
CSE 507: Computer-Aided Reasoning for Software Winter 2019

Homework Assignment 2
Due: February 14, 2019 at 23:00

Total points: 100
Deliverables: hw2.pdf containing typeset solutions to Problems 1-11.

verifier.rkt containing your implementation for Problem 6.
uf.rkt containing your implementation for Problems 7-8.
nnf.als containing your Alloy encoding for Problems 9-11.

Sources: https://gitlab.cs.washington.edu/cse507/hw19wi.

1 SMT Solving (30 points)

1. (5 points) Apply the congruence closure algorithm to decide the satisfiability of the following T=

formula:
f(g(x)) = g(f(x)) ∧ f(g(f(y))) = x ∧ f(y) = x ∧ g(f(x)) 6= x

Provide the level of detail as in Lecture 07. In particular, show the intermediate partitions (sets of
congruence classes) after each merge or propagation step, together with a brief explanation of how the
algorithm arrived at that partition (e.g., “by literal f(x) = y, merge f(x) with y”).

2. Consider the following formula in T= ∪ TR:

g(x+ y, z) = f(g(x, y)) ∧ x+ z = y ∧ z ≥ 0 ∧ x ≥ y ∧ g(x, x) = z ∧ f(z) 6= g(2x, 0)

(a) (5 points) Purify the formula and show the resulting T= and TR formulas. Show the purification
results using the table below. Apply purification to the (current) innermost term first. If there
are several innermost terms, prefer the leftmost one. Use ai to refer to the ith auxiliary literal,
starting with a1. All occurrences of the same term should be mapped to the same auxiliary literal.
You do not need to show the individual steps of the purification process, just the final result.

T= TR

.

(b) (5 points) Use the Nelson-Oppen procedure to decide the satisfiability of the purified formula.
In one sentence, state which version of the procedure you are using and why. Show the equality
propagation by filling out the table below. If Ti infers the jth equality (or disjunction of equalities),
enter it into the jth row and ith column only—leave the remaining column in that row empty.

T= TR

.

3. (5 points) Recall that the theory of arrays TA = {read,write,=} is defined by the following axioms.

∀a, i, j. i = j → read(a, i) = read(a, j)
∀a, v, i, j. i = j → read(write(a, i, v), j) = v
∀a, v, i, j. i 6= j → read(write(a, i, v), j) = read(a, j)

Prove that TA is not convex by constructing n ≥ 3 formulas in TA such that F1 ⇒ (F2 ∨ . . . ∨ Fn) but
F1 6⇒ Fi for any i ∈ [2 . . . n].

4. (10 points) Prove that the theory of equality T= is convex.

1 of 4

https://gitlab.cs.washington.edu/cse507/hw19wi
https://courses.cs.washington.edu/courses/cse507/19wi/doc/L07.pdf

CSE 507: Computer-Aided Reasoning for Software
Winter 2019

Homework Assignment 2
Due: February 14, 2019 at 23:00

2 A Verifier for Superoptimization (25 points)

Superoptimization is the task of replacing a given loop-free sequence of instructions with an equivalent se-
quence that is better according to some metric (e.g., shorter). Modern superoptimizers work by employing
various forms of the guess-and-check strategy: given a sequence s of instructions, they guess a better re-
placement sequence r, and then they check that s and r are equivalent. In this problem, you will develop
a simple SMT-based verifier for superoptimization. Given two loop-free sequences of 32-bit integer instruc-
tions, your verifier will either confirm that they are equivalent or, if they are not, it will produce a concrete
counterexample—an input on which the two sequences produce different outputs.

The verifier will accept programs in the BV language, which has the following grammar:
Prog := (define-fragment (id id∗) Stmt∗ Ret)
Stmt := (define id Expr) | (set! id Expr)
Ret := (return Expr)
Expr := id | const | (if Expr Expr Expr) | (unary-op Expr) |

(binary-op Expr Expr) | (nary-op Expr+)
unary-op := bvneg | bvnot
binary-op := = | bvule | bvult | bvuge | bvugt | bvsle | bvslt | bvsge | bvsgt |

bvsdiv | bvsrem | bvshl | bvlshr | bvashr | bvsub
nary-op := bvor | bvand | bvxor | bvadd | bvmul
id := identifier
const := 32-bit integer | true | false

Assume the following well-formedness rules for programs, which your verifier does not need to check:

1. an identifier is not used before it is defined;

2. an identifier is not defined more than once;

3. the first sub-expression of an if-expression is of type boolean, and its remaining subexpressions have
the same type.

The statement (set! id Expr) assigns the value of Expr to the variable id; the types of id and Expr must
match. The inputs to a fragment are 32-bit integers.

The operators in the BV language have the same semantics as the corresponding operators in Tbv (see the Z3
tutorial on bitvectors). For example, these are valid BV programs:

(define-fragment (P1 x1 y1 x2 y2)
(return (bvmul (bvadd x1 y1) (bvadd x2 y2))))

(define-fragment (P2 x1 y1 x2 y2)
(define u1 (bvadd x1 y1))
(define u2 (bvadd x2 y2))
(return (bvmul u1 u2)))

5. (5 points) The grammar for the BV language is designed in such a way that you do not need to convert
a BV program to Static Single Assignment (SSA) form before translating it to bit vector logic. Explain
in a few sentences what property of this grammar allows you to avoid SSA conversion.

6. (20 points) Implement a BMC-style verifier for the BV language in Racket, using the solution skeleton
in the bvv directory. Your verifier (see verifier.rkt) should take as input two BV program fragments
(see examples.rkt and bv.rkt); produce a QF_BV formula that is unsatisfiable iff the programs are
equivalent; invoke Z3 on the generated formula (solver.rkt); and decode Z3’s output as follows. If
the programs are equivalent, the verifier should return ’EQUIVALENT; otherwise it should return an
input, expressed as a list of integers, on which the fragments produce a different output.

2 of 4

http://rise4fun.com/z3/tutorial
http://rise4fun.com/z3/tutorial
http://racket-lang.org
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/verifier.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/examples.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/bv.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/solver.rkt

CSE 507: Computer-Aided Reasoning for Software
Winter 2019

Homework Assignment 2
Due: February 14, 2019 at 23:00

Inputs to the two programs should be the only unknowns (i.e., bitvector constants) in the QF_BV formula
produced by your verifier. This means that the verifier cannot use additional constants to represent
the values of program expressions and statements. But it should also not inline the translations of
individual expressions. For example, consider the following BV fragment:

(define-fragment (toy b c)
(define a (bvmul b c))
(return (bvadd a a)))

The encoding may introduce two unknowns to represent the input variables b and c. But it may not
translate the first statement by emitting an SMT-LIB equality assertion such as (assert (= a (bvmul b c))),
where a is a fresh unknown. Similarly, it may not translate the return statement by inlining the en-
coding of the first statement, i.e., (bvadd (bvmul b c) (bvmul b c)).

(Hint: Your encoding may use SMT-LIB definitions, introduced by define-fun.)

Your encoding should be entirely contained in the verifier.rkt file. In particular, the verify-all
procedure in tests.rkt should be executable just by placing your verifier.rkt into the bvv direc-
tory, without modifying any supporting files. Your encoding will be tested and graded automatically,
so it is important for the implementation to be self-contained, and to adhere to the input/output
specification given above. Note also that we will test your code on benchmarks that are not included
in tests.rkt. To make sure that your verifier works correctly, you will need to write additional tests
of your own, especially for corner cases.

3 Faster VerificationWith(out) Uninterpreted Functions (20 points)

One common application of uninterpreted functions, shown in Lecture 06, is to accelerate verification by
abstracting away the details of operations that are expensive to compute. In this part of the assignment,
you will use uninterpreted functions to accelerate two verification queries in a Rosette program. Then, you
will accelerate these queries without uninterpreted functions.

The program and the queries are given in matrix.rkt. The program is a straightforward implementation
of matrix multiplication, and the queries verify that the implementation satisfies two simple properties:
query-1 checks that A = B =⇒ A ∗B = B ∗A, and query-2 checks that B = AT =⇒ (A ∗A)T = B ∗B.

Both queries take a long time to solve even on small symbolic matrices, e.g., 4× 4. The goal is to get each
query to complete in seconds on 20× 20 matrices. We will take two different approaches to reach this goal.

7. (10 points) The first approach is to abstract a set of operators of your choosing with uninterpreted
functions as described in uf.rkt. This set should include as few operators as possible.

Your solution must be fully contained in your copy of uf.rkt. No other files may be modified. Submit
your copy of uf.rkt, along with the typeset (short) answers to the following questions.

What is the minimal set of operators you need to abstract with uninterpreted functions in order to
accelerate both queries? Do your abstractions depend on any properties of these operators?

8. (10 points) Next, suppose that you cannot use uninterpreted functions, but you are allowed to rewrite
each query to solve an equivalent verification problem. Briefly describe how to rewrite query-1 and
query-2 into logically equivalent queries that achieve the same level of performance as in Problem
7, and briefly argue why your rewriting strategy results in equivalent verification problems. (Hint:
thinking about equalities is key to solving this problem.)

3 of 4

https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/verifier.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/tests.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/verifier.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/bvv/tests.rkt
https://courses.cs.washington.edu/courses/cse507/19wi/doc/L06.pdf
https://emina.github.io/rosette/
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/uf/matrix.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/uf/uf.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/uf/uf.rkt
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/uf/uf.rkt

CSE 507: Computer-Aided Reasoning for Software
Winter 2019

Homework Assignment 2
Due: February 14, 2019 at 23:00

4 Finite Model Finding with Alloy (25 points)

In this part of the assignment, you will formalize the syntax and semantics of propositional logic in Alloy,
and use this formalization to check the theorem about the monotonicity of negation normal form (NNF)
from Problem 3 in Homework 1.

To start, download Alloy-5.0.0.1.jar and double click on it to launch the Alloy Analyzer tool. You may also
want to skim Parts 1–2 of the Alloy tutorial and this quick reference on Alloy syntax and semantics.

A skeleton solution can be found in nnf.als. Complete the missing definitions and submit your copy of
nnf.als. Solutions will be automatically checked against a reference specification, so they need to be fully
contained in the submitted file.

9. (10 points) Start by formalizing the syntax of propositional logic and NNF.

(a) A formula in propositional logic can be a variable, negation, conjunction, or disjunction. A
formula has zero or more children, depending on its type (e.g., variables have no children). We
represent formulas as abstract syntax graphs that allow sharing of subformulas (so two different
formulas may contain the same subformula) but disallow cycles (i.e., no formula contains itself).
Formalize these constraints by completing the definition of the wellFormedFormulas fact. Use
the Alloy Analyzer to check that your definition is correct (e.g., it rejects variables with children)
and non-vacuous (i.e., it admits some formulas) in a universe with a small number of formulas.

(b) An NNF formula satisfies additional constraints on its structure. What are those constraints?
Formalize them by completing the definition of the NNF predicate. Check your definition for
correctness and vacuity bugs.

10. (10 points) Next, formalize the semantics of propositional logic.

(a) Specify the semantics by completing the definition of the valuation predicate. This predicate
takes as input a relation from formulas to booleans, and returns true iff the input relation is a
total function that maps each formula to its meaning. (Hint: to specify a formula’s meaning,
consider when the semantics function should map each kind of formula to True.)

(b) Use the valuation predicate to define the satisfies predicate that specifies what it means for
a valuation to satisfy a given formula.

Check your definitions for correctness and vacuity bugs.

11. (5 points) Finally, formalize the theorem about the monotonicity of NNF from Problem 3 in Homework
1. To do so, complete the definition of the pos function so that it returns the positive set of a valuation
with respect to a formula. Then, use pos, along with the other predicates defined above, to state the
theorem by completing the definition of the MonotonicityOfNNF predicate. Check that the theorem
holds for all formulas in a small universe. To guard against vacuity, also ensure that the Alloy Analyzer
can find some formula and valuations that satisfy the premise and the conclusion of the theorem.

4 of 4

http://alloytools.org
https://courses.cs.washington.edu/courses/cse507/19wi/doc/hw1.pdf
https://github.com/AlloyTools/org.alloytools.alloy/releases/download/v5.0.0.1/Alloy-5.0.0.1.jar
http://alloytools.org/tutorials/day-course/s1_logic.pdf
http://alloytools.org/tutorials/day-course/s2_language.pdf
http://alloytools.org/tutorials/day-course/
http://homepage.cs.uiowa.edu/~tinelli/classes/181/Fall17/Notes/alloy-cheatsheet.pdf
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/nnf/nnf.als
https://gitlab.cs.washington.edu/cse507/hw19wi/tree/master/hw2/nnf/nnf.als
https://courses.cs.washington.edu/courses/cse507/19wi/doc/hw1.pdf
https://courses.cs.washington.edu/courses/cse507/19wi/doc/hw1.pdf

	SMT Solving (30 points)
	A Verifier for Superoptimization (25 points)
	Faster Verification With(out) Uninterpreted Functions (20 points)
	Finite Model Finding with Alloy (25 points)

