Solver-Aided Programming |

Topics

What is this course about?
Course logistics

Getting started with solver-aided programming!

Tools for building better software, more easily

morvre reliable,
efficient, secure

better software

better software

automated verification and
synthesis based on
satisfiability solvers

‘“solver-aided tools”

«\5 Sec¢y,...

biology education

By the end of this course, you’ll be able to
build solver-aided tools for any domain!

T~ databases

LT
high-performance computing \tlhg

Topics, structure, people

People

b,
-"
o
"%
- R A 2
o .
- - ki X « -
v e lal L - >
43 vis S
5 e > 3. - £y
T R AN\ 7 "
A L ' YN
- LL .
1 T f At At . % > (¢ . “]
B N B v . -
: ‘1.1 ‘- "e ". .O ' 1 -
< “-gnhu ams * 33 3
1 Be
BASLERERERESAR

achary Tatlock Sirui Lu
PLSE PLSE
CSE 201 OHTBD

¥ _l.-\\ . 5 :\., e . .‘.‘ \“
. : . v

; -y s \ ..h.“N . - '." . -

B ug-ua:-"~ - " &-\ A1 0

=

Zachary Tatlock
PLSE
CSE 201

o

Sirui Lu
PLSE
OHTBD

\ e |
R "
-

-
S tudentS‘.

s -

l

Your name
Research area

People

Emina Torlak
PLSE — AWS

Course overview

program question

tool

logic

automated
reasoning
engine

Course overview

program question

(>
verifier, Vg /
synthesizer\l)

logic

SAT, SMT,
model finders

el

Drawing from “Decision Procedures” by Kroening & Strichman

Grading

§'
3 homework assighments (75%) t"q},
- conceptual problems & proofs (TeX) ®th,
- implementations (Racket, Dafny, Alloy) 4

- completed with a partner (“whiteboard discussion” w/ others OK)

Course project (25%)
* build a computer-aided reasoning tool for a domain of your choice
- teams of 2-3 people

- see the course web page for timeline, deliverables and other details

Reading and references

Recommended readings posted on the course web page
- Complete each reading before the lecture for which it is assigned

* If multiple papers are listed, only the first is required reading

Recommended text books
- Bradley & Manna, The Calculus of Computation

* Kroening & Strichman, Decision Procedures

http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6

Adyvice for doing well in 507

Come to class (prepared)

* Lecture slides are enough to teach from, but not enough to learn from

Participate

- Ask and answer questions

Meet deadlines
* Turn homework in on time
- Start homework and project sooner than you think you need to
* Follow instructions for submitting code (we have to be able to run it)

* No proof should be longer than a page (most are ~| paragraph)

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

How to use a solver-aided How to build your own
language: the workflow, solver-aided tool via direct
constructs, and gotchas. symbolic evaluation or

language embedding.

A programming model that RUSETTE
integrates solvers into the

language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

How to use a solver-aided How to build your own
language: the workflow, solver-aided tool via direct
constructs, and gotchas. symbolic evaluation or

language embedding.

A programming model that RUSETTE
integrates solvers into the

language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) and (2) going pro

How to use a solver-aided How to build your own
language: the workflow, solver-aided tool via direct
constructs and gotchas. symbolic evaluation or

language embedding.

Classic programming: from spec to code

P(x) {
specification

-

U

Classic programming: test behaviors

test some PO A
behaviors
against the

specification

| [assert safe(2, P(2))

U

Solver-aided programming: query behaviors

ueryv all P(X) { SymbOhC value x
gehaziors stands for an
against the \ arbitrary integer.
specification assert safe(x, P(x))

U

solver-aided tool SMT solver

Solver-aided programming: verify

P(X) { Find an input on which the program fails.

verify

-

assert safe(x, P(x))

/

solver-aided tool SMT solver

A

[ax . ~safe(x, P(x))]

Solver-aided programming: solve

Find an input on which the program fails.

P(x) {

verify Vv = guess() Find values that repair the failing run.

solve

-

assert safe(x, P(x))

/

solver-aided tool SMT solver

A

Ix . safe(x, P(x))
x = 42 A safe(x, P(x))

Solver-aided programming: synthesize

Find an input on which the program fails.

P(x) {
verify v=1n Find values that repair the failing run.
solve . .
synthesize) Find code that repairs the program.

assert safe(x, P(x))

U

solver-aided tool SMT solver

A

Ix . safe(x, P(x))
x = 42 A safe(x, P(x))
Je.vx. safe(x, Pe(x))

Solver-aided programming: workflow

Use assertions, assumptions, and

P(x) { .

verify symbolic values to express the

solve . specification.

synthesize i Ask queries about program behavior (on
assert safe(x, P(x)) symbolic inputs) with respect to the

\J / specification.

solver-aided tool SMT solver

A

Ix . safe(x, P(x))
x = 42 A safe(x, P(x))
Je.vx. safe(x, Pe(x))

RUSETTE

symbolic values
assertions
assumptions
queries

getting started

constructs, and gotchas

Rosette extends Racket with solver-aided constructs

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)
(assume expr)

(verify expr)

(solve expr)

(synthesize
#:forall expr
#:guarantee expr)

symbolic
values

assertions
assumptions

queries

Racket

“A programming language
for creating new
programming languages”

A\

A modern descendent of
Scheme and Lisp with
powerful macro-based meta
programming.

Rosette extends Racket with solver-aided constructs

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)
(assume expr)

(verify expr)

(solve expr)

(synthesize
#:forall expr
#:guarantee expr)

symbolic
values

assertions
assumptions

queries

Rosette constructs by example

(define-symbolic id type)
(define-symbolicx id type) e m o
(assert expr)

(assume expr)

https://courses.cs.washington.edu/courses/

(verify expr) cse507/2 1au/doc/bvudiv2.rkt

(solve expr)

(synthesize
#:forall expr
#:guarantee expr)

http://www.apple.com
https://courses.cs.washington.edu/courses/cse507/21au/doc/bvudiv2.rkt
https://courses.cs.washington.edu/courses/cse507/21au/doc/bvudiv2.rkt

Common pitfalls and gotchas

Reasoning precision “A gotcha is a valid construct in a
system, program or programming
language that works as documented
but is counter-intuitive and almost
invites mistakes because it is both
easy to invoke and unexpected or
unreasonable in its outcome.”

Unbounded loops

Unsafe features

0 o —Wikipedia

=
d https://courses.cs.washington.edu/courses/

cse507/23au/doc/gotchas.rkt

https://courses.cs.washington.edu/courses/cse507/23au/doc/gotchas.rkt
https://courses.cs.washington.edu/courses/cse507/23au/doc/gotchas.rkt

Common pitfalls and gotchas: reasoning precision

Reasoning precision

- Determines if integers and

reals are approximated using
k-bit words or treated as
infinite-precision values.

- Controlled by setting

current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision ; default current-bitwidth 1is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

» Determines if integers and > (verify (assert (not (= x 64))))

reals are approximated using (model [x 64])
k-bit words or treated as
infinite-precision values. > (current-bitwidth 5)
+ Controlled by setting > (solve (assert (= x 64)))
current-bitwidth to an (model [x 01)

integer k > 0 or #f for
approximate or precise
reasoning, respectively.

> (verify (assert (not (= x 64))))
(model [x 0])

Common pitfalls and gotchas: unbounded loops

Reasoning precision

Unbounded loops

* Loops and recursion must be

bounded (aka self-finitizing) by

* concrete termination
conditions, or

* upper bounds on size of
iterated (symbolic) data
structures.

* Unbounded loops and

recursion run forever.

Common pitfalls and gotchas: unbounded loops

Reasoning precision (define (search x xs)
(cond

[(null? xs) #f]
[(equal? x (car xs)) #t]

* Loops and recursion must be [else (search x (cdr xs))]))
bounded (aka self-finitizing) by

Unbounded loops

* concrete termination > (define-symbolic xs integer? #:length 5)
conditions, or > (define-symbolic x1 i integer?)
* upper bounds on size of > (define ys (take xs x1))
iterated (symbolic) data > (verify
structures. _
(begin
g noounceciicopsiand (assume (<=0 i (- x1 1))
recursion run forever. _ _
(assert (search (list-ref ys i) ys))))
(unsat)

Terminates because search
iterates over a bounded structure.

Common pitfalls and gotchas: unbounded loops

Reasoning precision (define (factorial n)
Unbounded loops (cond
[(=n 0) 1]

[else (*x n (factorial (- n 1)))1))

* Loops and recursion must be

bounded (aka self-finitizing) by > (define-symbolic k integer?)
- concrete termination > (solve
conditions, or (assert (> (factorial k) 10)))

* upper bounds on size of
iterated (symbolic) data

Unbounded because
structures.

factorial termination
* Unbounded loops and depends on k.

recursion run forever.

Common pitfalls and gotchas: unbounded loops

Bound the recursion
with a concrete guard.

Reasoning precision (define (factorial n g)
Unbounded loops (assert (>= g 0))
(cond
[(=n 0) 1]
* Loops and recursion must be [else (x n (factorial (- n 1) (- g 1))1))
bounded (aka self-finitizing) by
* concrete termination > (define—symbolic K integer?)
conditions, or > (solve
* upper bounds on size of (assert (> (factorial k 3) 10)))
iterated (symbolic) data
structures. (unsat)

UNSAT because the
bound is too small to
find a solution.

* Unbounded loops and
recursion run forever.

Common pitfalls and gotchas: unbounded loops

Bound the recursion
with a concrete guard.

Reasoning precision (define (factorial n g)
Unbounded loops (assert (>= g 0))
(cond
[(=n 0) 1]
* Loops and recursion must be [else (x n (factorial (- n 1) (- g 1))1))
bounded (aka self-finitizing) by
* concrete termination > (define—symbolic K integer?)
conditions, or > (solve
* upper bounds on size of (assert (> (factorial k 4) 10)))
iterated (symbolic) data
structures. (modetl
[k 4]) :
* Unbounded loops and Make sure the bound is

recursion run forever. large enough ...

Common pitfalls and gotchas: unsafe features

Reasoning precision
Unbounded loops

Unsafe features

- Rosette lifts only a core

subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

« Unlifted constructs can be

used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

Common pitfalls and gotchas: unsafe features

Reasoning precision
Unbounded loops

Unsafe features

Rosette lifts only a core
subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

« Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

» vectors are lifted
> (define v (vector 1 2))

> (define-symbolic k integer?)

> (vector-ref v k)

(itex (- (=0 k) 1) (+ (=

' hashes are unlifted

> (define h (make-hash '((0 .

> (hash-ref h k)

hash—-ref: no value found for key

key: k
> (hash-set! h k 3)
> (hash-ref h k)
3

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

getting started

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

RUSETTE

emina.github.io/rosette/

https://emina.github.io/rosette/

summary

Today
+ Course overview & logistics

- Getting started with solver-aided programming

NeXxt lecture

- Going pro with solver-aided programming

