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Overview

Last lecture

- Finite model finding for first-order logic with quantifiers,
relations, and transitive closure

Today

- Reasoning about (partial) correctness of programs

- Hoare Logic

Based on lectures by Isil Dillig, Daniel Jackson, and Viktor Kuncak



A look ahead (LI 1-L14)

Classic verification (L1, L12,L13)

 Checking that all (terminating) executions
satisfy an FOL property on all inputs

Symbolic execution (14)

- Systematic checking of FOL properties of all
executions of bounded length



A look ahead (LI 1-L14)

Classic verification (L1, L12,L13)
 Checking that all (terminating) executions
satisfy an FOL property on all inputs
Symbolic execution (14)

- Systematic checking of FOL properties of all
executions of bounded length

Active research
topic for 45 years

Classic ideas every
computer scientist
should know

Understanding the
ideas can help you
become a better
programmer




A bit of history

1967: Assigning Meaning to Programs (Floyd)
1978 Turing Award

1969: An Axiomatic Basis for Computer
Programming (Hoare)

| 980 Turing Award

1975: Guarded Commands, Nondeterminacy
and Formal Derivation of Programs (Dijkstra)

1972 Turing Award




A tiny Imperative Programming Language (IMP)

Expression E

- Z|V|EI+E|E *E
Conditional C

* true |false |EI=E2 | EI = E

Statement S

- skip (Skip)

- abort (Abort)

- V:=E (Assignment)
- Si;S (Composition)

- if C then S, else S; (If)
- while Cdo S (While)

A minimalist programming
language for demonstrating
key features of Hoare logic.
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Hoare triple
* Sis a program statement (in IMP).
* P and Q are FOL formulas over program variables.

* Pis called a precondition and Q is a postcondition.

Partial correctness (Hoare triple semantics)

- If S executes from a state satisfying P, and if its execution
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Examples of Hoare triples

{false} S {Q}
« Valid for all S and Q.

{P} while (true) do skip {Q}
« Valid for all P and Q.

{true} S {Q}

- If S terminates, the resulting state satisfies Q.

{P} S {true}
« Valid for all P and S.



Proving partial correctness in Hoare logic

Expression E

- Z|V|EI +E|E *E
Conditional C

* true |false |EI=E2 | EI = E

Statement S

- skip (Skip)

- abort (Abort)

- V:=E (Assignment)
- Si;S2 (Composition)

- if C then S, else S; (If)
- while Cdo S (While)

One inference rule for
every statement in the
language:

H{P}Si{Q} ... H{Pn}S{Qn}
—{P}${Q}

If the Hoare triples {P}

Si{Q1} ... {Pn}Sn{Qn} are
provable, then so is {P}S{Q]}.
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Hoare logic rules for partial correctness

= {P} S| {R} - {R} $,{Q}
— {P} skip {P} — {P} Si; S {Q}

— {true} abort {false} = {PAC} S {Q} - {PA-C} S, {Q}

— {P} if C then S, else S, {Q}

- {Q[E/x]} x := E{Q}

HF{P1}S{Qi} P=P Q=0 — {PAC} S {P}
~ {P} S {Q} — {P} while C do S {PA~C}

loop invariant



Example: proof outline

{x =n}
while (x < n) do
{x=n A X<n}

{x+ 1< n} /| consequence

x:=x+ |

{x = n} // assignment
{x=nAXx=n} /I while

{x = n} /| consequence



Example: proof outline with auxiliary variables

{x=A Ay=B}
{y =B Ax=A}

= X
{y=BAt=A}
X =y
{x=BAt=A}

{x—B/\y =A}



Soundness and relative completeness

Proof rules for Hoare logic are sound

If = {P} S {Q} then = {P} S {Q}

Proof rules for Hoare logic are
relatively complete

If = {P} S {Q} then — {P} S {Q}, assuming an
oracle for deciding implications




summary

Today

- Reasoning about partial correctness of programs

* Hoare Logic

NeXxt lecture

- Automating Hoare Logic with VC generation



