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Program Synthesis



Today

Last lecture
• Solvers as angelic runtime oracle 

Today  
• Program synthesis:  computers programming computers

Reminders
• HW3 is due tonight.

• Demo day logistics:  8 min per group, all members should present. to
pi

cs
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∃ P. ∀ x.  φ(x, P(x))
Find a program P 
that satisfies the 
specification φ on all 
inputs.

φ may be a formula, a 
reference 
implementation, input /
output pairs, traces, 
demonstrations, etc.

Synthesis improves 
• Productivity (when 

writing φ is easier 
than writing P).

• Correctness (when 
verifying φ is easier 
than verifying P).
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FlashFillSPIRAL

http://research.microsoft.com/en-us/um/people/sumitg/flashfill.html
http://www.spiral.net/


Deductive synthesis with axioms and E-graphs

Denali Superoptimizer 
[Joshi, Nelson, 

Randall, PLDI’02]
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http://dl.acm.org/citation.cfm?id=512566
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implementation.

Optimal (lowest cost) 
program P that is 
equivalent to φ on all 
inputs (values of reg6).

Denali Superoptimizer 
[Joshi, Nelson, 

Randall, PLDI’02]

Two kinds of axioms:

• Instruction semantics.

• Algebraic properties of functions 
and relations used for specifying 
instruction semantics.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566


∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

Deductive synthesis with axioms and E-graphs

reg6 * 4 + 1 s4addl(reg6, 1)

Specification φ, given as a 
reference 
implementation.

Optimal (lowest cost) 
program P that is 
equivalent to φ on all 
inputs (values of reg6).

Denali Superoptimizer 
[Joshi, Nelson, 

Randall, PLDI’02]

Two kinds of axioms:

• Instruction semantics.

• Algebraic properties of functions 
and relations used for specifying 
instruction semantics.

1. Construct an E-graph.

2. Use a SAT solver to 
search the E-graph for 
a K-cycle program.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566
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Deductive synthesizer
• Non-deterministic.

• Searches all correct rewrites for one that is 
optimal.

Compiler
• Deterministic.

• Lowers a source program into a target program 
using a fixed sequence of rewrite steps.

Deductive synthesis versus compilation

reg6

*

4

+

1

2

*

2

2

<<
s4addl

reg6 * 4 + 1

reg6 << 2 + 1
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Inductive syntax-guided synthesis

CEGIS:  
Counterexample-Guided 

Inductive Synthesis
[Solar-Lezama et al, 

ASPLOS'06]

expr :=  
 const | reg6 |  
 s4addl(expr, expr) |   
 …

A partial or multimodal 
specification φ of the 
desired program (e.g., 
assertions, i/o pairs).

reg6 * 4 + 1

A syntactic sketch (e.g., a grammar) 
describing the shape of the desired 
program P.

This defines the space of candidate 
programs to search.  Can be fine-
tuned for better performance.

s4addl(reg6, 1)

A program P from the 
given space of candidates 
that satisfies φ on all 
(usually bounded) inputs.

Guess a program that works 
on a finite set of inputs, verify 
it, and learn from bad guesses.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566
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Searches for an 
input xi+i on which P 
violates φ.

Usually a solver, but 
can be a test suite, 
end-user, etc.

Overview of CEGIS

Specification φ

Sketch S

Fail P

no 
counterexample

P ∈ S s.t. ⋀i φ(xi, P(xi))

Searches for a program P 
∈ S that satisfies φ on all 
inputs xi seen so far.

xi+1 

Any search algorithm:  
e.g., a solver, enumerative 
search, stochastic search.
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• Replace each ?? with a  
fresh symbolic constant.

• Translate the resulting 
problem to constraints 
w.r.t. the current inputs.

• If SAT, convert the model 
to a program P.

Synthesizing programs with a solver

x << ??

x * 4

0, 1, 2
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(2 << n = 8)n

x << 2
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Enumeration-based 
synthesis

A candidate 
program consistent 
with current inputs.

Synthesizing programs with enumerative search

x * 4

expr :=  
 0 | 1 | 2 | x |  
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 2
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• Iteratively construct all 
programs of size K until 
one is consistent with 
the current inputs.

• If two programs produce 
the same output on all 
current inputs, keep just 
one of the two. 

Synthesizing programs with enumerative search
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• Iteratively construct all 
programs of size K until 
one is consistent with 
the current inputs.

• If two programs produce 
the same output on all 
current inputs, keep just 
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K=1: 0, 1, 2, x

• Iteratively construct all 
programs of size K until 
one is consistent with 
the current inputs.

• If two programs produce 
the same output on all 
current inputs, keep just 
one of the two. 

Synthesizing programs with enumerative search
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expr :=  
 0 | 1 | 2 | x |  
 expr << expr

[Udupa et al, PLDI'13]
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K=1: 0, 1, 2, x

K=2: 1 << 2, 2 << 2,                                     
        x << 1,  x << 2

• Iteratively construct all 
programs of size K until 
one is consistent with 
the current inputs.

• If two programs produce 
the same output on all 
current inputs, keep just 
one of the two. 

Synthesizing programs with enumerative search

x * 4

expr :=  
 0 | 1 | 2 | x |  
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 2
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Stochastic synthesis

Synthesizing programs with stochastic search

A candidate 
program consistent 
with current inputs.

x * 4

0, 1, 2

expr :=  
 0 | 1 | 2 | x |  
 expr << expr

[Schkufza et al, ASPLOS'13]

http://dl.acm.org/citation.cfm?id=2451150


• Use Metropolis-Hastings 
to sample expressions.

• Mutate the current 
candidate program and 
keep the mutation with 
probability proportional 
to its correctness w.r.t. 
the current inputs.

Synthesizing programs with stochastic search

A candidate 
program consistent 
with current inputs.

x * 4

0, 1, 2

expr :=  
 0 | 1 | 2 | x |  
 expr << expr

[Schkufza et al, ASPLOS'13]

http://dl.acm.org/citation.cfm?id=2451150




Thanks for a great quarter!


