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Satisfiability Modulo Theories



Today

Last lecture

• Practical applications of SAT and the need for a richer logic


Today  

• Introduction to Satisfiability Modulo Theories (SMT)


• Syntax and semantics of (quantifier-free) first-order logic


• Overview of key theories
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Logical symbols

• Connectives:  ¬, ∧, ∨, →, ↔︎
• Parentheses:  ()

• Quantifiers:  ∀, ∃

Non-logical symbols  

• Constants:  x, y, z

• N-ary functions:  f, g

• N-ary predicates:  p, q

• Variables:  u, v, w

Syntax of First-Order Logic (FOL)
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Non-logical symbols  

• Constants:  x, y, z
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We will only consider the 
quantifier-free fragment of 
FOL.
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In particular, we will consider 
quantifier-free ground 
formulas.

✗



• A term is a constant, or an n-
ary function applied to n terms.


• An atom is ⊤, ⊥, or an n-ary 
predicate applied to n terms.


• A literal is an atom or its 
negation.


• A (quantifier-free ground) 
formula is a literal or the 
application of logical connectives 
to formulas.

Syntax of quantifier-free ground FOL formulas
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• Constants:  x, y, z
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• A term is a constant, or an n-
ary function applied to n terms.


• An atom is ⊤, ⊥, or an n-ary 
predicate applied to n terms.


• A literal is an atom or its 
negation.


• A (quantifier-free ground) 
formula is a literal or the 
application of logical connectives 
to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

• Connectives:  ¬, ∧, ∨, →, ↔︎
• Parentheses:  ()


Non-logical symbols  

• Constants:  x, y, z

• N-ary functions:  f, g

• N-ary predicates:  p, q


isPrime(x) → ¬ isInteger(sqrt(x))



Universe


Interpretation


Semantics of FOL:  first-order structures ⟨U, I⟩



Universe

• A non-empty set of values

• Finite or (un)countably infinite
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Universe

• A non-empty set of values

• Finite or (un)countably infinite


Interpretation

• Maps a constant symbol c to an 

element of U:  I[c] ∈ U

• Maps an n-ary function symbol f 

to a function fI :  Un → U

• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  interpretation



I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])


I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])


⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true


⟨U, I⟩ ⊨ ¬F iff ⟨U, I⟩ ⊭ F


…

Universe

• A non-empty set of values

• Finite or (un)countably infinite


Interpretation

• Maps a constant symbol c to an 

element of U:  I[c] ∈ U

• Maps an n-ary function symbol f 

to a function fI :  Un → U

• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  inductive definition



I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])


I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])


⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true


⟨U, I⟩ ⊨ ¬F iff ⟨U, I⟩ ⊭ F


…

Universe

• A non-empty set of values

• Finite or (un)countably infinite


Interpretation

• Maps a constant symbol c to an 

element of U:  I[c] ∈ U

• Maps an n-ary function symbol f 

to a function fI :  Un → U

• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  inductive definition

This is the semantics of unsorted FOL.  SMT solvers work on many-
sorted FOL, which partitions the universe into different types or sorts, and 
assigns types to non-logical symbols.  SMT interpretations respect these types.



U = {☀︎, ☁︎}


I[x] = ☀︎
I[y] = ☁︎
I[f] = {☀︎ ↦ ☁︎, ☁︎ ↦ ☀︎}


I[p] = {⟨☀︎,☀︎⟩, ⟨☀︎,☁︎⟩}


⟨U, I⟩ ⊨ p(f(y), f(f(x))) ?

Universe

• A non-empty set of values

• Finite or (un)countably infinite


Interpretation

• Maps a constant symbol c to an 

element of U:  I[c] ∈ U

• Maps an n-ary function symbol f 

to a function fI :  Un → U

• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  example



Satisfiability and validity of FOL

F is satisfiable iff M ⊨ F for some 
structure M = ⟨U, I⟩.


F is valid iff M ⊨ F for all structures 
M = ⟨U, I⟩.

Duality of satisfiability and validity:


F is valid iff ¬F is unsatisfiable.



Signature ΣT

Set of T-models


First-order theories



Signature ΣT

• Set of constant, predicate, and 
function symbols


Set of T-models

• One or more (possibly infinitely 

many) models that fix the 
interpretation of the symbols in ΣT

• Can also view a theory as a set of 
axioms over ΣT (and ΣT-models are 
the models of the theory axioms)
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function symbols


Set of T-models

• One or more (possibly infinitely 

many) models that fix the 
interpretation of the symbols in ΣT

• Can also view a theory as a set of 
axioms over ΣT (and T-models are 
the models of the theory axioms)

First-order theories

A formula F is satisfiable 
modulo T iff M ⊨ F for some T-
model M.


A formula F is valid modulo T 
iff M ⊨ F for all T-models M.



Signature ΣT

• Set of constant, predicate, and 
function symbols


Set of T-models

• One or more (possibly infinitely 

many) models that fix the 
interpretation of the symbols in ΣT

• Can also view a theory as a set of 
axioms over ΣT (and T-models are 
the models of the theory axioms)

First-order theories: expansion

We can expand a theory’s 
signature to include additional 
uninterpreted symbols (e.g., 
constants). 


If ET is an expansion of ΣT, then 
the T-models of ET are the set of 
all possible expansions of the T-
models of ΣT to include 
interpretations for the symbols in 
ET ! ΣT.



Equality (and uninterpreted functions)

• x = g(y)


Fixed-width bitvectors 

• (b >> 1) = c


Linear arithmetic (over R and Z) 

• 2x + y ≤ 5


Arrays

• a[i] = x 


Common theories



Signature: {=, x, y, z, …, f, g, …, p, q, …}


• The binary predicate = is interpreted.

• All constant, function, and predicate symbols are uninterpreted. 


Axioms

• ∀x.  x = x 


• ∀x, y.  x = y  → y = x


• ∀x, y, z.  x = y ∧ y = z → x = z


• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (f(x1, …, xn) = f(y1, …, yn))


• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (p(x1, …, xn) ↔︎ p(y1, …, yn))


Deciding T=

• Conjunctions of literals modulo T= is decidable in polynomial time.

Theory of equality with uninterpreted functions



T= example:  checking program equivalence

int abs(int y) {

  return y<0 ? -y : y;

}


int sq(int y) {

  return y*y;

}


int sqabs(int y) {

  return abs(y)*abs(y);

}
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}

Are sq and sqabs equivalent 
on all 128-bit integers?
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T= example:  checking program equivalence

int abs(int y) {

  return y<0 ? -y : y;

}


int sq(int y) {

  return y*y;

}


int sqabs(int y) {

  return abs(y)*abs(y);

}

Are sq and sqabs equivalent 
on all 128-bit integers?

Yes, but the solver takes a while 
to return an answer because 
reasoning about multiplication is 
expensive.

What happens if we replace the 
multiplication with an 
uninterpreted function?



Signature

• Fixed-width words modeling machine ints, longs, …

• Arithmetic operations:  bvadd, bvsub, bvmul, …

• Bitwise operations:  bvand, bvor, bvnot, …

• Comparison predicates:  bvlt, bvgt, …

• Equality: =

• Expanded with all constant symbols: x, y, z, …


Deciding TBV

• NP-complete.

Theory of fixed-width bitvectors



Signature

• Integers (or reals)

• Arithmetic operations: multiplication by an integer (or real) number, +, -.

• Predicates: =, ≤.

• Expanded with all constant symbols: x, y, z, …


Deciding TLIA and TLRA

• NP-complete for linear integer arithmetic (LIA).

• Polynomial time for linear real arithmetic (LRA).


• Polynomial time for difference logic (conjunctions of the form x - y ≤ c, 
where c is an integer or real number).

Theories of linear integer and real arithmetic



A LIA formula that is unsatisfiable iff 
this transformation is valid:


LIA example:  compiler optimization

for (i=1; i<=10; i++) {

  a[j+i] = a[j];

}

int v = a[j];

for (i=1; i<=10; i++) {

  a[j+i] = v;

}



A LIA formula that is unsatisfiable iff 
this transformation is valid:


LIA example:  compiler optimization

for (i=1; i<=10; i++) {

  a[j+i] = a[j];

}

int v = a[j];

for (i=1; i<=10; i++) {

  a[j+i] = v;

}

(i ≥ 1) ∧ (i ≤ 10) ∧

(j + i = j)

Polyhedral model



Signature 

• Array operations: read, write

• Equality: =

• Expanded with all constant symbols: x, y, z, …


Axioms

• ∀a, i, v. read(write(a, i, v), i) = v


• ∀a, i, j, v.  ¬(i = j) → (read(write(a, i, v), j) = read(a, j))


• ∀a, b. (∀i. read(a, i) = read(b, i)) → a = b


Deciding TA

• Satisfiability problem:  NP-complete.

• Used in many software verification tools to model memory.

Theory of arrays



Summary

Today

• Introduction to SMT


• Quantifier-free FOL (syntax & semantics)


• Overview of common theories


Next lecture

• Survey of theory solvers


