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Today

Last lecture
• A survey of theory solvers and deciding T= with 

congruence closure

Today  
• Deciding a combination of theories

to
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Recall:  Satisfiability Modulo Theories (SMT)

SMT solver
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2x + y ≤ 5 

(b >> 2) = c

a[i] = x

⋮ ⋮
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First-Order Logic

(un)satisfiable

Theories

Core solver

DPLL(T)

Theory 
solver

Theory 
solver…



Σn-theory Tn 
with axioms An

Theory T1 ⋃…⋃ Tn with 
signature Σ1 ⋃…⋃ Σn and 
axioms A1 ⋃…⋃ An

Combining theories with Nelson-Oppen

Theory 
solver

Theory 
solver…

Σ1-theory T1 
with axioms A1

Combination solver



Theory T1 ⋃ T2 with 
signature Σ1 ⋃ Σ2 and 
axioms A1 ⋃ A2

Σ2-theory T2 
with axioms A2

Combining theories with Nelson-Oppen

Theory 
solver

Theory 
solver

Σ1-theory T1 
with axioms A1

Combination solver

We’ll see how to 
combine two 
theories.  Easy to 
generalize to n.



Theory T1 ⋃ T2 with 
signature Σ1 ⋃ Σ2 and 
axioms A1 ⋃ A2

Σ2-theory T2 
with axioms A2

Combining theories with Nelson-Oppen

Theory 
solver

Theory 
solver

Σ1-theory T1 
with axioms A1

Combination solver

The combination problem is 
undecidable for arbitrary 
(decidable) theories.  It 
becomes decidable under 
Nelson-Oppen 
restrictions.

We’ll see how to 
combine two 
theories.  Easy to 
generalize to n.



Nelson-Oppen restrictions

T1 and T2 can be combined when
• Both are decidable, quantifier-free conjunctive fragments
• Equality (=) is the only interpreted symbol in the 

intersection of their signatures:  Σ1 ∩ Σ2 = { = }

• Both are stably infinite



Nelson-Oppen restrictions

T1 and T2 can be combined when
• Both are decidable, quantifier-free conjunctive fragments
• Equality (=) is the only interpreted symbol in the 

intersection of their signatures:  Σ1 ∩ Σ2 = { = }

• Both are stably infinite

A theory T is stably infinite if for every 
satisfiable ΣT-formula F, there is a T-
model that satisfies F and that has a 
universe of infinite cardinality.



Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b
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Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗

Fixed width bit 
vectors (Tbv) ✗



Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗ Equality and 
uninterpreted 
functions (T=)

Fixed width bit 
vectors (Tbv) ✗



Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗ Equality and 
uninterpreted 
functions (T=)

Fixed width bit 
vectors (Tbv) ✗

✓



Examples of (non-)stably infinite theories

ΣT : { a, b, = }

AT: ∀ x . x = a ∨ x = b

✗ Equality and 
uninterpreted 
functions (T=)

Fixed width bit 
vectors (Tbv)

Linear real 
arithmetic (TR)

Linear integer 
arithmetic (TR)

✗

✓

✓

✓

Arrays (TA)✓



Overview of Nelson-Oppen 

Purification

(Σ1 ⋃ Σ2)-formula F

Equality Propagation

Σ1-formula F1

T1 solver T2 solver

Σ2-formula F2

=



F1           ∧           F2

Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 



F1           ∧           F2

Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t



Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

x ⩽ f(x) + 1

ΣR Σ=



x ⩽ u + 1    ∧    u = f(x)

Overview of purification

Purification

FTransforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

x ⩽ f(x) + 1

ΣR Σ=



f(x + g(y)) ⩽ g(a) + f(b)

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t



f(x + g(y)) ⩽ g(a) + f(b)

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

f(x + g(y)) ⩽ g(a) + f(b)



Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a) 
u3 = f(b)

f(x + u1) ⩽ u2 + u3



Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a) 
u3 = f(b)

f(x + u1) ⩽ u2 + u3f(x + u1) ⩽ u2 + u3



f(u4) ⩽ u2 + u3

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a) 
u3 = f(b)

u4 = x + u1



f(u4) ⩽ u2 + u3f(u4) ⩽ u2 + u3

Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a) 
u3 = f(b)

u4 = x + u1



Another purification example

Purification

ΣR Σ=

Transforms a (Σ1 ⋃ Σ2)-formula F into 
an equisatisfiable formula F1 ∧ F2 with 
F1 in T1 and F2 in T2 

•Repeat until fix point:

• If f is in Ti and t is not, and u is fresh:
F[f(…, t, …)] ⟿ F[f(…, u, …)] ∧ u = t

• If p is in Ti and t is not, and v is fresh:
F[p(…, t, …)] ⟿ F[p(…, v, …)] ∧ v = t

u1 = g(y)
u2 = g(a) 
u3 = f(b)
u5 = f(u4)

u4 = x + u1

u5 ⩽ u2 + u3



u4 = x + u1

u5 ⩽ u2 + u3
u1 = g(y)
u2 = g(a) 
u3 = f(b)
u5 = f(u4)

Shared and local constants

Purification

ΣR Σ=

A constant is shared if it occurs in 
both F1 and F2, and it is local 
otherwise.



u4 = x + u1

u5 ⩽ u2 + u3
u1 = g(y)
u2 = g(a) 
u3 = f(b)
u5 = f(u4)

Shared and local constants

Purification

ΣR Σ=

A constant is shared if it occurs in 
both F1 and F2, and it is local 
otherwise.

Shared: {u1, u2, u3, u4, u5}

Local: {x, y, a, b}



Overview of Nelson-Oppen 

Purification

(Σ1 ⋃ Σ2)-formula F

Equality Propagation

Σ1-formula F1

T1 solver T2 solver

Σ2-formula F2

=



Equality Propagation
• Convex theories

• Non-convex theories

Overview of Nelson-Oppen 

Purification

(Σ1 ⋃ Σ2)-formula F

Σ1-formula F1 Σ2-formula F2



Convex theories

A theory T is convex if for every conjunctive 
formula F, the following holds: 

If F ⇒ x1 = y1 ∨…∨ xn = yn for a finite n > 1, 

then F ⇒ xi = yi for some i ∈ {1, …, n}.



Convex theories

A theory T is convex if for every conjunctive 
formula F, the following holds: 

If F ⇒ x1 = y1 ∨…∨ xn = yn for a finite n > 1, 

then F ⇒ xi = yi for some i ∈ {1, …, n}.

If F implies a disjunction of 
equalities, then it also implies 
at least one of the equalities.



Examples of (non-)convex theories

Linear arithmetic over 
integers (TZ)



Examples of (non-)convex theories

Linear arithmetic over 
integers (TZ) ✗

1≤ x ∧ x ≤ 2 ⇒ x = 1 ∨ x = 2 but

not 1≤ x ∧ x ≤ 2 ⇒ x = 1

not 1≤ x ∧ x ≤ 2 ⇒ x = 2



Examples of (non-)convex theories

Linear arithmetic over 
integers (TZ) ✗

Equality and 
uninterpreted 
functions (T=)

Linear real 
arithmetic (TR)

✓

✓
1≤ x ∧ x ≤ 2 ⇒ x = 1 ∨ x = 2 but

not 1≤ x ∧ x ≤ 2 ⇒ x = 1

not 1≤ x ∧ x ≤ 2 ⇒ x = 2



NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories



NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2
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Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable
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Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

Is F satisfiable if both F1 and F2 
are satisfiable? 



NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

Is F satisfiable if both F1 and F2 
are satisfiable?  

No:  x = 1∧ 2 = x + y ∧ f(x)≠f(y)



NELSON-OPPEN-CONVEX(F)

Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.
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Nelson-Oppen for convex theories

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. Return SAT



Nelson-Oppen for convex theories:  example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧ 
y + z ≤ x ∧ 0 ≤ z

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. Return SAT
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x ≤ y ∧ 
y + z ≤ x ∧ 0 
≤ z ∧ 
w = u - v
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u = f(x) ∧ 
v = f(y)

ΣR Σ=
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Nelson-Oppen for convex theories:  example

f(f(x) - f(y))≠f(z) ∧ x ≤ y ∧ 
y + z ≤ x ∧ 0 ≤ z

x ≤ y ∧ 
y + z ≤ x ∧ 0 
≤ z ∧ 
w = u - v

f(w)≠f(z) ∧ 
u = f(x) ∧ 
v = f(y)

x = y ∧ 
u = v ∧ 
w = z ∧

x = y ∧ 
u = v ∧
w = z ∧
UNSAT

ΣR Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. Return SAT



This doesn’t work for non-convex theories …

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. Return SAT



This doesn’t work for non-convex theories …

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

ΣZ Σ=

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. Return SAT



This doesn’t work for non-convex theories …

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

ΣZ Σ=

SAT SAT

✗NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. Return SAT



This doesn’t work for non-convex theories …

If T is non-convex, it may 
imply a disjunction of 
equalities without implying 
any single equality.  

We have to propagate 
disjunctions as well as 
individual equalities.  Which 
disjunctions?  How do we 
propagate disjunctions to 
theory solvers which reason 
only  about conjunctions?

NELSON-OPPEN-CONVEX(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on 
F2 and return UNSAT if either is 
unsatisfiable

3. If there are shared constants x and y 
such that Fi ⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. Return SAT



NELSON-OPPEN(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on F2 and 
return UNSAT if either is unsatisfiable

3. If there are shared constants x and y such that Fi 
⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. If Fi ⇒ x1 = y1 ∨…∨ xn = yn but Fj does not, then 
if NELSON-OPPEN(Fi ∧ Fj ∧ xk = yk) outputs

 SAT for any k, return SAT.  Otherwise, return 
UNSAT.

5. Return SAT

Nelson-Oppen for non-convex theories



NELSON-OPPEN(F)

1. Purify F into F1 ∧ F2

2. Run T1-solver on F1 and T2-solver on F2 and 
return UNSAT if either is unsatisfiable

3. If there are shared constants x and y such that Fi 
⇒ x = y but Fj does not

1. Fj ← Fj ∧ x = y 
2. Go to step 2.

4. If Fi ⇒ x1 = y1 ∨…∨ xn = yn but Fj does not, then 
if NELSON-OPPEN(Fi ∧ Fj ∧ xk = yk) outputs

 SAT for any k, return SAT.  Otherwise, return 
UNSAT.

5. Return SAT

Nelson-Oppen for non-convex theories

Propagate a minimal 
disjunction.



Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 



Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

ΣZ Σ=



Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

ΣZ Σ=

(x=z1 ∨ x=z2) ∧



Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

ΣZ Σ=

(x=z1 ∨ x=z2) ∧

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

x = z1 x = z1 ∧
UNSAT



Nelson-Oppen for non-convex theories: example

1 ≤ x ∧ x ≤ 2 ∧ 
f(x) ≠ f(1) ∧ f(x) ≠ f(2) 

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

ΣZ Σ=

(x=z1 ∨ x=z2) ∧

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

x = z1 x = z1 ∧
UNSAT

1 ≤ x ∧ 
x ≤ 2 ∧ 
z1 = 1 ∧ 
z2 = 2

f(x) ≠ f(z1) ∧ 
f(x) ≠ f(z2) 

x = z2 x = z2 ∧
UNSAT



Soundness and completeness of Nelson-Oppen

If the theories T1 and T2 satisfy 
Nelson-Open restrictions, then the 
combination procedure returns 
UNSAT for a formula F in T1 ⋃ T2 iff F 
is unsatisfiable modulo T1 ⋃ T2.



Complexity of Nelson-Oppen

If decision procedures for convex 
theories T1 and T2 have polynomial 
time complexity, so does their 
Nelson-Oppen combination.

If decision procedures for non-convex 
theories T1 and T2 have NP time 
complexity, so does their Nelson-
Oppen combination.



Summary

Today
• Sound and complete procedure for a combination 

of restricted theories

• Stably infinite, conjunctive, quantifier-free with 
signatures that are disjoint except for =

Next lecture
• Deciding satisfiability of arbitrary boolean 

combinations of quantifier-free first-order formulas 


