
CSE507
Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

Combining Theories

http://courses.cs.washington.edu/courses/cse507/18sp/index.html

Today

Last lecture
• A survey of theory solvers and deciding T= with

congruence closure

Today
• Deciding a combination of theories

to
pi

cs

Recall: Satisfiability Modulo Theories (SMT)

SMT solver

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

Core solver

DPLL(T)

Theory
solver

Theory
solver…

Σn-theory Tn
with axioms An

Theory T1 ⋃…⋃ Tn with
signature Σ1 ⋃…⋃ Σn and
axioms A1 ⋃…⋃ An

Combining theories with Nelson-Oppen

Theory
solver

Theory
solver…

Σ1-theory T1
with axioms A1

Combination solver

Theory T1 ⋃ T2 with
signature Σ1 ⋃ Σ2 and
axioms A1 ⋃ A2

Σ2-theory T2
with axioms A2

Combining theories with Nelson-Oppen

Theory
solver

Theory
solver

Σ1-theory T1
with axioms A1

Combination solver

We’ll see how to
combine two
theories. Easy to
generalize to n.

Theory T1 ⋃ T2 with
signature Σ1 ⋃ Σ2 and
axioms A1 ⋃ A2

Σ2-theory T2
with axioms A2

Combining theories with Nelson-Oppen

Theory
solver

Theory
solver

Σ1-theory T1
with axioms A1

Combination solver

The combination problem is
undecidable for arbitrary
(decidable) theories. It
becomes decidable under
Nelson-Oppen
restrictions.

We’ll see how to
combine two
theories. Easy to
generalize to n.

Nelson-Oppen restrictions

T1 and T2 can be combined when
• Both are decidable, quantifier-free conjunctive fragments
• Equality (=) is the only interpreted symbol in the

intersection of their signatures: Σ1 ∩ Σ2 = { = }

• Both are stably infinite

Nelson-Oppen restrictions

T1 and T2 can be combined when
• Both are decidable, quantifier-free conjunctive fragments
• Equality (=) is the only interpreted symbol in the

intersection of their signatures: Σ1 ∩ Σ2 = { = }

• Both are stably infinite

A theory T is stably infinite if for every
satisfiable ΣT-formula F, there is a T-
model that satisfies F and that has a
universe of infinite cardinality.

Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗

Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗

Fixed width bit
vectors (Tbv)

Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗

Fixed width bit
vectors (Tbv) ✗

Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗ Equality and
uninterpreted
functions (T=)

Fixed width bit
vectors (Tbv) ✗

Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗ Equality and
uninterpreted
functions (T=)

Fixed width bit
vectors (Tbv) ✗

✓

Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗ Equality and
uninterpreted
functions (T=)

Fixed width bit
vectors (Tbv)

Linear real
arithmetic (TR)

Linear integer
arithmetic (TR)

✗

✓

✓

✓

Arrays (TA)✓

Overview of Nelson-Oppen

Purification

(Σ1 ⋃ Σ2)-formula F

Equality Propagation

Σ1-formula F1

T1 solver T2 solver

Σ2-formula F2

=

F1 ∧ F2

Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

F1 ∧ F2

Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

x ⩽ f(x) + 1

ΣR Σ=

x ⩽ u + 1 ∧ u = f(x)

Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

x ⩽ f(x) + 1

ΣR Σ=

f(x + g(y)) ⩽ g(a) + f(b)

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

f(x + g(y)) ⩽ g(a) + f(b)

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

f(x + g(y)) ⩽ g(a) + f(b)

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a)
u3 = f(b)

f(x + u1) ⩽ u2 + u3

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a)
u3 = f(b)

f(x + u1) ⩽ u2 + u3f(x + u1) ⩽ u2 + u3

f(u4) ⩽ u2 + u3

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a)
u3 = f(b)

u4 = x + u1

f(u4) ⩽ u2 + u3f(u4) ⩽ u2 + u3

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a)
u3 = f(b)

u4 = x + u1

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into
an equisatisfiable formula F1 ∧ F2 with
F1 in T1 and F2 in T2

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a)
u3 = f(b)
u5 = f(u4)

u4 = x + u1

u5 ⩽ u2 + u3

u4 = x + u1

u5 ⩽ u2 + u3
u1 = g(y)
u2 = g(a)
u3 = f(b)
u5 = f(u4)

Shared and local constants

Purification

ΣR Σ=

A constant is shared if it occurs in
both F1 and F2, and it is local
otherwise.

u4 = x + u1

u5 ⩽ u2 + u3
u1 = g(y)
u2 = g(a)
u3 = f(b)
u5 = f(u4)

Shared and local constants

Purification

ΣR Σ=

A constant is shared if it occurs in
both F1 and F2, and it is local
otherwise.

Shared: {u1, u2, u3, u4, u5}

Local: {x, y, a, b}

Overview of Nelson-Oppen

Purification

(Σ1 ⋃ Σ2)-formula F

Equality Propagation

Σ1-formula F1

T1 solver T2 solver

Σ2-formula F2

=

Equality Propagation
• Convex theories

• Non-convex theories

Overview of Nelson-Oppen

Purification

(Σ1 ⋃ Σ2)-formula F

Σ1-formula F1 Σ2-formula F2

Convex theories

A theory T is convex if for every conjunctive
formula F, the following holds:

If F ⇒ x1 = y1 ∨…∨ xn = yn for a finite n > 1,

then F ⇒ xi = yi for some i ∈ {1, …, n}.

Convex theories

A theory T is convex if for every conjunctive
formula F, the following holds:

If F ⇒ x1 = y1 ∨…∨ xn = yn for a finite n > 1,

then F ⇒ xi = yi for some i ∈ {1, …, n}.

If F implies a disjunction of
equalities, then it also implies
at least one of the equalities.

Examples of (non-)convex theories

Linear arithmetic over
integers (TZ)

Examples of (non-)convex theories

Linear arithmetic over
integers (TZ) ✗

1≤ x ∧ x ≤ 2 ⇒ x = 1 ∨ x = 2 but

not 1≤ x ∧ x ≤ 2 ⇒ x = 1

not 1≤ x ∧ x ≤ 2 ⇒ x = 2

Examples of (non-)convex theories

Linear arithmetic over
integers (TZ) ✗

Equality and
uninterpreted
functions (T=)

Linear real
arithmetic (TR)

✓

✓
1≤ x ∧ x ≤ 2 ⇒ x = 1 ∨ x = 2 but

not 1≤ x ∧ x ≤ 2 ⇒ x = 1

not 1≤ x ∧ x ≤ 2 ⇒ x = 2

NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

Is F satisfiable if both F1 and F2
are satisfiable?

NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

Is F satisfiable if both F1 and F2
are satisfiable?

No: x = 1∧ 2 = x + y ∧ f(x)≠f(y)

NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

Nelson-Oppen for convex theories: example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧
y + z ≤ x ∧ 0 ≤ z

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

Nelson-Oppen for convex theories: example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧
y + z ≤ x ∧ 0 ≤ z

x ≤ y ∧
y + z ≤ x ∧ 0
≤ z ∧
w = u - v

f(w)≠f(z) ∧
u = f(x) ∧
v = f(y)

ΣR Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

Nelson-Oppen for convex theories: example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧
y + z ≤ x ∧ 0 ≤ z

x ≤ y ∧
y + z ≤ x ∧ 0
≤ z ∧
w = u - v

f(w)≠f(z) ∧
u = f(x) ∧
v = f(y)

x = y ∧ x = y ∧

ΣR Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

Nelson-Oppen for convex theories: example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧
y + z ≤ x ∧ 0 ≤ z

x ≤ y ∧
y + z ≤ x ∧ 0
≤ z ∧
w = u - v

f(w)≠f(z) ∧
u = f(x) ∧
v = f(y)

x = y ∧
u = v ∧

x = y ∧
u = v ∧

ΣR Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

Nelson-Oppen for convex theories: example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧
y + z ≤ x ∧ 0 ≤ z

x ≤ y ∧
y + z ≤ x ∧ 0
≤ z ∧
w = u - v

f(w)≠f(z) ∧
u = f(x) ∧
v = f(y)

x = y ∧
u = v ∧
w = z ∧

x = y ∧
u = v ∧
w = z ∧

ΣR Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

Nelson-Oppen for convex theories: example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧
y + z ≤ x ∧ 0 ≤ z

x ≤ y ∧
y + z ≤ x ∧ 0
≤ z ∧
w = u - v

f(w)≠f(z) ∧
u = f(x) ∧
v = f(y)

x = y ∧
u = v ∧
w = z ∧

x = y ∧
u = v ∧
w = z ∧
UNSAT

ΣR Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

This doesn’t work for non-convex theories …

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

This doesn’t work for non-convex theories …

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

ΣZ Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

This doesn’t work for non-convex theories …

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

ΣZ Σ=

SAT SAT

✗NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

This doesn’t work for non-convex theories …

If T is non-convex, it may
imply a disjunction of
equalities without implying
any single equality.

We have to propagate
disjunctions as well as
individual equalities. Which
disjunctions? How do we
propagate disjunctions to
theory solvers which reason
only about conjunctions?

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on
F2 and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. Return SAT

NELSON-OPPEN(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on F2 and
return UNSAT if either is unsatisfiable

3. If there are shared constants x and y such that Fi
⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. If Fi ⇒ x1 = y1 ∨…∨ xn = yn but Fj does not, then
if NELSON-OPPEN(Fi ∧ Fj ∧ xk = yk) outputs

 SAT for any k, return SAT. Otherwise, return
UNSAT.

5. Return SAT

Nelson-Oppen for non-convex theories

NELSON-OPPEN(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on F2 and
return UNSAT if either is unsatisfiable

3. If there are shared constants x and y such that Fi
⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y
2. Go to step 2.

4. If Fi ⇒ x1 = y1 ∨…∨ xn = yn but Fj does not, then
if NELSON-OPPEN(Fi ∧ Fj ∧ xk = yk) outputs

 SAT for any k, return SAT. Otherwise, return
UNSAT.

5. Return SAT

Nelson-Oppen for non-convex theories

Propagate a minimal
disjunction.

Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

ΣZ Σ=

Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

ΣZ Σ=

(x=z1 ∨ x=z2) ∧

Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

ΣZ Σ=

(x=z1 ∨ x=z2) ∧

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

x = z1 x = z1 ∧
UNSAT

Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧
f(x) ≠ f(1) ∧ f(x) ≠ f(2)

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

ΣZ Σ=

(x=z1 ∨ x=z2) ∧

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

x = z1 x = z1 ∧
UNSAT

1 ≤ x ∧
x ≤ 2 ∧
z1 = 1 ∧
z2 = 2

f(x) ≠ f(z1) ∧
f(x) ≠ f(z2)

x = z2 x = z2 ∧
UNSAT

Soundness and completeness of Nelson-Oppen

If the theories T1 and T2 satisfy
Nelson-Open restrictions, then the
combination procedure returns
UNSAT for a formula F in T1 ⋃ T2 iff F
is unsatisfiable modulo T1 ⋃ T2.

Complexity of Nelson-Oppen

If decision procedures for convex
theories T1 and T2 have polynomial
time complexity, so does their
Nelson-Oppen combination.

If decision procedures for non-convex
theories T1 and T2 have NP time
complexity, so does their Nelson-
Oppen combination.

Summary

Today
• Sound and complete procedure for a combination

of restricted theories

• Stably infinite, conjunctive, quantifier-free with
signatures that are disjoint except for =

Next lecture
• Deciding satisfiability of arbitrary boolean

combinations of quantifier-free first-order formulas

