
CSE507
Emina Torlak
emina@cs.washington.edu

Computer-Aided Reasoning for Software

Solver-Aided Programming I

Topics

What is this course about?

Course logistics

Getting started with solver-aided programming!

w
el

co
m

e

aboutTools for building better software, more easilyTools for building better software, more easilyTools for building better software, more easily

Tools for building better software, more easily

more reliable,
efficient, secure

Tools for building better software, more easily

automated verification and
synthesis based on
satisfiability solvers

Tools for building better software, more easily

automated verification and
synthesis based on
satisfiability solvers

“solver-aided tools”

goalBy the end of this course, you’ll be able to
build solver-aided tools for any domain!

biology

low-power computing

hardware databases

systems

networking

education

high-performance computing

security

goalBy the end of this course, you’ll be able to
build solver-aided tools for any domain!

logisticsTopics, structure, people

automated
reasoning
engine

Course overview

program question

logic

tool

SAT, SMT,
model finders

verifier,
synthesizer

Course overview

program question

logic

SAT, SMT,
model finders

verifier,
synthesizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman

SAT, SMT,
model finders

verifier,
synthesizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman

study (part I)

SAT, SMT,
model finders

verifier,
synthesizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman

study (part I)

build! (part II)

Grading

3 individual homework assignments (75%)
• conceptual problems & proofs (TeX)

• implementations (Racket, Dafny, Alloy)

• completed on your own (may discuss HWs with course staff only)

Course project (25%)
• build a computer-aided reasoning tool for a domain of your choice

• teams of 2-3 people

• see the course web page for timeline, deliverables and other details

study (part I)

build!

(part II)

Reading and references

Recommended readings posted on the course web page
• Complete each reading before the lecture for which it is assigned

• If multiple papers are listed, only the first is required reading

Recommended text books
• Bradley & Manna, The Calculus of Computation

• Kroening & Strichman, Decision Procedures

http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6

Advice for doing well in 507

Come to class (prepared)
• Lecture slides are enough to teach from, but not enough to learn from

Participate
• Ask and answer questions

Meet deadlines
• Turn homework in on time

• Start homework and project sooner than you think you need to

• Follow instructions for submitting code (we have to be able to run it)

• No proof should be longer than a page (most are ~1 paragraph)

People

Emina Torlak
PLSE
CSE 596

instructor

Sorawee Porncharoenwase
PLSE
CSE2 253
OH W 1-2pm

TA

Emina Torlak
PLSE
CSE 596
By appointment

instructor
students!

Your name
Research area

People

Sorawee Porncharoenwase
PLSE
CSE2 253
OH W 1-2pm

TA

Solver-aided programming in two parts:
(1) getting started and (2) going pro

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

How to build your own
solver-aided tool via direct
symbolic evaluation or
language embedding.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

Solver-aided programming in two parts:
(1) getting started and (2) going pro

R SETTEA programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

How to build your own
solver-aided tool via direct
symbolic evaluation or
language embedding.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

R SETTEA programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs and gotchas.

How to build your own
solver-aided tool via direct
symbolic evaluation or
language embedding.

P(x) {
…
…

}

Classic programming: from spec to code

specification

Classic programming: test behaviors

P(x) {
…
…

}
assert safe(2, P(2))

test some
behaviors
against the
specification

P(x) {
…
…

}
assert safe(x, P(x))

SMT solver

Solver-aided programming: query behaviors

solver-aided tool

query all
behaviors
against the
specification

Symbolic value x
stands for an
arbitrary integer.

Find an input on which the program fails.P(x) {
…
…

}
assert safe(x, P(x))

∃x . ¬safe(x, P(x))

42

SMT solver

verify
solve
synthesize

solver-aided tool

Solver-aided programming: verify

Find an input on which the program fails.

Find values that repair the failing run.
P(x) {

v = guess()
…

}
assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

42

SMT solver

verify
solve
synthesize

solver-aided tool

Solver-aided programming: solve

40

Find an input on which the program fails.

Find values that repair the failing run.

Find code that repairs the program.

assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃e.∀x. safe(x, Pe(x))

SMT solver

P(x) {
v = ??
…

}

x-2

solver-aided tool

Solver-aided programming: synthesize

verify
solve
synthesize

assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃e.∀x. safe(x, Pe(x))

SMT solver

P(x) {
…
…

}

solver-aided tool

Solver-aided programming: workflow

verify
solve
synthesize

Use assertions, assumptions, and
symbolic values to express the
specification.

Ask queries about program behavior (on
symbolic inputs) with respect to the
specification.

symbolic values

Solver-aided programming in two parts:
(1) getting started and (2) going pro

R SETTEA programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

How to build your own
solver-aided tool via direct
symbolic evaluation or
language embedding.

assertions
assumptions
queries

Rosette extends Racket with solver-aided constructs

assertions

symbolic
values

queries
= +

(define-symbolic id type)
(define-symbolic* id type)

(assert expr)

(assume expr)

(verify expr)
(solve expr)
(synthesize
 #:forall expr
 #:guarantee expr)

assumptions

Rosette extends Racket with solver-aided constructs

= +

“A programming language
for creating new

programming languages”

A modern descendent of
Scheme and Lisp with
powerful macro-based meta
programming.

assertions

symbolic
values

queries

assumptions

(define-symbolic id type)
(define-symbolic* id type)

(assert expr)

(assume expr)

(verify expr)
(solve expr)
(synthesize
 #:forall expr
 #:guarantee expr)

Rosette extends Racket with solver-aided constructs

= +

assertions

symbolic
values

queries

assumptions

#lang rosette

#lang racket

(define-symbolic id type)
(define-symbolic* id type)

(assert expr)

(assume expr)

(verify expr)
(solve expr)
(synthesize
 #:forall expr
 #:guarantee expr)

Rosette constructs by example

(define-symbolic id type)
(define-symbolic* id type)

(assert expr)

(assume expr)

(verify expr)
(solve expr)
(synthesize
 #:forall expr
 #:guarantee expr)

demo
https://courses.cs.washington.edu/courses/
cse507/21au/doc/bvudiv2.rkt

http://www.apple.com
https://courses.cs.washington.edu/courses/cse507/21au/doc/bvudiv2.rkt
https://courses.cs.washington.edu/courses/cse507/21au/doc/bvudiv2.rkt

Common pitfalls and gotchas

🤔

“A gotcha is a valid construct in a
system, program or programming
language that works as documented
but is counter-intuitive and almost
invites mistakes because it is both
easy to invoke and unexpected or
unreasonable in its outcome.”

—Wikipedia

Reasoning precision

Unbounded loops

Unsafe features

https://courses.cs.washington.edu/courses/
cse507/21au/doc/gotchas.rkt

https://courses.cs.washington.edu/courses/cse507/21au/doc/gotchas.rkt
https://courses.cs.washington.edu/courses/cse507/21au/doc/gotchas.rkt

Common pitfalls and gotchas: reasoning precision

Reasoning precision

Unbounded loops

Unsafe features

• Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

• Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision

Unbounded loops

Unsafe features

• Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

• Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))

Common pitfalls and gotchas: reasoning precision

Reasoning precision

Unbounded loops

Unsafe features

• Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

• Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

Common pitfalls and gotchas: reasoning precision

Reasoning precision

Unbounded loops

Unsafe features

• Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

• Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])
> (verify (assert (not (= x 64))))

Common pitfalls and gotchas: reasoning precision

Reasoning precision

Unbounded loops

Unsafe features

• Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

• Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

(model [x 64])
> (verify (assert (not (= x 64))))

Common pitfalls and gotchas: reasoning precision

Reasoning precision

Unbounded loops

Unsafe features

• Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

• Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

> (current-bitwidth 5)
> (solve (assert (= x 64)))

; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

(model [x 64])
> (verify (assert (not (= x 64))))

Common pitfalls and gotchas: reasoning precision

Reasoning precision

Unbounded loops

Unsafe features

• Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

• Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

> (current-bitwidth 5)
> (solve (assert (= x 64)))

; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

(model [x 64])
> (verify (assert (not (= x 64))))

(model [x 0])
> (verify (assert (not (= x 64))))
(model [x 0])

Common pitfalls and gotchas: unbounded loops

Reasoning precision

Unbounded loops

Unsafe features

• Loops and recursion must be
bounded (aka self-finitizing) by

• concrete termination
conditions, or

• upper bounds on size of
iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

• Loops and recursion must be
bounded (aka self-finitizing) by

• concrete termination
conditions, or

• upper bounds on size of
iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

(define (search x xs)
 (cond
 [(null? xs) #f]
 [(equal? x (car xs)) #t]
 [else (search x (cdr xs))]))

> (define-symbolic xs integer? #:length 5)
> (define-symbolic xl i integer?)
> (define ys (take xs xl))
> (verify
 (begin
 (assume (<= 0 i (- xl 1))
 (assert (search (list-ref ys i) ys))))

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unbounded loops

• Loops and recursion must be
bounded (aka self-finitizing) by

• concrete termination
conditions, or

• upper bounds on size of
iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

(define (search x xs)
 (cond
 [(null? xs) #f]
 [(equal? x (car xs)) #t]
 [else (search x (cdr xs))]))

> (define-symbolic xs integer? #:length 5)
> (define-symbolic xl i integer?)
> (define ys (take xs xl))
> (verify
 (begin
 (assume (<= 0 i (- xl 1))
 (assert (search (list-ref ys i) ys))))

Reasoning precision

Unbounded loops

Unsafe features

Terminates because search
iterates over a bounded structure.

Common pitfalls and gotchas: unbounded loops

(unsat)

• Loops and recursion must be
bounded (aka self-finitizing) by

• concrete termination
conditions, or

• upper bounds on size of
iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

(define (factorial n)
 (cond
 [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unbounded loops

> (define-symbolic k integer?)
> (solve
 (assert (> (factorial k) 10)))

• Loops and recursion must be
bounded (aka self-finitizing) by

• concrete termination
conditions, or

• upper bounds on size of
iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

(define (factorial n)
 (cond
 [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unbounded loops

> (define-symbolic k integer?)
> (solve
 (assert (> (factorial k) 10)))

Unbounded because
factorial termination
depends on k.

• Loops and recursion must be
bounded (aka self-finitizing) by

• concrete termination
conditions, or

• upper bounds on size of
iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

(define (factorial n)
 (cond
 [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unbounded loops

(define (factorial n g)
 (assert (>= g 0))
 (cond
 [(= n 0) 1]
 [else (* n (factorial (- n 1) (- g 1))]))• Loops and recursion must be

bounded (aka self-finitizing) by
• concrete termination

conditions, or
• upper bounds on size of

iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

Reasoning precision

Unbounded loops

Unsafe features

Bound the recursion
with a concrete guard.

Common pitfalls and gotchas: unbounded loops

(define (factorial n g)
 (assert (>= g 0))
 (cond
 [(= n 0) 1]
 [else (* n (factorial (- n 1) (- g 1))]))• Loops and recursion must be

bounded (aka self-finitizing) by
• concrete termination

conditions, or
• upper bounds on size of

iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

Reasoning precision

Unbounded loops

Unsafe features

Bound the recursion
with a concrete guard.

Common pitfalls and gotchas: unbounded loops

> (define-symbolic k integer?)
> (solve
 (assert (> (factorial k 3) 10)))

(define (factorial n g)
 (assert (>= g 0))
 (cond
 [(= n 0) 1]
 [else (* n (factorial (- n 1) (- g 1))]))• Loops and recursion must be

bounded (aka self-finitizing) by
• concrete termination

conditions, or
• upper bounds on size of

iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

Reasoning precision

Unbounded loops

Unsafe features

Bound the recursion
with a concrete guard.

(unsat)

Common pitfalls and gotchas: unbounded loops

> (define-symbolic k integer?)
> (solve
 (assert (> (factorial k 3) 10)))

UNSAT because the
bound is too small to
find a solution.

(define (factorial n g)
 (assert (>= g 0))
 (cond
 [(= n 0) 1]
 [else (* n (factorial (- n 1) (- g 1))]))• Loops and recursion must be

bounded (aka self-finitizing) by
• concrete termination

conditions, or
• upper bounds on size of

iterated (symbolic) data
structures.

• Unbounded loops and
recursion run forever.

Reasoning precision

Unbounded loops

Unsafe features

Bound the recursion
with a concrete guard.

(model
 [k 4])

Common pitfalls and gotchas: unbounded loops

> (define-symbolic k integer?)
> (solve
 (assert (> (factorial k 4) 10)))

Make sure the bound is
large enough …

Common pitfalls and gotchas: unsafe features

Reasoning precision

Unbounded loops

Unsafe features

• Rosette lifts only a core
subset of Racket to operate
on symbolic values. This
includes all constructs in
#lang rosette/safe

• Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

• Rosette lifts only a core
subset of Racket to operate
on symbolic values. This
includes all constructs in
#lang rosette/safe

• Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

; vectors are lifted
> (define v (vector 1 2))
> (define-symbolic k integer?)
> (vector-ref v k)

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unsafe features

• Rosette lifts only a core
subset of Racket to operate
on symbolic values. This
includes all constructs in
#lang rosette/safe

• Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

; vectors are lifted
> (define v (vector 1 2))
> (define-symbolic k integer?)
> (vector-ref v k)

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unsafe features

(ite* (⊢ (= 0 k) 1) (⊢ (= 1 k) 2)))

• Rosette lifts only a core
subset of Racket to operate
on symbolic values. This
includes all constructs in
#lang rosette/safe

• Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

; vectors are lifted
> (define v (vector 1 2))
> (define-symbolic k integer?)
> (vector-ref v k)

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unsafe features

(ite* (⊢ (= 0 k) 1) (⊢ (= 1 k) 2)))

; hashes are unlifted
> (define h (make-hash '((0 . 1)(1 . 2))))
> (hash-ref h k)

• Rosette lifts only a core
subset of Racket to operate
on symbolic values. This
includes all constructs in
#lang rosette/safe

• Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

; vectors are lifted
> (define v (vector 1 2))
> (define-symbolic k integer?)
> (vector-ref v k)

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unsafe features

(ite* (⊢ (= 0 k) 1) (⊢ (= 1 k) 2)))

; hashes are unlifted
> (define h (make-hash '((0 . 1)(1 . 2))))
> (hash-ref h k)
hash-ref: no value found for key
 key: k

• Rosette lifts only a core
subset of Racket to operate
on symbolic values. This
includes all constructs in
#lang rosette/safe

• Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

; vectors are lifted
> (define v (vector 1 2))
> (define-symbolic k integer?)
> (vector-ref v k)

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unsafe features

(ite* (⊢ (= 0 k) 1) (⊢ (= 1 k) 2)))

; hashes are unlifted
> (define h (make-hash '((0 . 1)(1 . 2))))
> (hash-ref h k)
hash-ref: no value found for key
 key: k
> (hash-set! h k 3)
> (hash-ref h k)

• Rosette lifts only a core
subset of Racket to operate
on symbolic values. This
includes all constructs in
#lang rosette/safe

• Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

; vectors are lifted
> (define v (vector 1 2))
> (define-symbolic k integer?)
> (vector-ref v k)

Reasoning precision

Unbounded loops

Unsafe features

Common pitfalls and gotchas: unsafe features

(ite* (⊢ (= 0 k) 1) (⊢ (= 1 k) 2)))

; hashes are unlifted
> (define h (make-hash '((0 . 1)(1 . 2))))
> (hash-ref h k)
hash-ref: no value found for key
 key: k

3

> (hash-set! h k 3)
> (hash-ref h k)

Solver-aided programming in two parts:
(1) getting started and (2) going pro

R SETTEA programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

How to build your own
solver-aided tool via direct
symbolic evaluation or
language embedding.

emina.github.io/rosette/

https://emina.github.io/rosette/

Summary

Today
• Course overview & logistics

• Getting started with solver-aided programming

Next lecture
• Going pro with solver-aided programming

