
CSE507
Computer-Aided Reasoning for Software

Emina Torlak

emina@cs.washington.edu

A Survey of Theory Solvers

Today

Last lecture

• Introduction to Satisfiability Modulo Theories (SMT)

Today

• A quick survey of theory solvers

• An in-depth look at the core theory solver (theory of equality
and uninterpreted functions)

Reminders

• HW1 due tonight.

• Project proposal due next week. Find a partner and start
brainstorming if you haven’t already! to

pi
cs

Recall: Satisfiability Modulo Theories (SMT)

SMT solver

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

Core solver

DPLL(T)

Theory
solver

Theory
solver…

A brief survey of common theory solvers

x = g(y)

Core solver

Theory
solver

Theory
solver

Theory
solver

Theory
solver

2x + y ≤ 5 (b >> 2) = c a[i] = x2i + j ≤ 5

A brief survey of common theory solvers

x = g(y)

(b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5

A brief survey of common theory solvers

x = g(y)

(b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Bitvectors Arrays

• Conjunctions of linear constraints over R

• Can be decided in polynomial time, but in
practice solved with the General Simplex
method (worst case exponential)

• Can also be decided with Fourier-Motzkin
elimination (exponential)

2x + y ≤ 5 2i + j ≤ 5

A brief survey of common theory solvers

x = g(y)

(b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5

• Conjunctions of linear constraints over Z

• Branch-and-cut (based on Simplex)

• Omega Test (extension of Fourier-Motzkin)

• Small-Domain Encoding used for arbitrary
combinations of linear constraints over Z

• NP-complete

A brief survey of common theory solvers

x = g(y)

(b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5

• Arbitrary combination of
constraints over bitvectors

• Bit blasting (reduction to SAT)

• NP-complete

A brief survey of common theory solvers

x = g(y)

(b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5

• Conjunctions of constraints over
read/write terms in the theory of arrays

• Reduce to T= satisfiability

• NP-complete (because the reduction
introduces disjunctions)

A brief survey of common theory solvers

• Conjunctions of
equality constraints over
uninterpreted functions

• Congruence closure

• Polynomial time

x = g(y)

(b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Bitvectors Arrays

2x + y ≤ 5 2i + j ≤ 5

Theory of equality and UF (T=)

Signature (all symbols)

• {=, a, b, c, …, f, g, …, p, q, …}

Axioms

• reflexivity: 			 ∀x. x = x

• symmetry: 	∀x, y. x = y → y = x

• transitivity: 	∀x, y, z. x = y ∧ y = z → x = z

• congruence: 	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → f(x1, …, xn) = f(y1, …, yn)

• congruence:	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → p(x1, …, xn) ↔︎ p(y1, …, yn)

Theory of equality and UF (T=)

Signature (all symbols)

• {=, a, b, c, …, f, g, …, p, q, …}

Axioms

• reflexivity: 			 ∀x. x = x

• symmetry: 	∀x, y. x = y → y = x

• transitivity: 	∀x, y, z. x = y ∧ y = z → x = z

• congruence: 	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → f(x1, …, xn) = f(y1, …, yn)

• congruence:	 ∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → p(x1, …, xn) ↔︎ p(y1, …, yn)

Replace predicates with equality
constraints over functions:

• introduce a fresh constant T

• for each predicate p, introduce a
fresh function fp

• p(x1, …, xn) ⟿ fp(x1, …, xn) = T

✗

✗✗

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?

Congruence closure algorithm: example

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

Congruence closure algorithm: example

f2(a)f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm: example

f2(a)f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm: example

f2(a)f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)f5(a)

a f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)f5(a)

a f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm: example

f2(a)

f3(a)

f4(a)f5(a)

a f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

UNSAT

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm: another example

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm: another example

y

f(y)f(x)

x

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm: another example

y

f(y)f(x)

x

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm: another example

y

f(y)f(x)

x

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm: another example

y

f(y)f(x)

x

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm: another example

y

f(y)f(x)

x

SAT

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

¯ ¯ ¯ ¯

An equivalence relation R is a congruence
relation if for every n-ary function f

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

¯ ¯ ¯ ¯

An equivalence relation R is a congruence
relation if for every n-ary function f

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))

The equivalence class of an element s ∈ S
under an equivalence relation R:

{ s’ ∈ S | R(s, s’) }

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

What is the equivalence
class of 9 under ≡3?

¯ ¯ ¯ ¯

An equivalence relation R is a congruence
relation if for every n-ary function f

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))

The equivalence class of an element s ∈ S
under an equivalence relation R:

{ s’ ∈ S | R(s, s’) }

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

¯ ¯ ¯ ¯

An equivalence relation R is a congruence
relation if for every n-ary function f

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))

The equivalence class of an element s ∈ S
under an equivalence relation R:

{ s’ ∈ S | R(s, s’) }

An equivalence class is called a congruence
class if R is a congruence relation.

What is the equivalence
closure of R = {⟨a, b⟩, ⟨b, c⟩, ⟨d, d⟩}?

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

The congruence closure RC of a
binary relation R is the smallest
congruence relation that contains R.

Congruence closure algorithm: definitions

What is the equivalence
closure of R = {⟨a, b⟩, ⟨b, c⟩, ⟨d, d⟩}?

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

The congruence closure RC of a
binary relation R is the smallest
congruence relation that contains R.

Congruence closure algorithm: definitions

RE = {	⟨a, a⟩, ⟨b, b⟩, ⟨c, c⟩,⟨d, d⟩
 ⟨a, b⟩, ⟨b, a⟩, ⟨b, c⟩, ⟨c, b⟩, 							
 ⟨a, c⟩, ⟨c, a⟩}

The congruence closure
algorithm computes the
congruence closure of the
equality relation over terms
asserted by a conjunctive
quantifier-free formula in T=.

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

The congruence closure RC of a
binary relation R is the smallest
congruence relation that contains R.

Congruence closure algorithm: definitions

Congruence closure algorithm: data structure

f(a, b) = a ∧ f(f(a, b), b) ≠ a

3: a

Congruence closure algorithm: data structure

• Represent subterms with a DAG

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

3: a

Congruence closure algorithm: data structure

• Represent subterms with a DAG

• Each node has a find pointer to

another node in its congruence class (or
to itself if it is the representative)

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

{ 1, 2 }{ 1, 2 }

3: a

Congruence closure algorithm: data structure

• Represent subterms with a DAG

• Each node has a find pointer to

another node in its congruence class (or
to itself if it is the representative)

• Each representative has a ccp field that
stores all parents of all nodes in its
congruence class.

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

4: b

1: f

• FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

4: b

1: f

• FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

• UNION combines equivalence classes
for nodes i1 and i2:

• n1, n2 ← FIND(i1), FIND(i2)

• n1.find ← n2

• n2.ccp ← n1.ccp ∪ n2.ccp

• n1.ccp ← ∅

{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

4: b

1: f

• FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

• UNION combines equivalence classes
for nodes i1 and i2:

• n1, n2 ← FIND(i1), FIND(i2)

• n1.find ← n2

• n2.ccp ← n1.ccp ∪ n2.ccp

• n1.ccp ← ∅

{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

4: b

What is UNION(1, 2)?

1: f

• FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

• UNION combines equivalence classes
for nodes i1 and i2:

• n1, n2 ← FIND(i1), FIND(i2)

• n1.find ← n2

• n2.ccp ← n1.ccp ∪ n2.ccp

• n1.ccp ← ∅

1: f

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

4: b

What is UNION(1, 2)?

1: f{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: congruent

• CONGRUENT takes as input two nodes
and returns true iff their

• functions are the same

• corresponding arguments are in

the same congruence class

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

1: f{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: congruent

• CONGRUENT takes as input two nodes
and returns true iff their

• functions are the same

• corresponding arguments are in

the same congruence class

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

CONGRUENT(1, 2)?

{ 2 }

{1}

{}
MERGE (i1 , i2)

n1, n2 ← FIND(i1), FIND(i2)

if n1 = n2 then return
p1, p2 ← n1.ccp, n2.ccp

UNION(n1, n2)

for each t1, t2 ∈ p1 × p2

if FIND(t1) ≠ FIND(t2) ∧ CONGRUENT(t1, t2)
then MERGE(t1, t2)

Congruence closure algorithm: merge

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

2: f

1: f

{ 2 }

{1}

{}
MERGE (i1 , i2)

n1, n2 ← FIND(i1), FIND(i2)

if n1 = n2 then return
p1, p2 ← n1.ccp, n2.ccp

UNION(n1, n2)

for each t1, t2 ∈ p1 × p2

if FIND(t1) ≠ FIND(t2) ∧ CONGRUENT(t1, t2)
then MERGE(t1, t2)

Congruence closure algorithm: merge

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

2: f

1: f

{ 2 }{ 1, 2 }

{}
MERGE (i1 , i2)

n1, n2 ← FIND(i1), FIND(i2)

if n1 = n2 then return
p1, p2 ← n1.ccp, n2.ccp

UNION(n1, n2)

for each t1, t2 ∈ p1 × p2

if FIND(t1) ≠ FIND(t2) ∧ CONGRUENT(t1, t2)
then MERGE(t1, t2)

Congruence closure algorithm: merge

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

1: f

{ 2 }{ 1, 2 }

MERGE (i1 , i2)

n1, n2 ← FIND(i1), FIND(i2)

if n1 = n2 then return
p1, p2 ← n1.ccp, n2.ccp

UNION(n1, n2)

for each t1, t2 ∈ p1 × p2

if FIND(t1) ≠ FIND(t2) ∧ CONGRUENT(t1, t2)
then MERGE(t1, t2)

Congruence closure algorithm: merge

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

{ 2 }

{1}

{}
DECIDE (F)

construct the DAG for F’s subterms

for si = ti ∈ F

 MERGE(si, ti)

for si ≠ ti ∈ F

 if FIND(si) = FIND(ti) then return UNSAT

return SAT

Congruence closure algorithm: deciding T=

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

2: f

1: f

{ 2 }

{1}

{}
DECIDE (F)

construct the DAG for F’s subterms

for si = ti ∈ F

 MERGE(si, ti)

for si ≠ ti ∈ F

 if FIND(si) = FIND(ti) then return UNSAT

return SAT

Congruence closure algorithm: deciding T=

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

2: f

1: f

DECIDE (F)

construct the DAG for F’s subterms

for si = ti ∈ F

 MERGE(si, ti)

for si ≠ ti ∈ F

 if FIND(si) = FIND(ti) then return UNSAT

return SAT

Congruence closure algorithm: deciding T=

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 2 }{ 1, 2 } { 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

DECIDE (F)

construct the DAG for F’s subterms

for si = ti ∈ F

 MERGE(si, ti)

for si ≠ ti ∈ F

 if FIND(si) = FIND(ti) then return UNSAT

return SAT

Congruence closure algorithm: deciding T=

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 2 }{ 1, 2 } { 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

DECIDE (F)

construct the DAG for F’s subterms

for si = ti ∈ F

 MERGE(si, ti)

for si ≠ ti ∈ F

 if FIND(si) = FIND(ti) then return UNSAT

return SAT

Congruence closure algorithm: deciding T=

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 2 }{ 1, 2 } { 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

UNSAT

Summary

Today

• A brief survey of theory solvers

• Congruence closure algorithm for deciding conjunctive T= formulas

Next lecture

• Combining (decision procedures for different) theories

