Computer-Aided Reasoning for Software

Program Synthesis

Emina Torlak

emina@cs.washington.edu

Today

Last lecture

• Solvers as angelic runtime oracle

Today

• Program synthesis: from specs to code

Reminders

• HW3 is due on Friday.

The program synthesis problem

 $\exists P. \forall x. \varphi(x, P(x))$

Find a program P that satisfies the specification φ on all inputs.

The program synthesis problem

φ may be a formula, a reference
implementation, input / output pairs, traces, demonstrations, etc.

∃ P. ∀ x. φ(x, P(x))

Find a program P that satisfies the specification φ on all inputs.

The program synthesis problem

φ may be a formula, a reference
implementation, input / output pairs, traces, demonstrations, etc.

Synthesis improves

- Productivity (when writing φ is easier than writing P).
- Correctness (when verifying φ is easier than verifying P).

 $\exists P. \forall x. \varphi(x, P(x))$

Find a program P that satisfies the specification ϕ on all inputs.

$\exists P. \forall x. \varphi(x, P(x))$

Deductive (classic) synthesis

Derive the program P from the constructive proof of the theorem $\forall x. \exists y. \varphi(x, y)$.

Inductive (syntax-guided) synthesis

Discover the program P by searching a restricted space of candidate programs for one that satisfies ϕ on all inputs.

SPIRAL

Deductive (classic) synthesis

Derive the program P from the constructive proof of the theorem $\forall x. \exists y. \varphi(x, y)$.

Inductive (syntax-guided)

FlashFill

synthesis

Discover the program P by searching a restricted space of candidate programs for one that satisfies ϕ on all inputs.

Denali Superoptimizer [Joshi, Nelson, Randall, PLDI'02]

s4addl(reg6, 1)

s4addl(reg6, 1)

s4addl(reg6, 1)

s4addl(reg6, 1)

s4addl(reg6, 1)

Deductive synthesis versus compilation

Deductive synthesizer

- Non-deterministic.
- Searches all correct rewrites for one that is optimal.

Compiler

- Deterministic.
- Lowers a source program into a target program using a *fixed sequence of rewrite steps*.

reg6 * 4 + 1 reg6 << 2 + 1

Deductive synthesis versus inductive synthesis

$\exists P. \forall x. \varphi(x, P(x))$

Deductive synthesis

- Efficient and provably correct: thanks to the semantics-preserving rules, only correct programs are explored.
- Requires sufficient axiomatization of the domain.
- Requires *complete* specifications to seed the derivation.

Deductive synthesis versus inductive synthesis

$\exists P. \forall x. \varphi(x, P(x))$

Deductive synthesis

- Efficient and provably correct: thanks to the semantics-preserving rules, only correct programs are explored.
- Requires sufficient axiomatization of the domain.
- Requires *complete* specifications to seed the derivation.

Inductive synthesis

- Works with multi-modal and partial specifications.
- Requires no axioms.
- But often at the cost of lower efficiency and weaker (bounded) guarantees on the correctness/ optimality of synthesized code.

CEGIS: Counterexample-Guided Inductive Synthesis [Solar-Lezama et al, ASPLOS'06]

A syntactic sketch (e.g., a grammar) describing the shape of the desired program P.

This defines the space of candidate programs to search. Can be fine-tuned for better performance.

programs to search. Can be finetuned for better performance.

Overview of CEGIS

[Solar-Lezama et al, ASPLOS'06]

[Solar-Lezama et al, ASPLOS'06]

0, 1, 2

- Replace each ?? with a fresh symbolic constant.
- Translate the resulting problem to constraints w.r.t. the current inputs.

 $(0 << n = 0) \land$ $(1 << n = 4) \land$ (2 << n = 8)

[Solar-Lezama et al, ASPLOS'06]

0, 1, 2

x * 4

- Replace each ?? with a fresh symbolic constant.
- Translate the resulting problem to constraints w.r.t. the current inputs.
- If SAT, convert the model to a program P.

[Solar-Lezama et al, ASPLOS'06]

 $(0 << n = 0) \land$ $(1 << n = 4) \land$ (2 << n = 8)

x * 4

expr	:=				<i>P</i>
0	1	2		Х	
expr << expr					

0

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

A candidate program consistent with current inputs.

x * 4

expr	:=				
0	1	2	X		
expr << expr					

0

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

K=1: 0

0, 1

x * 4

expr	:=			<i>P</i>	
0	1	2	X		
expr << expr					

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

0, 1

x * 4

expr	:=			<i>P</i>	
0	1	2	X		
expr << expr					

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

0, 1

x * 4

expr	:=			<i>P</i>	
- ·	1	2	Х		
expr << expr					

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

[Udupa et al, PLDI'13]

K=*I*:0, *I*, 2, ×

0, 1

x * 4

expr	:=			P
0	1	2	Х	
expr	exp	r		

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

K=1:0, I, 2, x K=2: I << 2, 2 << 2, x << I, x << 2

Synthesizing programs with stochastic search

[Schkufza et al, ASPLOS'13]

Synthesizing programs with stochastic search

0, 1, 2

x * 4

expr :=
0 | 1 | 2 | x |
expr << expr</pre>

- Use Metropolis-Hastings to sample expressions.
- Mutate the current
 candidate program and
 keep the mutation with
 probability proportional
 to its correctness w.r.t.
 the current inputs.

A candidate program consistent with current inputs.

[Schkufza et al, ASPLOS'13]

Summary

Today

- Deductive and inductive synthesis
- Syntax-guided synthesis with symbolic, enumerative, and stochastic search

Next

- Two exciting guest lectures!
- Program verification in the real world.