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VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu
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Grading

3 individual homework assignments (75%)
• conceptual problems & proofs (TeX)

• implementations (Racket, Dafny, Alloy)

• completed on your own (may discuss HWs with course staff only)

Course project (25%)
• build a computer-aided reasoning tool for a domain of your choice

• teams of 2-3 people 

• see the course web page for timeline, deliverables and other details

study (part I)

build! 

(part II)



Reading and references

Recommended readings posted on the course web page
• Complete each reading before the lecture for which it is assigned

• If multiple papers are listed, only the first is required reading

Recommended text books
• Bradley & Manna, The Calculus of Computation

• Kroening & Strichman, Decision Procedures

http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6


Advice for doing well in 507

Come to class (prepared)
• Lecture slides are enough to teach from, but not enough to learn from

Participate
• Ask and answer questions

Meet deadlines
• Turn homework in on time

• Start homework and project sooner than you think you need to

• Follow instructions for submitting code (we have to be able to run it)

• No proof should be longer than a page (most are ~1 paragraph)
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P(x) {
…
…

}

Classic programming: from spec to code 

specification



Classic programming: test behaviors

P(x) {
…
…

}
assert safe(2, P(2))

test some 
behaviors 
against the 
specification



P(x) {
…
…

}
assert safe(x, P(x))

SMT solver

Solver-aided programming: query behaviors 

solver-aided tool

query all 
behaviors 
against the 
specification

Symbolic value x 
stands for an 
arbitrary integer.



Find an input on which the program fails.P(x) {
…
…

}
assert safe(x, P(x))

∃x . ¬safe(x, P(x))

42

SMT solver

verify
solve
synthesize

solver-aided tool

Solver-aided programming: verify 



Find an input on which the program fails.

Find values that repair the failing run.
P(x) {

v = guess()
…

}
assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

42

SMT solver

verify
solve
synthesize

solver-aided tool

Solver-aided programming: solve 

40



Find an input on which the program fails.

Find values that repair the failing run.

Find code that repairs the program.

assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃e.∀x. safe(x, Pe(x))

SMT solver

P(x) {
v = ??
…

}

x-2

solver-aided tool

Solver-aided programming: synthesize

verify
solve
synthesize



assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃e.∀x. safe(x, Pe(x))

SMT solver

P(x) {
…
…

}

solver-aided tool

Solver-aided programming: workflow

verify
solve
synthesize

Use assertions, assumptions, and 
symbolic values to express the 
specification.

Ask queries about program behavior (on 
symbolic inputs) with respect to the 
specification. 



symbolic values
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queries



Rosette extends Racket with solver-aided constructs

assertions

symbolic 
values

queries
= +

(define-symbolic id type) 
(define-symbolic* id type) 

(assert expr) 

(assume expr) 

(verify expr)  
(solve expr) 
(synthesize  
  #:forall expr  
  #:guarantee expr)

assumptions



Rosette extends Racket with solver-aided constructs

= +

“A programming language 
for creating new 

programming languages” 

A modern descendent of 
Scheme and Lisp with 
powerful macro-based meta 
programming. 

assertions

symbolic 
values

queries

assumptions

(define-symbolic id type) 
(define-symbolic* id type) 

(assert expr) 

(assume expr) 

(verify expr)  
(solve expr) 
(synthesize  
  #:forall expr  
  #:guarantee expr)



Rosette extends Racket with solver-aided constructs

= +

assertions

symbolic 
values

queries

assumptions

#lang rosette

#lang racket

(define-symbolic id type) 
(define-symbolic* id type) 

(assert expr) 

(assume expr) 

(verify expr)  
(solve expr) 
(synthesize  
  #:forall expr  
  #:guarantee expr)



Rosette constructs by example

(define-symbolic id type) 
(define-symbolic* id type) 

(assert expr) 

(assume expr) 

(verify expr)  
(solve expr) 
(synthesize  
  #:forall expr  
  #:guarantee expr)

demo
https://courses.cs.washington.edu/courses/
cse507/21au/doc/bvudiv2.rkt

http://www.apple.com
https://courses.cs.washington.edu/courses/cse507/21au/doc/bvudiv2.rkt
https://courses.cs.washington.edu/courses/cse507/21au/doc/bvudiv2.rkt


Common pitfalls and gotchas

🤔

“A gotcha is a valid construct in a 
system, program or programming 
language that works as documented 
but is counter-intuitive and almost 
invites mistakes because it is both 
easy to invoke and unexpected or 
unreasonable in its outcome.”

—Wikipedia

Reasoning precision 

Unbounded loops 

Unsafe features

https://courses.cs.washington.edu/courses/
cse507/21au/doc/gotchas.rkt

https://courses.cs.washington.edu/courses/cse507/21au/doc/gotchas.rkt
https://courses.cs.washington.edu/courses/cse507/21au/doc/gotchas.rkt
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• Determines if integers and 
reals are approximated using 
k-bit words or treated as 
infinite-precision values.

• Controlled by setting 
current-bitwidth to an 
integer k > 0 or #f for 
approximate or precise 
reasoning, respectively.
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Reasoning precision 

Unbounded loops 

Unsafe features

• Determines if integers and 
reals are approximated using 
k-bit words or treated as 
infinite-precision values.

• Controlled by setting 
current-bitwidth to an 
integer k > 0 or #f for 
approximate or precise 
reasoning, respectively.

> (current-bitwidth 5) 
> (solve (assert (= x 64)))

; default current-bitwidth is #f 
> (define-symbolic x integer?) 
> (solve (assert (= x 64)))
(model [x 64])

(model [x 64])
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(model [x 0]) 
> (verify (assert (not (= x 64)))) 
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• Loops and recursion must be 
bounded (aka self-finitizing) by

• concrete termination 
conditions, or

• upper bounds on size of 
iterated (symbolic) data 
structures.

• Unbounded loops and 
recursion run forever.

(define (search x xs) 
  (cond 
    [(null? xs) #f] 
    [(equal? x (car xs)) #t] 
    [else (search x (cdr xs))])) 
       
> (define-symbolic xs integer? #:length 5) 
> (define-symbolic xl i integer?) 
> (define ys (take xs xl)) 
> (verify 
   (begin 
     (assume (<= 0 i (- xl 1)) 
     (assert (search (list-ref ys i) ys))))

Reasoning precision 

Unbounded loops 

Unsafe features

Common pitfalls and gotchas: unbounded loops



• Loops and recursion must be 
bounded (aka self-finitizing) by

• concrete termination 
conditions, or

• upper bounds on size of 
iterated (symbolic) data 
structures.

• Unbounded loops and 
recursion run forever.

(define (search x xs) 
  (cond 
    [(null? xs) #f] 
    [(equal? x (car xs)) #t] 
    [else (search x (cdr xs))])) 
       
> (define-symbolic xs integer? #:length 5) 
> (define-symbolic xl i integer?) 
> (define ys (take xs xl)) 
> (verify 
   (begin 
     (assume (<= 0 i (- xl 1)) 
     (assert (search (list-ref ys i) ys))))

Reasoning precision 

Unbounded loops 

Unsafe features

Terminates because search 
iterates over a bounded structure.

Common pitfalls and gotchas: unbounded loops

(unsat)
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Common pitfalls and gotchas: unbounded loops

> (define-symbolic k integer?) 
> (solve 
    (assert (> (factorial k 3) 10)))

UNSAT because the 
bound is too small to 
find a solution.



(define (factorial n g) 
  (assert (>= g 0)) 
  (cond  
    [(= n 0) 1] 
    [else (* n (factorial (- n 1) (- g 1))]))• Loops and recursion must be 

bounded (aka self-finitizing) by
• concrete termination 

conditions, or
• upper bounds on size of 

iterated (symbolic) data 
structures.

• Unbounded loops and 
recursion run forever.

Reasoning precision 

Unbounded loops 

Unsafe features

Bound the recursion 
with a concrete guard. 

(model  
  [k 4])

Common pitfalls and gotchas: unbounded loops

> (define-symbolic k integer?) 
> (solve 
    (assert (> (factorial k 4) 10)))

Make sure the bound is 
large enough …
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used in #lang rosette but 
require care: the programmer 
must determine when it is 
okay for symbolic values to 
flow to unlifted code.
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Solver-aided programming in two parts: 
(1) getting started and (2) going pro

R SETTEA programming model that 
integrates solvers into the 
language, providing constructs 
for program verification, 
synthesis, and more.

How to use a solver-aided 
language: the workflow, 
constructs, and gotchas.

How to build your own 
solver-aided tool via direct 
symbolic evaluation or 
language embedding.

emina.github.io/rosette/

https://emina.github.io/rosette/


Summary

Today
• Course overview & logistics

• Getting started with solver-aided programming

Next lecture
• Going pro with solver-aided programming


