
CSE507
Computer-Aided Reasoning for Software

Solver-Aided Programming II

Topics

Last lecture
• Getting started with solver-aided programming.

Today
• Going pro with solver-aided programming.

to
pi

cs

Solver-aided programming in two parts:
(1) getting started and (2) going pro

R SETTEA programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

How to build your own
solver-aided language
How to build your own
solver-aided tool via direct
symbolic evaluation or
language embedding.

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SDSL

SVM

SMT

The classic (hard) way to build a tool

The classic (hard) way to build a tool

SMT solversolver-aided tool

assert safe(x, P(x))

verify
solve
synthesize

P(x) {
…
…

}

Recall the solver-aided programming tool
chain: the tool reduces a query about
program behavior to an SMT problem.

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃e.∀x. safe(x, Pe(x))

SMT solver

The classic (hard) way to build a tool

solver-aided tool

P(x)

symbolic
compiler

assert safe(x, P(x))

verify
solve
synthesize

P(x) {
…
…

}

Recall the solver-aided programming tool
chain: the tool reduces a query about
program behavior to an SMT problem.

What all queries have in common: they
need to translate programs to constraints!

SMT solver

The classic (hard) way to build a tool

P(x)

expertise in PL, FM, SE

symbolic
compiler

assert safe(x, P(x))

verify
solve
synthesize

P(x) {
…
…

}

SDSL

programming

Wanted: an easier way to build tools

an interpreter
for the source

language

assert safe(x, P(x))

verify
solve
synthesize

P(x) {
…
…

}

SMTSVM

R SETTE

SMT solversymbolic virtual
machine

programming

Wanted: an easier way to build tools

[Torlak & Bodik, PLDI’14]

Technical challenge:
how to efficiently
translate a program
and its interpreter?assert safe(x, P(x))

verify
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter
for the source

language

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

guest language

Layers of classic languages: guests and hosts

host language

library
(shallow)
embedding

interpreter
(deep)
embedding

Python

C

D3

JavaScript

solver-aided guest language

Layers of solver-aided languages

solver-aided host language

library
(shallow)
embedding

interpreter
(deep)
embedding

solver-aided guest language

Layers of solver-aided languages

library
(shallow)
embedding

interpreter
(deep)
embedding

R SETTE

BPF, x86 32, x86 64,
ARM 32, ARM 64,

RISC-V 32, RISC-V 64
C (subset)

Jitterbug (OSDI 2020): Verifying
and synthesizing BPF JITs in Linux.

https://unsat.cs.washington.edu/projects/jitterbug/

A tiny example solver-aided guest language

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

We want to test, verify,
and synthesize programs
in the BV SDSL.

1. interpreter [50 LOC]

2. verifier [free]

3. synthesizer [free]

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example language

parse

R SETTE

(out opcode in ...)

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (lookup opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example language R SETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1`(-2 -1)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(2 bvsge 0 1)

A tiny example language R SETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

‣ pattern matching
‣ first-class & higher-

order procedures
‣ side effects

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (lookup opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (apply max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max) query

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (apply max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max) query

(define (max x y)
 (if (bvsge x y) x y))

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (apply max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max) query

Creates two fresh symbolic
values of type 32-bit
integer and binds them to
the variables x and y.

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (apply max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max) query

Creates two fresh symbolic
values of type 32-bit
integer and binds them to
the variables x and y.

Symbolic values can be
used just like concrete
values of the same type.

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (apply max in))))

query

Symbolic values can be
used just like concrete
values of the same type.

Creates two fresh symbolic
values of type 32-bit
integer and binds them to
the variables x and y.

(verify expr) searches
for a concrete
interpretation of
symbolic values that
causes expr to fail.

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (apply max in))))

query

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
[0, -2]

> bvmax(0, -2)
-1

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r1)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> synthesize(bvmax, max)

def bvmax(r0, r1) :
 r2…r6 = inst??(bvsge, bvneg,

 bvxor, bvand)
 return r6

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(synthesize
 #:forall in
 #:guarantee
 (assert (equal? (interpret bvmax in)
 (apply max in)))))

query

A tiny example language R SETTE

(define-symbolic x y int32?)
(define in (list x y))
(synthesize
 #:forall in
 #:guarantee
 (assert (equal? (interpret bvmax in)
 (apply max in)))))

query

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r1)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> synthesize(bvmax, max)

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

SMT solver

Z3

R SETTE

How it all works: a big picture view

guest language

program

query result

‣ pattern matching
‣ dynamic evaluation
‣ first-class procedures
‣ higher-order procedures
‣ side effects
‣ macros

theories of bitvectors,
integers, reals, and
uninterpreted functions

Symbolic
Virtual

Machine

(3, 1, -2) (1, 3)a>0 ∧ b>0 (a, b)

Translation to constraints by example

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

reverse and filter, keeping
only positive numbers

vs psconstraints

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

ps ↦ ()

ps ↦ ps1

ps ↦ ps2

ps ↦ ps0

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0
ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0
ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

b > 0b ≤ 0

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic
execution

vs ↦ (a, b)
ps ↦ ()

ps ↦ ps0

ps ↦ ()

ps ↦ ps1

ps ↦ ps2

ps ↦ ps0

Challenge: simple vs compact encoding (SE and BMC)

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

bounded model
checking

b > 0b ≤ 0

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

Can we have both a
polynomially sized encoding
(like BMC) and concrete
evaluation of complex
operations (like SE)?

concrete evaluation

polynomial encoding

Solution: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

Solution: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

ab

!g g

ite(g, a, b)

Solution: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

!g g

(a, b)(c, d)

(ite(g, a, c), ite(g, b, d))

Solution: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

!g g

()

{ ¬g ⊦ (), g ⊦ (a) }

(a)

Solution: type-driven state merging

{ }a > 0
b > 0
true

Symbolic union: a set of
guarded values, with
disjoint guards.

Execute insert
concretely on all
lists in the union.

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Evaluate len concretely
on all lists in the union;
assertion true only on
the list guarded by g2.

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

Solution: type-driven state merging

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

concrete evaluation

polynomial encoding

SymPro (OOPSLA’18): use
symbolic profiling to find
performance bottlenecks in
solver-aided code.

Solution: type-driven state merging

SVM

SMT

SDSL

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

The classic (hard) way to build a tool

education and games
hints and feedback
problem generation
problem-solving strategies

programming languages,
software engineering,
systems, architecture,
networks, security,
formal methods,
databases,
education,
games,
…

30+ tools

 [CAV’16]

programming languages, formal
methods, and software engineering

type systems and programming models
compilation and parallelization
safety-critical systems
test input generation
software diversification

systems, architecture, networks,
security, and databases

memory models
OS components
data movement for GPUs
router configuration
cryptographic protocols

Verifying a radiation therapy system

Clinical Neutron Therapy
System (CNTS) at UW

• 30 years of incident-free service.
• Controlled by custom software, built

by CNTS engineering staff.
• Third generation of Therapy Control

software built recently.

Sensors

Beam, motors, etc.

Prescription

Therapy Control Software

Verifying a radiation therapy system

Clinical Neutron Therapy
System (CNTS) at UW

EPICS programTherapy Control Software

Verifying a radiation therapy system

Experimental Physics and
Industrial Control System
(EPICS) Dataflow Language

Clinical Neutron Therapy
System (CNTS) at UW

Verifying a radiation therapy system

bug report

EPICS verifier

safety propertyEPICS programClinical Neutron Therapy
System (CNTS) at UW

Verifying a radiation therapy system

bug report

EPICS verifier

safety propertyEPICS program

[CAV’16,
ICALEPCS’17]

Found safety-critical defects
in a pre-release version of
the therapy control software.

Used by CNTS staff to verify
changes to the controller.

Summary

Today
• Going pro with solver-aided programming.

Next lecture
• Getting started with SAT solving!

