A Survey of Theory Solvers

Emina Torlak

emina@cs.washington.edu

Today

Last lecture

* Introduction to Satisfiability Modulo Theories (SMT)

Today
A quick survey of theory solvers

 An in-depth look at the core theory solver (theory of equality
and uninterpreted functions)

Reminders
- HWI due tonight.

* Project proposal due next week. Find a partner and start
brainstorming if you haven’t already!

Recall: Satisfiability Modulo Theories (SMT)

(un)satisfiable

x = g(y) -
2x+y<5 T 5 /Y\ SMT solver
(b>>2)=c— 7 — % |
---------------- 4 | -
Z, . 4 —>» Core solver |[¢——
a[i] = x - 1!
DPLL(T)
|
v v
| Theory Theory

Theories First-Order Logic solver |-+:| solver [

A brief survey of common theory solvers

2x +y<5

Theory
solver

2i+j<5

X = g(y)

Core solver

Theory
solver

(b>>12)=c

Theory
solver

ali] = x

Theory
solver

A brief survey of common theory solvers

2x +y<5

Linear Real
Arithmetic

X = g(y)

Equality and UF

2i+j<5 (b>>2)=c
Linear Integer .
. . Bitvectors
Arithmetic

ali] = x

Arrays

A brief survey of common theory solvers

2x +y<5

Linear Real
Arithmetic

X = g(y)

Equality and UF

2i+j<5 (b>>2)=c
Linear Integer .
. . Bitvectors
Arithmetic

- Conjunctions of linear constraints over R

- Can be decided in polynomial time, but in
practice solved with the General Simplex
method (worst case exponential)

- Can also be decided with Fourier-Motzkin
elimination (exponential)

ali] = x

Arrays

A brief survey of common theory solvers

x = g(y)
Equality and UF

2x+y<5 2i+j<5 (b>>12)=c afi] = x
Linear Real Linear Integer Bitvector Arr
Arithmetic Arithmetic vectors s

- Conjunctions of linear constraints over Z
- Branch-and-cut (based on Simplex)
- Omega Test (extension of Fourier-Motzkin)

- Small-Domain Encoding used for arbitrary
combinations of linear constraints over Z

* NP-complete

A brief survey of common theory solvers

2x +y<5

Linear Real
Arithmetic

x = g(y)
Equality and UF

2i+j<5 (b>>2)=c
Linear Integer .
. . Bitvectors
Arithmetic

- Arbitrary combination of
constraints over bitvectors

- Bit blasting (reduction to SAT)

* NP-complete

ali] = x

Arrays

A brief survey of common theory solvers

2x +y<5

Linear Real
Arithmetic

X = g(y)

Equality and UF

2i+j<5 (b>>2)=c a[i] = x
Linear Integer :
Arithmetic Bitvectors Arrays

- Conjunctions of constraints over
read/write terms in the theory of arrays

 Reduce to T= satisfiability

* NP-complete (because the reduction
introduces disjunctions)

A brief survey of common theory solvers

2x +y<5

Linear Real
Arithmetic

- Conjunctions of

X = g(y)

Equality and UF

equality constraints over
uninterpreted functions

- Congruence closure

* Polynomial time

2i+j<5 (b>>2)=c a[i] = x
Linear Integer :
Arithmetic Bitvectors Arrays

Theory of equality and UF (T-)

Signature (all symbols)
- {=,a,b,¢,...,fg....,pq,...}

Axioms
reflexivity: Vvx. x =x
symmetry: VX Y. X=y 2> y=X
* transitivity: VX, ¥,Z. X=YAY=Z 2 X=12Z

* congruence: VXI, ..., Xn, Y1y «+«; ¥n. (Al=i=n Xi = Yi) = f(X1, ..., Xn) = f(y1, ..., ¥Yn)

* congruence: VXI, ..., Xn, Yy ««+s ¥n. (Al=isn Xi = ¥i) = P(XI, ..., Xn) <> P(Y15 «.es Yn)

Theory of equality and UF (T-)

Sighature (all symbols)

+ {=,a,b,c,...,f, g XX}

Axioms
reflexivity: Vvx. x =x
symmetry: VX Y. X=y 2> y=X

* transitivity:

* congruence: cs Xny Y1y -« Yn. (Alsizn Xi

X congruence.

VXi, ..

VX|, e« oy Xny),|9 cooy)’n- (/\|SiSn Xi

Replace predicates with equality
constraints over functions:

* introduce a fresh constant T

* for each predicate p, introduce a
fresh function f;

VX, Y,Z. X=YAY=Z P X=1Z

* p(XI, ..., Xn) ww> fo(X1, ..., Xn) =T
=vyi) = f(xi,...,%n) =f(y1, ..., ¥n)
=¥i) = P(X1, ..., %n) < P(Y1, ..., ¥n)

Is a conjunction of T-= literals satisfiable?

f(f(f(a))) = a A f(f(f(f(f(a))))) =a A f(a) # a

Is a conjunction of T-= literals satisfiable?

f3@) =a Af(a) =anf(a #a

Congruence closure algorithm: example

f3a) =a Af(d) =aAf(a) #a

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

f(a)
a f2(a)

f3a) =a Af(d) =aAf(a) #a

P(a) B()
()

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

* Merge the classes for t; and t;

f(a)
a f2(a)

f3a) =a A f(d) =a Af(a) #a

P(a) B()
()

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class f(a)

* For each positive literal t| =t in F
f3a) a f2(a)
* Merge the classes for t; and t;

f3a) =a A f(d) =a Af(a) #a

P(a)
()

Congruence closure algorithm: example

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F
f3a) a f2(a)
* Merge the classes for t; and t;
- Propagate the resulting
congruences P =aAf(a)=anfa)=a
f>(a)

()

Congruence closure algorithm: example

o f(a)

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F

f3a) a f2(a)
* Merge the classes for t; and t;
- Propagate the resulting
congruences P =aAf(a)=anfa)=a

P(a)

Congruence closure algorithm: example

o f(a)

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F

f3a) a
* Merge the classes for t; and t;
- Propagate the resulting
congruences P =aAf(a)=anfa)=a

Ba) ()

Congruence closure algorithm: example

o f(a)

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F

f3a) a
* Merge the classes for t; and t;
- Propagate the resulting
congruences P(a) =aAf(a)=anfa)=a

Ba) ()

Congruence closure algorithm: example

o f(a)

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F

* Merge the classes for t; and t;

- Propagate the resulting

congruences P(a) =aAf(a)=anfa)=a
f>(a) f(a)

f3a) a

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F
* Merge the classes for t; and t;

- Propagate the resulting
congruences P(a) =aAf(a)=anfa)=a

B) (@) f(a)

f3a) a f(a)

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F
* Merge the classes for t; and t;

- Propagate the resulting

congruences P(a) =aAf(a)=anf(a)=a
* If F has a negative literal t; # t; with
both terms in the same congruence) () ()

class, output UNSAT
» Otherwise, output SAT Ba a f()

Congruence closure algorithm: example

* Place each subterm of F into its own

congruence class UNSAT
* For each positive literal t| =t in F
* Merge the classes for t; and t;
- Propagate the resulting
congruences P(a) =aAf(a)=anf(a)=a
* If F has a negative literal t; # t; with
both terms in the same congruence) () ()

class, output UNSAT
» Otherwise, output SAT Ba a f()

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F
* Merge the classes for t; and t;

- Propagate the resulting
congruences f(x) =f(y) A x#y

* If F has a negative literal t; # t; with
both terms in the same congruence

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) =f(y) A x#y
* If F has a negative literal t; # t; with
both terms in the same congruence
o | e f() f(y)

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) = f(y) A x#y
* If F has a negative literal t; # t; with
both terms in the same congruence
o | e f() f(y)

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) = f(y) A x#y
* If F has a negative literal t; # t; with
both terms in the same congruence
o | e fo9 f(y)

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) =f(y) A x#y
* If F has a negative literal t; # t; with
both terms in the same congruence
o | e fo9 f(y)

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F
* Merge the classes for t; and t;

- Propagate the resulting
congruences f(x) =f(y) A x#y

* If F has a negative literal t; # t; with

both terms in the same congruence f(x) ()
class, output UNSAT 4 SAT

+ Otherwise, output SAT

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

VX, y /\R(Xi, yi) — R(f()_()’ f(y))

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

VX, y /\R(Xi, yi) — R(f()_()’ f(y))

The equivalence class of an elements € S
under an equivalence relation R:

{s’eS|R(s,s)}

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

VX, y /\R(Xi, yi) — R(f()_()’ f(y))

The equivalence class of an elements € S
under an equivalence relation R:

{s’eS|R(s,s)}

What is the equivalence
class of 9 under =3?

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

VX, y /\R(Xi, yi) — R(f()_()’ f(y))

The equivalence class of an elements € S
under an equivalence relation R:

{s’eS|R(s,s)}

An equivalence class is called a congruence
class if R is a congruence relation.

Congruence closure algorithm: definitions

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

What is the equivalence
closure of R = {{a, b), <b, c), {d, d)}?

Congruence closure algorithm: definitions

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

What is the equivalence
closure of R = {{a, b), <b, c), {d, d)}?

RE = {<a, a), b, b), {c,),{d, d>
(a, by, <b, a), <b, ¢, {c, b),
(a, ©), {c,a)}

Congruence closure algorithm: definitions

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

The congruence closure R€ of a
binary relation R is the smallest
congruence relation that contains R.

The congruence closure
algorithm computes the
congruence closure of the
equality relation over terms
asserted by a conjunctive
quantifier-free formula in T=,

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) #a

Congruence closure algorithm: data structure

- Represent subterms with a DAG

f(a,b) = a A f(f(a,b),b) #a

| f

2:f

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) #a

- Represent subterms with a DAG | f
* Each node has a find pointer to

another node in its congruence class (or

to itself if it is the representative) 5.

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) #a

- Represent subterms with a DAG |: f

* Each node has a find pointer to
another node in its congruence class (or
to itself if it is the representative) 5.

» Each representative has a ccp field that
stores all parents of all nodes in its
congruence class.

Congruence closure algorithm: union-find

f(a,b) =a A f(f(a,b),b) #a

2:f

[\

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) #a
* FIND returns the representative of a
node’s equivalence class by following 0
find pointers until it finds a self-loop.

2:f

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) #a

* FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

- UNION combines equivalence classes
for nodes i and i»:
e 2:f

- ni,n2 < FIND(i1), FIND(i2)
* ni.find « ny

* N2.CCP < N|.CCPp U Na.cCcp

* ni.ccp < 9

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) #a

* FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

- UNION combines equivalence classes
for nodes i and i»:
e 2:f

- ni,n2 < FIND(i1), FIND(i2)
* ni.find « ny

* N2.CCP < N|.CCPp U Na.cCcp

* ni.ccp < 9

What is UNION(I, 2)?

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) #a

* FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

| f

- UNION combines equivalence classes
for nodes i and i»:
e 2:f

- ni,n2 < FIND(i1), FIND(i2)
* ni.find « ny

* N2.CCP < N|.CCPp U Na.cCcp

* ni.ccp < 9

What is UNION(I, 2)?

Congruence closure algorithm: congruent

f(a,b) = a A f(f(a,b),b) #a

- CONGRUENT takes as input two nodes O
and returns true iff their

« functions are the same

- corresponding arguments are in -
the same congruence class

Congruence closure algorithm: congruent

f(a,b) = a A f(f(a,b),b) #a

- CONGRUENT takes as input two nodes O
and returns true iff their

« functions are the same

- corresponding arguments are in -
the same congruence class

CONGRUENT(I, 2)?

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) #a
MERGE (i1 , i2)
ni, n2 < FIND(ii), FIND(i2) 0
if n| = n2 then return

Pl, P2 € nj.ccp, n2.ccp
UNION(ni, n2)
for each t|,t2 € p1 X p2

if FIND(t|) # FIND(t2) A CONGRUENT(t, t2)

then MERGE(t), t2) Q

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) #a
MERGE (i1 , i2)
ni, n2 < FIND(ii), FIND(i2) 0
if n| = n2 then return

Pl, P2 € nj.ccp, n2.ccp
UNION(ni, n2)
for each t|,t2 € p1 X p2

if FIND(t|) # FIND(t2) A CONGRUENT(t, t2)

then MERGE(t), t2) Q

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) #a

MERGE (i1 , i2)
ni, n2 < FIND(ii), FIND(i2) 0

if n| = n2 then return
Pl, P2 € nj.ccp, n2.ccp
UNION(n|, n2) - f
for each t|,t2 € p1 X p2
if FIND(t)) # FIND(t2) A CONGRUENT(t|, t2)
then MERGE(t), t2)

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) #a
MERGE (i) , i2)
ni,n2 < FIND(i1), FIND(i2) -
if n| = n2 then return
Pl, P2 € nj.ccp, n2.ccp
UNION(n|, n2) - f
for each t|,t2 € p1 X p2
if FIND(t)) # FIND(t2) A CONGRUENT(t|, t2)
then MERGE(t), t2)

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) #a
DECIDE (F)
construct the DAG for F’s subterms 0
forsi-t,c F
MERGE(s;, ti)
forsi.ticF Q
if FIND(s)) = FIND(t)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) #a
DECIDE (F)
construct the DAG for F’s subterms 0
forsi-t,c F
MERGE(s;, ti)
forsi.ticF Q
if FIND(s)) = FIND(t)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) #a

DECIDE (F)
construct the DAG for F’s subterms |:
fors-tickF
MERGE(Si, ti)
forsi-t e F 9. £

if FIND(si) = FIND(ti)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) #a

DECIDE (F)
construct the DAG for F’s subterms |:
fors-tickF
MERGE(Si, ti)
forsi-t e F 9. £

if FIND(si) = FIND(ti)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) #a

DECIDE (F)
he DAG for F’ -
construct the G for F's subterms UNSAT
forsi-tcF
MERGE(si, ti)
forsi:tieF 2: f

if FIND(si) = FIND(ti)) then return UNSAT
return SAT

summary

Today
» A brief survey of theory solvers

- Congruence closure algorithm for deciding conjunctive T= formulas

NeXxt lecture

« Combining (decision procedures for different) theories

