Homework Assignment 1
 Due: January 24, 2019 at 23:00

```
Total points: }10
Deliverables: classify.rkt containing your implementation for Problem 1.
    k-coloring.rkt containing your implementation for Problem 7.
    hw1.pdf containing typeset solutions to the remaining problems.
Sources: https://gitlab.cs.washington.edu/cse507/hw19wi.
```


1 Propositional Logic and Normal Forms (30 points)

1. (5 points) Use the solution skeleton in classify.rkt, write a Rosette procedure that takes as input a formula F in propositional logic and outputs

- 'TAUTOLOGY if $I \models F$ for every interpretation I;
- 'CONTRADICTION if $I \not \vDash F$ for every interpretation I; and,
- ' CONTINGENCY if there are two interpretations I and I^{\prime} such that $I \models F$ and $I^{\prime} \not \vDash F$.

Your procedure may contain at most two solver-aided queries (such as solve), and if it contains more than one query, then the two queries must be different (i.e., you cannot use solve twice).
2. (5 points) Convert the following formula to an equisatisfiable one in CNF using Tseitin's encoding:

$$
\neg(\neg r \rightarrow \neg(p \wedge q))
$$

Write the final CNF as the answer. Use a_{ϕ} to denote the auxiliary variable for the formula ϕ; for example, $a_{p \wedge q}$ should be used to denote the auxiliary variable for $p \wedge q$. Your conversion should not introduce auxiliary variables for negations.
3. (10 points) Let ϕ be a propositional formula in NNF, and let I be an interpretation of ϕ. Let the positive set of I with respect to ϕ, denoted $\operatorname{pos}(I, \phi)$, be the literals of ϕ that are satisfied by I. As an example, for the NNF formula $\phi=(\neg r \wedge p) \vee q$ and the interpretation $I=[r \mapsto \perp, p \mapsto \top, q \mapsto \perp]$, we have $\operatorname{pos}(I, \phi)=\{\neg r, p\}$. Prove the following theorem about the monotonicity of NNF:
Monotonicity of NNF: For every interpretation I and I^{\prime} such that $\operatorname{pos}(I, \phi) \subseteq \operatorname{pos}\left(I^{\prime}, \phi\right)$, if $I \models \phi$, then $I^{\prime} \models \phi$.
(Hint: Use structural induction.)
4. (10 points) Let ϕ be an NNF formula. Let $\hat{\phi}$ be a formula derived from ϕ using a modified version of Tseitin's encoding in which the CNF constraints are derived from implications rather than biimplications. For example, given the formula

$$
a_{1} \wedge\left(a_{2} \vee \neg a_{3}\right)
$$

the new encoding is the CNF equivalent of the following, where x_{0}, x_{1}, x_{2} are fresh auxiliary variables:

$$
\begin{array}{ll}
x_{0} & \wedge \\
\left(x_{0} \rightarrow a_{1} \wedge x_{1}\right) & \wedge \\
\left(x_{1} \rightarrow a_{2} \vee x_{2}\right) & \wedge \\
\left(x_{2} \rightarrow \neg a_{3}\right) &
\end{array}
$$

Note that Tseitin's encoding to CNF starts with the same formula, except that \rightarrow is replaced with \leftrightarrow. As a result, the new encoding has roughly half as many clauses as the Tseitin's encoding.
Prove that $\hat{\phi}$ is satisfiable if and only if ϕ is satisfiable.
(Hint: Use the theorem from Problem 3.)

2 SAT solving (20 points)

5. (20 points) In this problem, you will trace the execution of CaDiCaL, a high-performance SAT solver, on a sample CNF, and use this trace to reconstruct the abstract state transitions of the underlying CDCL algorithm (Lecture 4).
The sample CNF is given in the DIMACS format and represents the following clauses:
$\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{4} \vee \neg x_{2}\right) \wedge\left(\neg x_{4} \vee \neg x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{3} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{1}\right)$
To start, clone CaDiCaL from GitHub and checkout tag sc18. Next, follow the instructions in the included README.md file to configure and build the solver in logging mode using ./configure -l \&\& make. Finally, run the solver (in build/cadical) with the logging (-1) option on sample.cnf, and the solver will output a detailed trace of its execution.
Using this detailed trace, reconstruct the behavior of the underlying CDCL algorithm by filling out the following abstract trace template, given as a list of abstract trace entries:

- Level i
; decision level i
- Decision: $d_{i} \quad$; decision literal at level i or $N A$ if level due to backtracking
- BCP: $p_{i_{0}}, \ldots, p_{i_{n}} \quad$; literals inferred by BCP at level i, in the detailed trace order
- Conflict Clause: $l_{i_{0}} \ldots l_{i_{k}} \quad$; conflict clause or $N A$ if no conflict at level i
- Implication Graph: graph image ; implication graph at level i, visualized with GraphViz
- ...

To produce the abstract trace, create an abstract trace entry ("Level") whenever the decision level changes in the detailed trace due to a new decision or backtracking. When filling out the entry template, use the literal names from the detailed trace. For example, the solver will represent the literal $\neg x_{1}$ as -1. Use GraphViz to visualize the implication graph at a given level. The impl-graph . dot file shows an example of how to specify implication graphs with GraphViz. Use the LaTeX \includegraphics command to insert the resulting graph images into your hw1.pdf file.

3 Graph Coloring with SAT (40 points)

A graph is k-colorable if there is an assignment of k colors to its vertices such that no two adjacent vertices have the same color. Deciding if such a coloring exists is a classic NP-complete problem with many practical applications, such as register allocation in compilers. In this problem, you will develop a CNF encoding for graph coloring and apply them to graphs from various application domains, including course scheduling, N -queens puzzles, and register allocation for real code.
A finite graph $G=\langle V, E\rangle$ consists of vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $E=\left\{\left\langle v_{i_{1}}, w_{i_{1}}\right\rangle, \ldots,\left\langle v_{i_{m}}, w_{i_{m}}\right\rangle\right\}$. Given a set of k colors $C=\left\{c_{1}, \ldots, c_{k}\right\}$, the k-coloring problem for G is to assign a color $c \in C$ to each vertex $v \in V$ such that for every edge $\langle v, w\rangle \in E, \operatorname{color}(v) \neq \operatorname{color}(w)$.
6. (10 points) Show how to encode an instance of a k-coloring problem into a propositional formula F that is satisfiable iff a k-coloring exists.
(a) Describe a set of propositional constraints asserting that every vertex is colored. Use the notation $\operatorname{color}(v)=c$ to indicate that a vertex v has the color c. Such an assertion is encodable as a single propositional variable p_{v}^{c} (since the set of vertices and colors are both finite).
(b) Describe a set of propositional constraints asserting that every vertex has at most one color.
(c) Describe a set of propositional constraints asserting that no two adjacent vertices have the same color.
(d) Identify a significant optimization in this encoding that reduces its size asymptotically. (Hint: Can any constraints be dropped? Why?)
(e) Specify your constraints in CNF. For $|V|$ vertices, $|E|$ edges, and k colors, how many variables and clauses does your encoding require?
7. (20 points) Implement the above encoding in Racket, using the provided solution skeleton. See the README file for instructions on obtaining solvers and the database of graph coloring problems. Your program should generate the encoding for a given graph (see graph.rkt), call a SAT solver on it (solver.rkt), and then decode the result into an assignment of colors to vertices (see examples.rkt and k -coloring.rkt).
Your implementation should be able to solve all of the easy and medium instances in under 15 minutes on an ordinary laptop. (The reference implementation does so in about 7 minutes.)
8. (5 points) Describe a CNF encoding for k-coloring that uses $O(|V| \log k+|E| \log k)$ variables and clauses.
9. (5 points) Most modern SAT solvers support incremental solving-that is, obtaining a solution to a CNF, adding more constraints, obtaining another solution, and so on. Because the solver keeps (some) learned clauses between invocations, incremental solving is generally the fastest way to solve a series of related CNFs. How would you apply incremental solving to your encoding from Problem 7 to find the smallest number of colors needed to color a graph (i.e., its chromatic number)?

4 Optimal Graph Coloring with Variations on SAT (10 points)

Consider the following variations on the propositional satisfiability (SAT) problem discussed in Lecture 5:

Partial Weighted MaxSAT Given a CNF formula $\phi_{H}=\bigwedge_{c \in H} c$ corresponding to a set of hard clauses H, and a CNF formula $\phi_{S}=\bigwedge_{c \in S} c$ corresponding to a set of soft CNF clauses S with weights $w: S \rightarrow \mathbb{Z}^{+}$, the Partial Weighted MaxSAT problem is to find an assignment A to the problem variables that satisfies all the hard clauses and that maximizes the weight of the satisfied soft clauses. That is, $A \models \bigwedge_{c \in H} c$, and if we let $C=\{c \in S \mid A \models c\}$, then there is no $C^{\prime} \subseteq S$ such that $H \cup C^{\prime}$ is satisfiable and $\sum_{c^{\prime} \in C^{\prime}} w\left(c^{\prime}\right)>\sum_{c \in C} w(c)$.
Pseudo-Boolean Optimization Let B be a set of pseudo-boolean constraints of the form $\sum a_{i j} x_{j} \geq b_{i}$, where x_{j} is a variable over $\{0,1\}$ and $a_{i j}, b_{i}, c_{j}$ are integer constants. The Pseudo-Boolean Optimization problem is to satisfy all constraints in B while minimizing a linear function $\sum c_{j} \cdot x_{j}$.

Let $G=\langle V, E\rangle$ be a finite graph and $C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ a set of k colors. Let $P\left(G, C_{k}\right)$ be the CNF formula produced by applying your encoding from Problems 6-7 to the graph G and the coloring C_{k}. As before, we use p_{v}^{c} to denote the propositional variable indicating that the vertex $v \in V$ has the color $c \in C_{k}$.
10. (5 points) Explain how to create a Partial Weighted MaxSAT instance $P_{\mathrm{opt}}(G)$ such that every solution to $P_{\text {opt }}(G)$ represents a valid χ-coloring of G where χ is the chromatic number of G (i.e., the smallest possible number of colors needed to color G).
Your encoding of $P_{\mathrm{opt}}(G)$ may use $P\left(G, C_{k}\right)$ for at most one k of your choosing. So, $P_{\mathrm{opt}}(G)$ cannot use, for example, both $P\left(G, C_{1}\right)$ and $P\left(G, C_{2}\right)$.
Write down $P_{\mathrm{opt}}(G)$ by specifying the set H of hard clauses, the set S of soft clauses, and the function $w: S \rightarrow \mathbb{Z}^{+}$that assigns a positive weight to each soft clause in S.

$$
\begin{aligned}
H & =\bigwedge \ldots \\
S & =\bigwedge \ldots \\
w(s) & =\ldots \text { for each clause } s \in S
\end{aligned}
$$

11. (5 points) Explain how to create a Pseudo-Boolean Optimization instance $P_{\mathrm{opt}}(G)$ such that every solution to $P_{\mathrm{opt}}(G)$ represents a valid χ-coloring of G where χ is the chromatic number of G (i.e., the smallest possible number of colors needed to color G).
To create $P_{\mathrm{opt}}(G)$, observe that every CNF instance can be transformed into a set of equivalent pseudoboolean constraints. To apply this observation, explain how to do the transformation.
As before, your encoding of $P_{\mathrm{opt}}(G)$ may use the pseudo-boolean equivalent of $P\left(G, C_{k}\right)$ for at most one k of your choosing.
Write down $P_{\mathrm{opt}}(G)$ by specifying the pseudo-boolean constraints to solve and the linear function to minimize:

$$
\begin{aligned}
\operatorname{minimize} & \sum \ldots \\
\text { subject to } & \bigwedge \ldots
\end{aligned}
$$

