1, c2, c3, c4, c5, c6, …, c9, c } 
c1 :  ¬x1 ⋁ x2 ⋁ ¬x4

c2 :  ¬x1 ⋁ ¬x2 ⋁ x3

c3 :  ¬x3 ⋁ ¬x4

c4 :  x4 ⋁ x5 ⋁ x6

c5 :  ¬x5 ⋁ x7

c6 :  ¬x6 ⋁ x7 ⋁ ¬x8

…

c0 : ¬x1 ⋁ ¬x4



CDCL in depth

• Definitions

• ANALYZECONFLICT

• DECIDE heuristics

• Implementation

CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true



Under a given partial assignment 
(PA), a variable may be

• assigned (true/false literal)
• unassigned.

Basic definitions

True literals highlighted 
in green; false literals 
highlighted in red.

F = { c1, c2, c3, c4, c5, c6, …, c9 } 
c1 :  ¬x1 ⋁ x2 ⋁ ¬x4

c2 :  ¬x1 ⋁ ¬x2 ⋁ x3

…

c8 : x9 ⋁ ¬x2

c9 : x9 ⋁ x10 ⋁ x3 

A clause may be

• satisfied (≥1 true literal)
• unsatisfied (all false literals)
• unit (one unassigned literal, rest false)
• unresolved (otherwise)



• v ∈ V is a literal (or κ) and 
the decision level at which it 
entered the current PA.

• ⟨v, w⟩ ∈ E iff v ≠ w, ¬v ∈ 
antecedent(w), and ⟨v, w⟩ is 
labeled with antecedent(w)

A unit clause c is the antecedent 
of its sole unassigned literal.

Implication graph

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

Decision literal.

Implied literal.

Conflict.

An implication graph G = (V, E) is 
a DAG that records the history of 
decisions and the resulting 
deductions derived with BCP.



Implication graph:  a quick exercise

¬x5@3
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What clauses gave rise to 
this implication graph?

c1 :  ¬x1 ⋁ x2

c2 :  ¬x1 ⋁ x3 ⋁ x5    
c3 :  ¬x2 ⋁ x4

c4 :  ¬x3 ⋁ ¬x4 



Implication graph:  an even quicker exercise

¬x5@0

x1@6
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What clauses gave rise to 
this implication graph?

Assignments at ground 
(0) level are implied by 
unary clauses.

c1 :  ¬x1 ⋁ x2

c2 :  ¬x1 ⋁ x3 ⋁ x5    
c3 :  ¬x2 ⋁ x4

c4 :  ¬x3 ⋁ ¬x4 
ck :  ¬x5



A conflict clause is implied by F and it 
blocks partial assignments (PAs) that 
lead to the current conflict.

CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true Every cut that separates sources from 

the sink defines a valid conflict clause.

Using an implication graph to analyze a conflict
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¬x1 ⋁ x7 ⋁ ¬x8 ¬x1 ⋁ ¬x4



CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

Cut after the first 
unique implication 
point to get the shortest 
conflict clause.

Using an implication graph to analyze a conflict
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First UIP.

Unique implication points (UIPs)
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A unique implication point (UIP) 
is any node in the implication 
graph other than the conflict that 
is on all paths from the current 
decision literal (lit@d) to the 
conflict (κ@d).

A first UIP is the UIP that is 
closest to the conflict. UIP.



ANALYZECONFLICT()
  d ← level(conflict)
  if d = 0 then return -1  
  c ← antecedent(conflict)
  while !oneLitAtLevel(c, d) 
    t ← lastAssignedLitAtLevel(c, d)
    v ← varOfLit(t)
    a ← antecedent(t)
    c ← resolve(a, c, v)
  b ←…
  return ⟨b, c⟩

Binary resolution rule
(a1 ⋁…⋁ an ⋁ β)   (b1 ⋁…⋁ bm ⋁ ¬β)

(a1 ⋁…⋁ an ⋁ b1 ⋁…⋁ bm)

ANALYZECONFLICT:  computing the conflict clause
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Example:
• c = c2, t = x2, v = x2, a = c1

• c = ¬x1 ⋁ x3 ⋁ ¬x4, t = x3, v = x3, a = c3

• c = ¬x1 ⋁ ¬x4, done!



ANALYZECONFLICT()
  d ← level(conflict)
  if d = 0 then return -1  
  c ← antecedent(conflict)
  while !oneLitAtLevel(c, d) 
    t ← lastAssignedLitAtLevel(c, d)
    v ← varOfLit(t)
    a ← antecedent(t)
    c ← resolve(a, c, v)
  b ←…
  return ⟨b, c⟩

ANALYZECONFLICT:  computing backtracking level

x8@2

¬x7@3

¬x6@3

¬x5@3

x4@3

x2@3

¬x3@3

κ@3

x1@1c6

c6

c5

c4

c4

c1

c3

c2

c2

c1

c2

✂

¬x1 ⋁ ¬x4

To what level should we 
backtrack?



ANALYZECONFLICT()
  d ← level(conflict)
  if d = 0 then return -1  
  c ← antecedent(conflict)
  while !oneLitAtLevel(c, d) 
    t ← lastAssignedLitAtLevel(c, d)
    v ← varOfLit(t)
    a ← antecedent(t)
    c ← resolve(a, c, v)
  b ← assertingLevel(c)
  return ⟨b, c⟩

Second highest decision level 
for any literal in c, unless c is 
unary.  In that case, its  
asserting level is zero.

By construction, c is unit at b 
(since it has only one literal 
at the current level d).

ANALYZECONFLICT:  computing backtracking level
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CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

Decision heuristics

Example heuristics:

• Dynamic Largest Individual 
Sum (DLIS)

• Variable State Independent 
Decaying Sum (VSIDS)



Decision heuristics:  DLIS

CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

• Choose the literal that satisfies 
the most unresolved clauses.

• Simple and intuitive.

• But expensive:  complexity of 
making a decision proportional 
to the number of clauses.



Decision heuristics:  VSIDS (zChaff)

CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

• Count the number of all clauses 
in which a literal appears, and 
periodically divide all scores by a 
constant (e.g., 2).

• Variables involved in more 
recent conflicts get higher 
scores.

• Constant decision time when 
literals kept in a sorted list.



CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

Engineering matters (a lot)

Solvers spend most of their time 
in BCP, so this must be efficient.  
Naive implementation won’t work 
on large problems.

Most solvers heuristically discard 
conflict clauses that are old, long, 
irrelevant, etc.  (Why won’t this 
cause the solver to run forever?)



BCP with watched literals (zChaff)

CDCL(F)
  A ← {}   
  if BCP(F, A) = conflict then return false
  level ← 0
  while hasUnassignedVars(F)  
    level ← level + 1
    A ← A ∪ { DECIDE(F, A) }
   while BCP(F, A) = conflict
      ⟨b, c⟩ ← ANALYZECONFLICT()
      F ← F ∪ {c}
      if b < 0 then return false
      else BACKTRACK(F, A, b)
             level ← b
  return true

Based on the observation that a 
clause can’t imply a new 
assignment if it has more than 2 
unassigned literals left.

So, pick two unassigned literals 
per clause to watch.

If a watched literal is assigned, pick 
another unassigned literal to 
watch in its place.

If there is only one unassigned 
literal, it is implied by BCP.



Summary

Today
• The CDCL algorithm extends DPLL with

• Non-chronological backtracking
• Learning
• Decision heuristics
• Engineering matters

Next lecture
• Practical applications of SAT solving


