
CSE507
Computer-Aided Reasoning for Software

Emina Torlak

emina@cs.washington.edu

Satisfiability Modulo Theories

Today

Last lecture

• Practical applications of SAT and the need for a richer logic

Today

• Introduction to Satisfiability Modulo Theories (SMT)

• Syntax and semantics of (quantifier-free) first-order logic

• Overview of key theories

to
pi

cs

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order LogicTheories

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

Core solver

DPLL(T)

Theory
solver

Theory
solver…

Logical symbols

• Connectives: ¬, ∧, ∨, →, ↔︎
• Parentheses: ()

• Quantifiers: ∀, ∃

Non-logical symbols

• Constants: x, y, z

• N-ary functions: f, g

• N-ary predicates: p, q

• Variables: u, v, w

Syntax of First-Order Logic (FOL)

Logical symbols

• Connectives: ¬, ∧, ∨, →, ↔︎
• Parentheses: ()

• Quantifiers: ∀, ∃

Non-logical symbols

• Constants: x, y, z

• N-ary functions: f, g

• N-ary predicates: p, q

• Variables: u, v, w

We will only consider the
quantifier-free fragment of
FOL.

Syntax of First-Order Logic (FOL)

✗

Logical symbols

• Connectives: ¬, ∧, ∨, →, ↔︎
• Parentheses: ()

• Quantifiers: ∀, ∃

Non-logical symbols

• Constants: x, y, z

• N-ary functions: f, g

• N-ary predicates: p, q

• Variables: u, v, w

We will only consider the
quantifier-free fragment of
FOL.

Syntax of First-Order Logic (FOL)

✗

In particular, we will consider
quantifier-free ground
formulas.

✗

• A term is a constant, or an n-
ary function applied to n terms.

• An atom is ⊤, ⊥, or an n-ary
predicate applied to n terms.

• A literal is an atom or its
negation.

• A (quantifier-free ground)
formula is a literal or the
application of logical connectives
to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

• Connectives: ¬, ∧, ∨, →, ↔︎
• Parentheses: ()

Non-logical symbols

• Constants: x, y, z

• N-ary functions: f, g

• N-ary predicates: p, q

• A term is a constant, or an n-
ary function applied to n terms.

• An atom is ⊤, ⊥, or an n-ary
predicate applied to n terms.

• A literal is an atom or its
negation.

• A (quantifier-free ground)
formula is a literal or the
application of logical connectives
to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

• Connectives: ¬, ∧, ∨, →, ↔︎
• Parentheses: ()

Non-logical symbols

• Constants: x, y, z

• N-ary functions: f, g

• N-ary predicates: p, q

isPrime(x) → ¬ isInteger(sqrt(x))

Universe

Interpretation

Semantics of FOL: first-order structures ⟨U, I⟩

Universe

• A non-empty set of values

• Finite or (un)countably infinite

Interpretation

Semantics of FOL: universe

Universe

• A non-empty set of values

• Finite or (un)countably infinite

Interpretation

• Maps a constant symbol c to an

element of U: I[c] ∈ U

• Maps an n-ary function symbol f

to a function fI : Un → U

• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: interpretation

I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])

I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])

⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true

⟨U, I⟩ ⊨ ¬F iff ⟨U, I⟩ ⊭ F

…

Universe

• A non-empty set of values

• Finite or (un)countably infinite

Interpretation

• Maps a constant symbol c to an

element of U: I[c] ∈ U

• Maps an n-ary function symbol f

to a function fI : Un → U

• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: inductive definition

I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])

I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])

⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true

⟨U, I⟩ ⊨ ¬F iff ⟨U, I⟩ ⊭ F

…

Universe

• A non-empty set of values

• Finite or (un)countably infinite

Interpretation

• Maps a constant symbol c to an

element of U: I[c] ∈ U

• Maps an n-ary function symbol f

to a function fI : Un → U

• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: inductive definition

This is the semantics of unsorted FOL. SMT solvers work on many-
sorted FOL, which partitions the universe into different types or sorts, and
assigns types to non-logical symbols. SMT interpretations respect these types.

U = {☀︎, ☁︎}

I[x] = ☀︎
I[y] = ☁︎
I[f] = {☀︎ ↦ ☁︎, ☁︎ ↦ ☀︎}

I[p] = {⟨☀︎,☀︎⟩, ⟨☀︎,☁︎⟩}

⟨U, I⟩ ⊨ p(f(y), f(f(x))) ?

Universe

• A non-empty set of values

• Finite or (un)countably infinite

Interpretation

• Maps a constant symbol c to an

element of U: I[c] ∈ U

• Maps an n-ary function symbol f

to a function fI : Un → U

• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: example

Satisfiability and validity of FOL

F is satisfiable iff M ⊨ F for some
structure M = ⟨U, I⟩.

F is valid iff M ⊨ F for all structures
M = ⟨U, I⟩.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.

Signature ΣT

Set of T-models

First-order theories

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models

• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and ΣT-models are
the models of the theory axioms)

First-order theories

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models

• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and T-models are
the models of the theory axioms)

First-order theories

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models

• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and T-models are
the models of the theory axioms)

First-order theories

A formula F is satisfiable
modulo T iff M ⊨ F for some T-
model M.

A formula F is valid modulo T
iff M ⊨ F for all T-models M.

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models

• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and T-models are
the models of the theory axioms)

First-order theories: expansion

We can expand a theory’s
signature to include additional
uninterpreted symbols (e.g.,
constants).

If ET is an expansion of ΣT, then
the T-models of ET are the set of
all possible expansions of the T-
models of ΣT to include
interpretations for the symbols in
ET ! ΣT.

Equality (and uninterpreted functions)

• x = g(y)

Fixed-width bitvectors

• (b >> 1) = c

Linear arithmetic (over R and Z)

• 2x + y ≤ 5

Arrays

• a[i] = x

Common theories

Signature: {=, x, y, z, …, f, g, …, p, q, …}

• The binary predicate = is interpreted.

• All constant, function, and predicate symbols are uninterpreted.

Axioms

• ∀x. x = x

• ∀x, y. x = y → y = x

• ∀x, y, z. x = y ∧ y = z → x = z

• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (f(x1, …, xn) = f(y1, …, yn))

• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (p(x1, …, xn) ↔︎ p(y1, …, yn))

Deciding T=

• Conjunctions of literals modulo T= is decidable in polynomial time.

Theory of equality with uninterpreted functions

T= example: checking program equivalence

int abs(int y) {

 return y<0 ? -y : y;

}

int sq(int y) {

 return y*y;

}

int sqabs(int y) {

 return abs(y)*abs(y);

}

T= example: checking program equivalence

int abs(int y) {

 return y<0 ? -y : y;

}

int sq(int y) {

 return y*y;

}

int sqabs(int y) {

 return abs(y)*abs(y);

}

Are sq and sqabs equivalent
on all 128-bit integers?

T= example: checking program equivalence

int abs(int y) {

 return y<0 ? -y : y;

}

int sq(int y) {

 return y*y;

}

int sqabs(int y) {

 return abs(y)*abs(y);

}

Are sq and sqabs equivalent
on all 128-bit integers?

Yes, but the solver takes a while
to return an answer because
reasoning about multiplication is
expensive.

T= example: checking program equivalence

int abs(int y) {

 return y<0 ? -y : y;

}

int sq(int y) {

 return y*y;

}

int sqabs(int y) {

 return abs(y)*abs(y);

}

Are sq and sqabs equivalent
on all 128-bit integers?

Yes, but the solver takes a while
to return an answer because
reasoning about multiplication is
expensive.

What happens if we replace the
multiplication with an
uninterpreted function?

Signature

• Fixed-width words modeling machine ints, longs, …

• Arithmetic operations: bvadd, bvsub, bvmul, …

• Bitwise operations: bvand, bvor, bvnot, …

• Comparison predicates: bvlt, bvgt, …

• Equality: =

• Expanded with all constant symbols: x, y, z, …

Deciding TBV

• NP-complete.

Theory of fixed-width bitvectors

Signature

• Integers (or reals)

• Arithmetic operations: multiplication by an integer (or real) number, +, -.

• Predicates: =, ≤.

• Expanded with all constant symbols: x, y, z, …

Deciding TLIA and TLRA

• NP-complete for linear integer arithmetic (LIA).

• Polynomial time for linear real arithmetic (LRA).

• Polynomial time for difference logic (conjunctions of the form x - y ≤ c,
where c is an integer or real number).

Theories of linear integer and real arithmetic

A LIA formula that is unsatisfiable iff
this transformation is valid:

LIA example: compiler optimization

for (i=1; i<=10; i++) {

 a[j+i] = a[j];

}

int v = a[j];

for (i=1; i<=10; i++) {

 a[j+i] = v;

}

A LIA formula that is unsatisfiable iff
this transformation is valid:

LIA example: compiler optimization

for (i=1; i<=10; i++) {

 a[j+i] = a[j];

}

int v = a[j];

for (i=1; i<=10; i++) {

 a[j+i] = v;

}

(i ≥ 1) ∧ (i ≤ 10) ∧

(j + i = j)

Polyhedral model

Signature

• Array operations: read, write

• Equality: =

• Expanded with all constant symbols: x, y, z, …

Axioms

• ∀a, i, v. read(write(a, i, v), i) = v

• ∀a, i, j, v. ¬(i = j) → (read(write(a, i, v), j) = read(a, j))

• ∀a, b. (∀i. read(a, i) = read(b, i)) → a = b

Deciding TA

• Satisfiability problem: NP-complete.

• Used in many software verification tools to model memory.

Theory of arrays

Summary

Today

• Introduction to SMT

• Quantifier-free FOL (syntax & semantics)

• Overview of common theories

Next lecture

• Survey of theory solvers

