SAT Solving Basics

Topics

Last lecture

- Going pro with solver-aided programming

Today

- Review of propositional logic
- Normal forms
- A basic SAT solver

Review of propositional logic

- Syntax
- Semantics
- Satisfiability and validity
- Proof methods
- Semantic judgments

Syntax of propositional logic

$$
(\neg \boldsymbol{p} \wedge T) \vee(\boldsymbol{q} \rightarrow \perp)
$$

Syntax of propositional logic

$$
(\neg \boldsymbol{p} \wedge T) \vee(\boldsymbol{q} \rightarrow \perp)
$$

Atom
truth symbols: \top ("true"), \perp ("false") propositional variables: p, q, r, \ldots

Literal
Formula
an atom α or its negation $\neg a$
an atom or the application of a logical connective
to formulas F_{1}, F_{2} :

$\neg F_{1}$	"not"	(negation)
$F_{1} \wedge F_{2}$	"and"	(conjunction)
$F_{1} \vee F_{2}$	"or"	(disjunction)
$F_{I} \rightarrow F_{2}$	"implies"	(implication)
$F_{1} \leftrightarrow F_{2}$	"if and only if"	(iff)

(disjunction)
(implication)
(iff)

Semantics of propositional logic: interpretations

An interpretation I for a propositional formula F maps every variable in F to a truth value:

$$
I:\{p \mapsto \text { true, } q \mapsto \text { false, } \ldots\}
$$

I is a satisfying interpretation of F, written as $I \vDash F$, if F evaluates to true under I.

A satisfying interpretation is also called a model.
I is a falsifying interpretation of F, written as $l \not \equiv F$, if F evaluates to false under l.

Semantics of propositional logic: definition

Base cases:

- $\quad \| \vDash T$
- | $\neq \perp$
- $I \vDash p$ iff $l[p]=$ true
- $l \not \equiv p \quad$ iff $l[p]=$ false

Inductive cases:

- $I \vDash \neg F$
iff $I \neq F$
- $I \vDash F_{I} \wedge F_{2} \quad$ iff $I \vDash F_{I}$ and $I \vDash F_{2}$
- $I \vDash F_{1} \vee F_{2} \quad$ iff $I \vDash F_{1}$ or $I \models F_{2}$
- $I \vDash F_{I} \rightarrow F_{2} \quad$ iff $I \not \vDash F_{1}$ or $I \vDash F_{2}$
- $I \models F_{I} \leftrightarrow F_{2} \quad$ iff $I \models F_{I}$ and $I \vDash F_{2}$, or
$l \not \vDash F_{I}$ and $I \not \vDash F_{2}$

Semantics of propositional logic: example

$$
\left.\begin{array}{ll}
\text { F: } & (p \wedge q) \rightarrow(p \vee \neg q) \\
\text { I: } & \{p \mapsto \text { true }, q \mapsto \text { false }\}
\end{array}\right\}
$$

$$
I \vDash F
$$

Satisfiability \& validity of propositional formulas

F is satisfiable iff $I \vDash F$ for some I.
F is valid iff $I \vDash F$ for all I.

Duality of satisfiability and validity:
F is valid iff $\neg F$ is unsatisfiable.

If we have a procedure for checking satisfiability, we can also check validity of propositional formulas, and vice versa.

Techniques for deciding satisfiability \& validity

Search

Deduction

SAT solver

Techniques for deciding satisfiability \& validity

Proof by search: enumerating interpretations

$$
F: \quad(p \wedge q) \rightarrow(p \vee \neg q)
$$

p	q	$p \wedge q$	$\neg q$	$p \vee \neg q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Valid.

Proof by deduction: semantic arguments

$l \models \neg F$	$l \nexists \neg F$
$l \nmid F$	$l \models F$
$l \vDash F_{1} \wedge F_{2}$	$l \nexists F_{1} \wedge F_{2}$
$I \models F_{l}, I \models F_{2}$	$l \neq F_{1} \mid \nmid \neq F_{2}$
$l \vDash F_{1} \vee F_{2}$	$l \nmid=F_{1} \vee F_{2}$
$I \models F_{1} \mid I \models F_{2}$	$l \not \equiv F_{1}, l \not \equiv F_{2}$
$l \vDash F_{1} \rightarrow F_{2}$	$l \nmid=F_{1} \rightarrow F_{2}$
$l \nmid F_{1} \mid \models F_{2}$	$l \vDash F_{1}, l \nLeftarrow F_{2}$
$l \vDash F_{1} \leftrightarrow F_{2}$	$l \nexists F_{l} \leftrightarrow F_{2}$
$I \vDash F_{1} \wedge F_{2} \mid \nmid \neq F_{1} \vee F_{2}$	$I \vDash F_{1} \wedge \neg F_{2} \mid \vDash \neg F_{1} \wedge F_{2}$

A proof rule consists of

- premise: facts that have to hold to apply the rule.
- conclusion: facts derived from applying the rule.
Commas indicate derivation of multiple facts; pipes indicate alternative facts (branches in the proof).

Proof by deduction: another example
$\frac{I \models \neg F}{I \not \vDash F} \quad \frac{I \not \equiv \neg F}{I \models F}$
$\frac{I \models F_{1} \wedge F_{2}}{I \models F_{1}, I \models F_{2}}$
$\frac{I \models F_{I} \vee F_{2}}{I \models F_{1} \mid I \models F_{2}}$

$I \models F_{1} \rightarrow F_{2}$
$I \not \models F_{I}$
$I \models F_{2}$

$$
\frac{I \vDash F_{I} \leftrightarrow F_{2}}{I \models F_{I} \wedge F_{2} \mid I \not \vDash F_{1} \vee F_{2}} \quad \frac{I \not \models F_{I} \leftrightarrow F_{2}}{I \models F_{I} \wedge \neg F_{2} \mid I \models \neg F_{I} \wedge F_{2}}
$$

$\frac{I \nexists F_{I} \wedge F_{2}}{I \not \equiv F_{1} \mid \nmid \neq F_{2}}$
$\frac{I \not \vDash F_{I} \vee F_{2}}{I \not \vDash F_{I}, I \not \equiv F_{2}}$
$\frac{I \not \models F_{I} \rightarrow F_{2}}{I \vDash F_{I} I \not \equiv F_{2}}$
Prove $p \wedge \neg q$ or find a falsifying interpretation.

1. $I \not \vDash p \wedge \neg q$
(assumed)
a. $l \not \equiv p$
$(1, \wedge)$
b. $I \not \nexists \neg q$
$(1, \wedge)$
i. $I \vDash q$
(lb, ᄀ)

The formula is invalid, and $I=$ $\{p \mapsto$ false, $q \mapsto$ true $\}$ is a falsifying interpretation.

Proof by deduction: another example

$\frac{I \models F_{1} \wedge F_{2}}{I \models F_{1}, I \models F_{2}}$
$\frac{I \models F_{I} \vee F_{2}}{I \models F_{1} \mid I \models F_{2}}$

$I \models F_{1} \rightarrow F_{2}$	
$I \not \models F_{1}$	$I \models F_{2}$

$$
\frac{I \vDash F_{I} \leftrightarrow F_{2}}{I \vDash F_{I} \wedge F_{2} \mid I \not \vDash F_{I} \vee F_{2}}
$$

I. $I \not \equiv(p \wedge(p \rightarrow q)) \rightarrow q$
2. $1 \not \equiv q$
(I, \rightarrow)
3. $I \vDash(p \wedge(p \rightarrow q)) \quad(I, \rightarrow)$
4. $I \vDash p$
5. $I \vDash p \rightarrow q$
$(3, \wedge)$
a. $l \not \vDash p$
b. $I \vDash q$
$(5, \rightarrow)$

We have reached a contradiction in every branch of the proof, so the formula is valid.

Semantic judgements

Formulas F_{1} and F_{2} are equivalent, written $F_{1} \Longleftrightarrow F_{2}$, iff $F_{1} \leftrightarrow F_{2}$ is valid.

Formula $F_{\text {I }}$ implies F_{2}, written $F_{1} \Longrightarrow F_{2}$, iff $F_{1} \rightarrow F_{2}$ is valid.

What do these definitions tell us in the context of this course?

Normal Forms (NNF, DNF, CNF)

Getting ready for SAT solving with normal forms

A normal form for a logic is a syntactic restriction such that every formula in the logic has an equivalent formula in the normal form.

Assembly language for a logic.

Three important normal forms for propositional logic:

- Negation Normal Form (NNF)
- Disjunctive Normal Form (DNF)
- Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

Atom :=Variable | T | \perp
Literal :=Atom | \neg Atom
Formula := Literal | Formula op Formula op := ^| \vee

The only allowed connectives are \wedge, \vee, and \neg.
\neg can appear only in literals.

Conversion to NNF performed using DeMorgan's Laws:

$$
\neg(F \wedge G) \Leftrightarrow \neg F \vee \neg G \quad \neg(F \vee G) \Leftrightarrow \neg F \wedge \neg G
$$

Disjunctive Normal Form (DNF)

Atom := Variable | \top | \perp
Literal :=Atom | \neg Atom
Formula := Clause \vee Formula
Clause := Literal | Literal ^ Clause

- Disjunction of conjunction of literals.
- Deciding satisfiability of a DNF formula is trivial.
- Why not SAT solve by conversion to DNF?

To convert to DNF, convert to NNF and distribute \wedge over v :

$$
\begin{aligned}
& (F \wedge(G \vee H)) \Leftrightarrow(F \wedge G) \vee(F \wedge H) \\
& ((G \vee H) \wedge F) \Leftrightarrow(G \wedge F) \vee(H \wedge F)
\end{aligned}
$$

Conjunctive Normal Form (CNF)

Why CNF? Doesn't the conversion explode just as badly as DNF?

Atom :=Variable | T | \perp
Literal :=Atom | \neg Atom
Formula := Clause \wedge Formula
Clause := Literal | Literal \vee Clause

- Conjunction of disjunction of literals.
- Deciding the satisfiability of a CNF formula is hard.
- SAT solvers use CNF as their input language.

$$
\text { To convert to CNF, convert to NNF and distribute } \vee \text { over } \wedge
$$

$$
\begin{aligned}
& (F \vee(G \wedge H)) \Leftrightarrow(F \vee G) \wedge(F \vee H) \\
& ((G \wedge H) \vee F)
\end{aligned} \Leftrightarrow(G \vee F) \wedge(H \vee F), ~ l
$$

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation converts a propositional formula F into an equisatisfiable CNF formula that is linear in the size of F .

Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses.

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation converts a propositional formula F into an equisatisfiable CNF formula that is linear in the size of F.

$$
x \rightarrow(y \wedge z)
$$

a1

$$
\begin{aligned}
& \mathrm{a} 1 \leftrightarrow(\mathrm{x} \rightarrow \mathrm{a} 2) \\
& \mathrm{a} 2 \leftrightarrow(\mathrm{y} \wedge \mathrm{z})
\end{aligned}
$$

Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses.

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation converts a propositional formula F into an equisatisfiable CNF formula that is linear in the size of F.

$$
x \rightarrow(y \wedge z)
$$

a1

$$
\begin{aligned}
& a 1 \rightarrow(x \rightarrow a 2) \\
& (x \rightarrow a 2) \rightarrow a 1 \\
& a 2 \leftrightarrow(y \wedge z)
\end{aligned}
$$

Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses.

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation converts a propositional formula F into an equisatisfiable CNF formula that is linear in the size of F.

$$
x \rightarrow(y \wedge z)
$$

a1

$$
\neg \mathrm{a} 1 \vee(\neg \mathrm{x} \vee \mathrm{a} 2)
$$

$$
(x \rightarrow a 2) \rightarrow a 1
$$

$$
\mathrm{a} 2 \leftrightarrow(\mathrm{y} \wedge \mathrm{z})
$$

Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses.

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation converts a propositional formula F into an equisatisfiable CNF formula that is linear in the size of F.

$$
x \rightarrow(y \wedge z)
$$

a1
$\neg a 1 \vee \neg x \vee a 2$
$(x \wedge \neg a 2) \vee a 1$
$\mathrm{a} 2 \leftrightarrow(\mathrm{y} \wedge \mathrm{z})$

Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses.

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation converts a propositional formula F into an equisatisfiable CNF formula that is linear in the size of F.

$$
x \rightarrow(y \wedge z)
$$

a1

$$
\begin{aligned}
& \neg a 1 \vee \neg x \vee a 2 \\
& x \vee a 1 \\
& \neg a 2 \vee a 1 \\
& a 2 \leftrightarrow(y \wedge z)
\end{aligned}
$$

Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses.

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation converts a propositional formula F into an equisatisfiable CNF formula that is linear in the size of F.

Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses.

$$
x \rightarrow(y \wedge z)
$$

a1
$\neg a 1 \vee \neg x \vee a 2$
$x \vee a 1$
ᄀa2 $\vee \mathrm{a} 1$
$\rightarrow a 2 \vee y$
ᄀa2 $\vee \mathrm{z}$
$\neg y \vee \neg \mathbf{Z} \vee \mathrm{a} 2$

Another key feature of CNF: proof by resolution

Resolution rule

Proving that a CNF formula is valid can be done using just this one proof rule!

Apply the rule until a contradiction (empty clause) is derived, or no more applications are possible.

This procedure is sound and complete: it always produces a correct answer.

Another key feature of CNF: unit resolution

Resolution rule

$$
\frac{a_{1} \vee \ldots \vee a_{n} \vee \beta \quad b_{1} \vee \ldots \vee b_{m} \vee \neg \beta}{a_{1} \vee \ldots \vee a_{n} \vee b_{1} \vee \ldots \vee b_{m}}
$$

Unit resolution rule

Unit resolution specializes the resolution rule to the case where one of the clauses is unit (a single literal).
SAT solvers use unit resolution in combination with backtracking search to implement a sound and complete procedure for deciding CNF formulas.

Unit resolution is a sound but incomplete rule of deduction, which is why we need search!

A basic SAT solver

Davis-Putnam-Logemann-Loveland (I962)

```
// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.
DPLL(F)
    G}\leftarrow\textrm{BCP}(F
    if G = T then return true
    if G = & then return false
    p}\leftarrow\mathrm{ choose(vars(G))
    return DPLL(G{p\mapsto T}) |
    DPLL(G{p\mapsto &})
```


Summary

Today

- Review of propositional logic
- Normal forms
- A basic SAT solver

Next Lecture

- A modern SAT solver

