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Reasoning about Programs I



Overview

Last lecture

• Finite model finding for first-order logic with quantifiers, 

relations, and transitive closure


Today  

• Reasoning about (partial) correctness of programs


• Hoare Logic
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Based on lectures by Isil Dillig, Daniel Jackson, and Viktor Kuncak



Classic verification (L11, L12, L13)

• Checking that all (terminating) executions 

satisfy an FOL property on all inputs


Symbolic execution (14)

• Systematic checking of FOL properties of all 

executions of bounded length

A look ahead (L11–L14)
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Active research 
topic for 45 years

Classic ideas every 
computer scientist 
should know

Understanding the 
ideas can help you 
become a better 
programmer



A bit of history

1967:  Assigning Meaning to Programs (Floyd)


• 1978 Turing Award


1969:  An Axiomatic Basis for Computer 
Programming (Hoare)  


• 1980 Turing Award


1975:  Guarded Commands, Nondeterminacy 
and Formal Derivation of Programs (Dijkstra)  


• 1972 Turing Award



A tiny Imperative Programming Language (IMP)

A minimalist programming 
language for demonstrating 
key features of Hoare logic.

Expression E 		


• Z | V | E1 + E2 | E1 * E2

Conditional	 C 	


• true | false | E1 = E2 | E1 ≤ E2

Statement S 	


• skip																					 (Skip)


• abort (Abort)


• V := E																				 (Assignment)


• S1; S2 (Composition)


• if C then S1 else S2 (If)


• while C do S											 (While)
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{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}
• If S terminates, the resulting state satisfies Q.

{P} S {true}
• Valid for all P and S.

Examples of Hoare triples



Proving partial correctness in Hoare logic

One inference rule for 
every statement in the 
language:


⊢{P1}S1{Q1} … ⊢{Pn}Sn{Qn}


⊢{P}S{Q}


If the Hoare triples {P1}
S1{Q1} … {Pn}Sn{Qn} are 
provable, then so is {P}S{Q}.

Expression E 		


• Z | V | E1 + E2 | E1 * E2

Conditional	 C 	


• true | false | E1 = E2 | E1 ≤ E2

Statement S 	


• skip																					 (Skip)


• abort (Abort)


• V := E																				 (Assignment)


• S1; S2 (Composition)


• if C then S1 else S2 (If)


• while C do S											 (While)
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⊢ {P1} S {Q1}	 P⇒ P1 Q1 ⇒ Q
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Hoare logic rules for partial correctness  

      			    	


⊢ {P} skip {P}

      		        		


⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R}		 ⊢ {R} S2 {Q}  


⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q}	 ⊢ {P∧¬C} S2 {Q}


⊢ {P} if C then S1 else S2 {Q}

⊢ {P∧C} S {P}		   


⊢ {P} while C do S {P∧¬C}

loop invariant

      			    	


⊢ {true} abort {false}



Example:  proof outline

{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n}		
{x+1≤ n}		 // consequence	

x := x + 1

{x ≤ n}																	 // assignment	

{x ≤ n ∧ x ≥ n}  // while
{x = n}  // consequence



Example:  proof outline with auxiliary variables

{x = A ∧ y = B}

{y = B ∧ x = A}                   

t := x

{y = B ∧ t = A}  
x := y

{x = B ∧ t = A}  

y := t

{x = B ∧ y = A}									  



Soundness and relative completeness

Proof rules for Hoare logic are sound


If ⊢ {P} S {Q} then ⊨ {P} S {Q}

Proof rules for Hoare logic are 
relatively complete


If ⊨ {P} S {Q} then ⊢ {P} S {Q}, assuming an 
oracle for deciding implications




Summary

Today

• Reasoning about partial correctness of programs


• Hoare Logic


Next lecture

• Automating Hoare Logic with VC generation


