
CSE507
Computer-Aided Reasoning for Software

Emina Torlak

emina@cs.washington.edu

Reasoning about Programs I

Overview

Last lecture

• Finite model finding for first-order logic with quantifiers,

relations, and transitive closure

Today

• Reasoning about (partial) correctness of programs

• Hoare Logic

to
pi

cs
Based on lectures by Isil Dillig, Daniel Jackson, and Viktor Kuncak

Classic verification (L11, L12, L13)

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Symbolic execution (14)

• Systematic checking of FOL properties of all

executions of bounded length

A look ahead (L11–L14)

Classic verification (L11, L12, L13)

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Symbolic execution (14)

• Systematic checking of FOL properties of all

executions of bounded length

A look ahead (L11–L14)

Active research
topic for 45 years

Classic ideas every
computer scientist
should know

Understanding the
ideas can help you
become a better
programmer

A bit of history

1967: Assigning Meaning to Programs (Floyd)

• 1978 Turing Award

1969: An Axiomatic Basis for Computer
Programming (Hoare)

• 1980 Turing Award

1975: Guarded Commands, Nondeterminacy
and Formal Derivation of Programs (Dijkstra)

• 1972 Turing Award

A tiny Imperative Programming Language (IMP)

A minimalist programming
language for demonstrating
key features of Hoare logic.

Expression E 		

• Z | V | E1 + E2 | E1 * E2

Conditional	 C 	

• true | false | E1 = E2 | E1 ≤ E2

Statement S 	

• skip																					 (Skip)

• abort (Abort)

• V := E																				 (Assignment)

• S1; S2 (Composition)

• if C then S1 else S2 (If)

• while C do S											 (While)

Specifying correctness in Hoare logic

{P} S {Q}

Specifying correctness in Hoare logic

{P} S {Q}

Hoare triple

• S is a program statement (in IMP).

• P and Q are FOL formulas over program variables.

• P is called a precondition and Q is a postcondition.

Specifying correctness in Hoare logic

{P} S {Q}

Hoare triple

• S is a program statement (in IMP).

• P and Q are FOL formulas over program variables.

• P is called a precondition and Q is a postcondition.

Partial correctness (Hoare triple semantics)

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Specifying correctness in Hoare logic

{P} S {Q}

Hoare triple

• S is a program statement (in IMP).

• P and Q are FOL formulas over program variables.

• P is called a precondition and Q is a postcondition.

Partial correctness (Hoare triple semantics)

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

{P} S {Q}

[P] S [Q]

Hoare triple

• S is a program statement (in IMP).

• P and Q are FOL formulas over program variables.

• P is called a precondition and Q is a postcondition.

Partial correctness (Hoare triple semantics)

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

{P} S {Q}

[P] S [Q]

safety

Hoare triple

• S is a program statement (in IMP).

• P and Q are FOL formulas over program variables.

• P is called a precondition and Q is a postcondition.

Partial correctness (Hoare triple semantics)

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

{P} S {Q}

[P] S [Q]

safety

liveness

Hoare triple

• S is a program statement (in IMP).

• P and Q are FOL formulas over program variables.

• P is called a precondition and Q is a postcondition.

Partial correctness (Hoare triple semantics)

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

{P} S {Q}

[P] S [Q]

safety

liveness

Examples of Hoare triples

{false} S {Q}

Examples of Hoare triples

{false} S {Q}
• Valid for all S and Q.

Examples of Hoare triples

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}

Examples of Hoare triples

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

Examples of Hoare triples

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}

Examples of Hoare triples

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}
• If S terminates, the resulting state satisfies Q.

Examples of Hoare triples

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}
• If S terminates, the resulting state satisfies Q.

{P} S {true}

Examples of Hoare triples

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}
• If S terminates, the resulting state satisfies Q.

{P} S {true}
• Valid for all P and S.

Examples of Hoare triples

Proving partial correctness in Hoare logic

One inference rule for
every statement in the
language:

⊢{P1}S1{Q1} … ⊢{Pn}Sn{Qn}

⊢{P}S{Q}

If the Hoare triples {P1}
S1{Q1} … {Pn}Sn{Qn} are
provable, then so is {P}S{Q}.

Expression E 		

• Z | V | E1 + E2 | E1 * E2

Conditional	 C 	

• true | false | E1 = E2 | E1 ≤ E2

Statement S 	

• skip																					 (Skip)

• abort (Abort)

• V := E																				 (Assignment)

• S1; S2 (Composition)

• if C then S1 else S2 (If)

• while C do S											 (While)

Hoare logic rules for partial correctness

 			 	

⊢ {P} skip {P}

Hoare logic rules for partial correctness

 			 	

⊢ {P} skip {P}

 			 	

⊢ {true} abort {false}

Hoare logic rules for partial correctness

 			 	

⊢ {P} skip {P}

 		 		

⊢ {Q[E∕x]} x := E {Q}

 			 	

⊢ {true} abort {false}

⊢ {P1} S {Q1}	 P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

Hoare logic rules for partial correctness

 			 	

⊢ {P} skip {P}

 		 		

⊢ {Q[E∕x]} x := E {Q}

 			 	

⊢ {true} abort {false}

⊢ {P1} S {Q1}	 P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

Hoare logic rules for partial correctness

 			 	

⊢ {P} skip {P}

 		 		

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R}		 ⊢ {R} S2 {Q}

⊢ {P} S1; S2 {Q}

 			 	

⊢ {true} abort {false}

⊢ {P1} S {Q1}	 P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

Hoare logic rules for partial correctness

 			 	

⊢ {P} skip {P}

 		 		

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R}		 ⊢ {R} S2 {Q}

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q}	 ⊢ {P∧¬C} S2 {Q}

⊢ {P} if C then S1 else S2 {Q}

 			 	

⊢ {true} abort {false}

⊢ {P1} S {Q1}	 P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

Hoare logic rules for partial correctness

 			 	

⊢ {P} skip {P}

 		 		

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R}		 ⊢ {R} S2 {Q}

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q}	 ⊢ {P∧¬C} S2 {Q}

⊢ {P} if C then S1 else S2 {Q}

⊢ {P∧C} S {P}		

⊢ {P} while C do S {P∧¬C}

loop invariant

 			 	

⊢ {true} abort {false}

Example: proof outline

{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n}		
{x+1≤ n}		 // consequence	

x := x + 1

{x ≤ n}																	 // assignment	

{x ≤ n ∧ x ≥ n} // while
{x = n} // consequence

Example: proof outline with auxiliary variables

{x = A ∧ y = B}

{y = B ∧ x = A}

t := x

{y = B ∧ t = A}
x := y

{x = B ∧ t = A}

y := t

{x = B ∧ y = A}									

Soundness and relative completeness

Proof rules for Hoare logic are sound

If ⊢ {P} S {Q} then ⊨ {P} S {Q}

Proof rules for Hoare logic are
relatively complete

If ⊨ {P} S {Q} then ⊢ {P} S {Q}, assuming an
oracle for deciding implications

Summary

Today

• Reasoning about partial correctness of programs

• Hoare Logic

Next lecture

• Automating Hoare Logic with VC generation

