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A Survey of Theory Solvers



Today

Last lecture

• Introduction to Satisfiability Modulo Theories (SMT)


Today  

• A quick survey of theory solvers


• An in-depth look at the core theory solver (theory of equality 
and uninterpreted functions)


Reminders

• HW1 due tonight. 


• Project proposal due next week. Find a partner and start 
brainstorming if you haven’t already! to

pi
cs



Recall:  Satisfiability Modulo Theories (SMT)

SMT solver
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A brief survey of common theory solvers
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2x + y ≤ 5 (b >> 2) = c a[i] = x2i + j ≤ 5 



A brief survey of common theory solvers
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(b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
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Bitvectors Arrays
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A brief survey of common theory solvers

x = g(y) 

(b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Bitvectors Arrays

• Conjunctions of linear constraints over R


• Can be decided in polynomial time, but in 
practice solved with the General Simplex 
method (worst case exponential) 


• Can also be decided with Fourier-Motzkin 
elimination (exponential)

2x + y ≤ 5 2i + j ≤ 5 



A brief survey of common theory solvers

x = g(y) 

(b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5 

• Conjunctions of linear constraints over Z


• Branch-and-cut (based on Simplex) 


• Omega Test (extension of Fourier-Motzkin)


• Small-Domain Encoding used for arbitrary 
combinations of linear constraints over Z


• NP-complete



A brief survey of common theory solvers

x = g(y) 

(b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5 

• Arbitrary combination of 
constraints over bitvectors 


• Bit blasting (reduction to SAT)


• NP-complete



A brief survey of common theory solvers

x = g(y) 

(b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5 

• Conjunctions of constraints over 
read/write terms in the theory of arrays


• Reduce to T= satisfiability


• NP-complete (because the reduction 
introduces disjunctions)



A brief survey of common theory solvers

• Conjunctions of 
equality constraints over 
uninterpreted functions


• Congruence closure

• Polynomial time

x = g(y) 

(b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5 



Theory of equality and UF (T=)

Signature (all symbols)

• {=, a, b, c, …, f, g, …, p, q, …}


Axioms

• reflexivity: 			 ∀x.  x = x 


• symmetry:    	∀x, y.  x = y → y = x


• transitivity:   	∀x, y, z.  x = y ∧ y = z → x = z  


• congruence: 	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → f(x1, …, xn) = f(y1, …, yn)


• congruence:	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → p(x1, …, xn) ↔︎ p(y1, …, yn)




Theory of equality and UF (T=)

Signature (all symbols)

• {=, a, b, c, …, f, g, …, p, q, …}


Axioms

• reflexivity: 			 ∀x.  x = x 


• symmetry:    	∀x, y.  x = y → y = x


• transitivity:   	∀x, y, z.  x = y ∧ y = z → x = z  


• congruence: 	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → f(x1, …, xn) = f(y1, …, yn)


• congruence:	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → p(x1, …, xn) ↔︎ p(y1, …, yn)


Replace predicates with equality 
constraints over functions:


• introduce a fresh constant T


• for each predicate p, introduce a 
fresh function fp

• p(x1, …, xn) ⟿ fp(x1, …, xn) = T

✗

✗✗



f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?



f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?



Congruence closure algorithm: example

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a



• Place each subterm of F into its own 
congruence class

Congruence closure algorithm: example
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• Place each subterm of F into its own 
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2
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• Place each subterm of F into its own 
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• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2
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Congruence closure algorithm: example
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f3(a)
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• Propagate the resulting 
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• If F has a negative literal t1 ≠ t2 with 
both terms in the same congruence 
class, output UNSAT


• Otherwise, output SAT



Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)f5(a)

a f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own 
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting 
congruences 


• If F has a negative literal t1 ≠ t2 with 
both terms in the same congruence 
class, output UNSAT


• Otherwise, output SAT

UNSAT



f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own 
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting 
congruences 


• If F has a negative literal t1 ≠ t2 with 
both terms in the same congruence 
class, output UNSAT


• Otherwise, output SAT

Congruence closure algorithm:  another example
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A binary relation R is an equivalence 
relation if it is reflexive, symmetric, and 
transitive.


Congruence closure algorithm:  definitions
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Congruence closure algorithm:  definitions

¯ ¯ ¯ ¯

An equivalence relation R is a congruence 
relation if for every n-ary function f


∀x, y. ⋀R(xi, yi) → R(f(x), f(y))



A binary relation R is an equivalence 
relation if it is reflexive, symmetric, and 
transitive.


Congruence closure algorithm:  definitions

¯ ¯ ¯ ¯

An equivalence relation R is a congruence 
relation if for every n-ary function f


∀x, y. ⋀R(xi, yi) → R(f(x), f(y))

The equivalence class of an element s ∈ S 
under an equivalence relation R:


{ s’ ∈ S | R(s, s’) }



A binary relation R is an equivalence 
relation if it is reflexive, symmetric, and 
transitive.


Congruence closure algorithm:  definitions

What is the equivalence 
class of 9 under ≡3? 

¯ ¯ ¯ ¯

An equivalence relation R is a congruence 
relation if for every n-ary function f


∀x, y. ⋀R(xi, yi) → R(f(x), f(y))

The equivalence class of an element s ∈ S 
under an equivalence relation R:


{ s’ ∈ S | R(s, s’) }



A binary relation R is an equivalence 
relation if it is reflexive, symmetric, and 
transitive.


Congruence closure algorithm:  definitions

¯ ¯ ¯ ¯

An equivalence relation R is a congruence 
relation if for every n-ary function f


∀x, y. ⋀R(xi, yi) → R(f(x), f(y))

The equivalence class of an element s ∈ S 
under an equivalence relation R:


{ s’ ∈ S | R(s, s’) }

An equivalence class is called a congruence 
class if R is a congruence relation.



What is the equivalence 
closure of R = {⟨a, b⟩, ⟨b, c⟩, ⟨d, d⟩}?

The equivalence closure RE of a 
binary relation R is the smallest 
equivalence relation that contains R.


The congruence closure RC of a 
binary relation R is the smallest 
congruence relation that contains R.

Congruence closure algorithm:  definitions



What is the equivalence 
closure of R = {⟨a, b⟩, ⟨b, c⟩, ⟨d, d⟩}?

The equivalence closure RE of a 
binary relation R is the smallest 
equivalence relation that contains R.


The congruence closure RC of a 
binary relation R is the smallest 
congruence relation that contains R.

Congruence closure algorithm:  definitions

RE = {	⟨a, a⟩, ⟨b, b⟩, ⟨c, c⟩,⟨d, d⟩
 ⟨a, b⟩, ⟨b, a⟩, ⟨b, c⟩, ⟨c, b⟩, 							
 ⟨a, c⟩, ⟨c, a⟩}



The congruence closure 
algorithm computes the 
congruence closure of the 
equality relation over terms 
asserted by a conjunctive 
quantifier-free formula in T=.

The equivalence closure RE of a 
binary relation R is the smallest 
equivalence relation that contains R.


The congruence closure RC of a 
binary relation R is the smallest 
congruence relation that contains R.

Congruence closure algorithm:  definitions



Congruence closure algorithm:  data structure

f(a, b) = a ∧ f(f(a, b), b) ≠ a



3: a

Congruence closure algorithm:  data structure

• Represent subterms with a DAG

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f



3: a

Congruence closure algorithm:  data structure

• Represent subterms with a DAG

• Each node has a find pointer to 

another node in its congruence class (or 
to itself if it is the representative)   

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f



{ 1, 2 }{ 1, 2 }

3: a

Congruence closure algorithm:  data structure

• Represent subterms with a DAG

• Each node has a find pointer to 

another node in its congruence class (or 
to itself if it is the representative)   


• Each representative has a ccp field that 
stores all parents of all nodes in its 
congruence class.   

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f



{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm:  union-find

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

4: b

1: f



• FIND returns the representative of a 
node’s equivalence class by following 
find pointers until it finds a self-loop.
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• FIND returns the representative of a 
node’s equivalence class by following 
find pointers until it finds a self-loop.
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What is UNION(1, 2)?

1: f



• FIND returns the representative of a 
node’s equivalence class by following 
find pointers until it finds a self-loop.


• UNION combines equivalence classes 
for nodes i1 and i2:
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1: f{}
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Congruence closure algorithm:  congruent

• CONGRUENT takes as input two nodes 
and returns true iff their

• functions are the same

• corresponding arguments are in 

the same congruence class

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b
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Congruence closure algorithm:  congruent

• CONGRUENT takes as input two nodes 
and returns true iff their

• functions are the same

• corresponding arguments are in 

the same congruence class

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

CONGRUENT(1, 2)?  



{ 2 }

{1}

{}
MERGE (i1 , i2)


n1, n2 ← FIND(i1), FIND(i2)

if n1 = n2 then return
p1, p2 ← n1.ccp, n2.ccp

UNION(n1, n2)

for each t1, t2 ∈ p1 × p2

if FIND(t1) ≠ FIND(t2) ∧ CONGRUENT(t1, t2) 
then MERGE(t1, t2)

Congruence closure algorithm:  merge
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for si ≠ ti ∈ F 

  if FIND(si) = FIND(ti) then return UNSAT
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DECIDE (F)


construct the DAG for F’s subterms

for si = ti ∈ F 

  MERGE(si, ti)

for si ≠ ti ∈ F 

  if FIND(si) = FIND(ti) then return UNSAT

return SAT

Congruence closure algorithm:  deciding T=

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 2 }{ 1, 2 } { 1, 2 }

3: a3: a 4: b
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UNSAT



Summary

Today

• A brief survey of theory solvers


• Congruence closure algorithm for deciding conjunctive T= formulas


Next lecture

• Combining (decision procedures for different) theories


