
CSE 507: Computer-Aided Reasoning for Software Fall 2021

Homework Assignment 1
Due: October 20, 2021 at 23:00

Total points: 100
Deliverables: classify.rkt containing your implementation for Problem 1.

k-coloring.rkt containing your implementation for Problem 7.
hw1.pdf containing typeset solutions to the remaining problems.

Sources: https://gitlab.cs.washington.edu/cse507/hw21au.

1 Propositional Logic and Normal Forms (30 points)

1. (5 points) Use the solution skeleton in classify.rkt, write a Rosette procedure that takes as input a
formula F in propositional logic and outputs

• ’TAUTOLOGY if I |= F for every interpretation I;
• ’CONTRADICTION if I 6|= F for every interpretation I; and,
• ’CONTINGENCY if there are two interpretations I and I ′ such that I |= F and I ′ 6|= F .

Your procedure may contain at most two solver-aided queries (such as solve), and if it contains more
than one query, then the two queries must be different (i.e., you cannot use solve twice).

2. (5 points) Convert the following formula to an equisatisfiable one in CNF using Tseitin’s encoding:

¬(¬r → ¬(p ∧ q))

Write the final CNF as the answer. Use aφ to denote the auxiliary variable for the formula φ; for
example, ap∧q should be used to denote the auxiliary variable for p ∧ q. Your conversion should not
introduce auxiliary variables for negations.

3. (10 points) Let φ be a propositional formula in NNF, and let I be an interpretation of φ. Let the
positive set of I with respect to φ, denoted pos(I, φ), be the literals of φ that are satisfied by I. As an
example, for the NNF formula φ = (¬r ∧ p) ∨ q and the interpretation I = [r 7→ ⊥, p 7→ >, q 7→ ⊥], we
have pos(I, φ) = {¬r, p}. Prove the following theorem about the monotonicity of NNF:
Monotonicity of NNF: For every interpretation I and I ′ such that pos(I, φ) ⊆ pos(I ′, φ), if I |= φ,
then I ′ |= φ.
(Hint: Use structural induction.)

4. (10 points) Let φ be an NNF formula. Let φ̂ be a formula derived from φ using a modified version
of Tseitin’s encoding in which the CNF constraints are derived from implications rather than bi-
implications. For example, given the formula

a1 ∧ (a2 ∨ ¬a3),

the new encoding is the CNF equivalent of the following, where x0, x1, x2 are fresh auxiliary variables:

x0 ∧
(x0 → a1 ∧ x1) ∧
(x1 → a2 ∨ x2) ∧
(x2 → ¬a3)

Note that Tseitin’s encoding to CNF starts with the same formula, except that → is replaced with ↔.
As a result, the new encoding has roughly half as many clauses as the Tseitin’s encoding.

Prove that φ̂ is satisfiable if and only if φ is satisfiable.

(Hint: Use the theorem from Problem 3.)

1 of 4

https://gitlab.cs.washington.edu/cse507/hw21au
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/logic/classify.rkt
https://emina.github.io/rosette/
https://docs.racket-lang.org/rosette-guide/ch_syntactic-forms_rosette.html#%28form._%28%28lib._rosette%2Fquery%2Fform..rkt%29._solve%29%29

CSE 507: Computer-Aided Reasoning for Software
Fall 2021

Homework Assignment 1
Due: October 20, 2021 at 23:00

2 SAT solving (20 points)

5. (20 points) In this problem, you will trace the execution of CaDiCaL, a high-performance SAT solver,
on a sample CNF, and use this trace to reconstruct the abstract state transitions of the underlying
CDCL algorithm (Lecture 4).

The sample CNF is given in the DIMACS format and represents the following clauses:

(¬x1∨x2∨x4)∧(x1∨x3)∧(¬x4∨¬x2)∧(¬x4∨¬x1∨x2)∧(x3∨¬x1)∧(¬x3∨¬x2∨x4)∧(x1∨x4)∧(¬x2∨x1)

To start, clone CaDiCaL from GitHub and checkout tag sc18. Next, follow the instructions in the in-
cluded README.md file to configure and build the solver in logging mode using ./configure -l && make.
Finally, run the solver (in build/cadical) with the logging (-l) option on sample.cnf, and the solver
will output a detailed trace of its execution.

Using this detailed trace, reconstruct the behavior of the underlying CDCL algorithm by filling out
the following abstract trace template, given as a list of abstract trace entries:

• Level i ; decision level i

– Decision: di ; decision literal at level i or NA if level due to backtracking
– BCP: pi0 , . . . , pin ; literals inferred by BCP at level i, in the detailed trace order
– Conflict Clause: li0 . . . lik ; conflict clause or NA if no conflict at level i
– Implication Graph: graph image ; implication graph at level i, visualized with GraphViz

• . . .

To produce the abstract trace, create an abstract trace entry (“Level”) whenever the decision level
changes in the detailed trace due to a new decision or backtracking. When filling out the entry template,
use the literal names from the detailed trace. For example, the solver will represent the literal ¬x1 as
-1. Use GraphViz to visualize the implication graph at a given level. The impl-graph.dot file shows
an example of how to specify implication graphs with GraphViz. Use the LaTeX \includegraphics
command to insert the resulting graph images into your hw1.pdf file.

2 of 4

https://github.com/arminbiere/cadical
https://courses.cs.washington.edu/courses/cse507/21au/doc/L04.pdf
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/sat/sample.cnf
https://www.satcompetition.org/2011/format-benchmarks2011.html
https://github.com/arminbiere/cadical
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/sat/sample.cnf
https://www.graphviz.org
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/sat/impl-graph.dot

CSE 507: Computer-Aided Reasoning for Software
Fall 2021

Homework Assignment 1
Due: October 20, 2021 at 23:00

3 Graph Coloring with SAT (40 points)

A graph is k-colorable if there is an assignment of k colors to its vertices such that no two adjacent vertices
have the same color. Deciding if such a coloring exists is a classic NP-complete problem with many practical
applications, such as register allocation in compilers. In this problem, you will develop a CNF encoding
for graph coloring and apply them to graphs from various application domains, including course scheduling,
N-queens puzzles, and register allocation for real code.

A finite graph G = 〈V,E〉 consists of vertices V = {v1, . . . , vn} and edges E = {〈vi1 , wi1〉, . . . , 〈vim , wim〉}.
Given a set of k colors C = {c1, . . . , ck}, the k-coloring problem for G is to assign a color c ∈ C to each
vertex v ∈ V such that for every edge 〈v, w〉 ∈ E, color(v) 6= color(w).

6. (10 points) Show how to encode an instance of a k-coloring problem into a propositional formula F
that is satisfiable iff a k-coloring exists.

(a) Describe a set of propositional constraints asserting that every vertex is colored. Use the notation
color(v) = c to indicate that a vertex v has the color c. Such an assertion is encodable as a single
propositional variable pcv (since the set of vertices and colors are both finite).

(b) Describe a set of propositional constraints asserting that every vertex has at most one color.

(c) Describe a set of propositional constraints asserting that no two adjacent vertices have the same
color.

(d) Identify a significant optimization in this encoding that reduces its size asymptotically. (Hint:
Can any constraints be dropped? Why?)

(e) Specify your constraints in CNF. For |V | vertices, |E| edges, and k colors, how many variables
and clauses does your encoding require?

7. (20 points) Implement the above encoding in Racket, using the provided solution skeleton. See the
README file for instructions on obtaining solvers and the database of graph coloring problems. Your
program should generate the encoding for a given graph (see graph.rkt), call a SAT solver on it
(solver.rkt), and then decode the result into an assignment of colors to vertices (see examples.rkt
and k-coloring.rkt).

Your implementation should be able to solve all of the easy and medium instances in under 15 minutes
on an ordinary laptop. (The reference implementation does so in about 7 minutes.)

8. (5 points) Describe a CNF encoding for k-coloring that uses O(|V | log k + |E| log k) variables and
clauses.

9. (5 points) Most modern SAT solvers support incremental solving—that is, obtaining a solution to a
CNF, adding more constraints, obtaining another solution, and so on. Because the solver keeps (some)
learned clauses between invocations, incremental solving is generally the fastest way to solve a series
of related CNFs. How would you apply incremental solving to your encoding from Problem 7 to find
the smallest number of colors needed to color a graph (i.e., its chromatic number)?

3 of 4

http://racket-lang.org
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/graph-coloring
https://gitlab.cs.washington.edu/cse507/hw21au/blob/master/hw1/README.md
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/graph-coloring/graph.rkt
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/graph-coloring/solver.rkt
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/graph-coloring/examples.rkt
https://gitlab.cs.washington.edu/cse507/hw21au/tree/master/hw1/graph-coloring/k-coloring.rkt

CSE 507: Computer-Aided Reasoning for Software
Fall 2021

Homework Assignment 1
Due: October 20, 2021 at 23:00

4 Optimal Graph Coloring with Variations on SAT (10 points)

Consider the following variations on the propositional satisfiability (SAT) problem discussed in Lecture 5:

Partial Weighted MaxSAT Given a CNF formula φH =
∧
c∈H c corresponding to a set of hard clauses

H, and a CNF formula φS =
∧
c∈S c corresponding to a set of soft CNF clauses S with weights

w : S → Z+, the Partial Weighted MaxSAT problem is to find an assignment A to the problem
variables that satisfies all the hard clauses and that maximizes the weight of the satisfied soft clauses.
That is, A |=

∧
c∈H c, and if we let C = {c ∈ S|A |= c}, then there is no C ′ ⊆ S such that H ∪ C ′ is

satisfiable and
∑
c′∈C′ w(c′) >

∑
c∈C w(c).

Pseudo-Boolean Optimization Let B be a set of pseudo-boolean constraints of the form
∑
aijxj ≥ bi,

where xj is a variable over {0, 1} and aij , bi, cj are integer constants. The Pseudo-Boolean Optimization
problem is to satisfy all constraints in B while minimizing a linear function

∑
cj · xj .

Let G = 〈V,E〉 be a finite graph and Ck = {c1, . . . , ck} a set of k colors. Let P (G,Ck) be the CNF formula
produced by applying your encoding from Problems 6-7 to the graph G and the coloring Ck. As before, we
use pcv to denote the propositional variable indicating that the vertex v ∈ V has the color c ∈ Ck.

10. (5 points) Explain how to create a Partial Weighted MaxSAT instance Popt(G) such that every solution
to Popt(G) represents a valid χ-coloring of G where χ is the chromatic number of G (i.e., the smallest
possible number of colors needed to color G).

Your encoding of Popt(G) may use P (G,Ck) for at most one k of your choosing. So, Popt(G) cannot
use, for example, both P (G,C1) and P (G,C2).

Write down Popt(G) by specifying the set H of hard clauses, the set S of soft clauses, and the function
w : S → Z+ that assigns a positive weight to each soft clause in S.

H =
∧
. . .

S =
∧
. . .

w(s) = . . . for each clause s ∈ S

11. (5 points) Explain how to create a Pseudo-Boolean Optimization instance Popt(G) such that every
solution to Popt(G) represents a valid χ-coloring of G where χ is the chromatic number of G (i.e., the
smallest possible number of colors needed to color G).

To create Popt(G), observe that every CNF instance can be transformed into a set of equivalent pseudo-
boolean constraints. To apply this observation, explain how to do the transformation.

As before, your encoding of Popt(G) may use the pseudo-boolean equivalent of P (G,Ck) for at most
one k of your choosing.

Write down Popt(G) by specifying the pseudo-boolean constraints to solve and the linear function to
minimize:

minimize
∑

. . .

subject to
∧
. . .

4 of 4

https://courses.cs.washington.edu/courses/cse507/21au/doc/L05.pdf

	Propositional Logic and Normal Forms (30 points)
	SAT solving (20 points)
	Graph Coloring with SAT (40 points)
	Optimal Graph Coloring with Variations on SAT (10 points)

