
CSE507
Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

Program Synthesis

Today

Last lecture
• Solvers as angelic runtime oracle

Today
• Program synthesis: computers programming computers

Reminders
• HW3 is due tonight.

• Demo day logistics: 8 min per group, all members should present. to
pi

cs

The program synthesis problem

∃ P. ∀ x. φ(x, P(x))
Find a program P
that satisfies the
specification φ on all
inputs.

The program synthesis problem

∃ P. ∀ x. φ(x, P(x))
Find a program P
that satisfies the
specification φ on all
inputs.

φ may be a formula, a
reference
implementation, input /
output pairs, traces,
demonstrations, etc.

The program synthesis problem

∃ P. ∀ x. φ(x, P(x))
Find a program P
that satisfies the
specification φ on all
inputs.

φ may be a formula, a
reference
implementation, input /
output pairs, traces,
demonstrations, etc.

Synthesis improves
• Productivity (when

writing φ is easier
than writing P).

• Correctness (when
verifying φ is easier
than verifying P).

Synthesis as a search problem.
Synthesis as a problem in

deductive theorem proving.

Two kinds of program synthesis

∃ P. ∀ x. φ(x, P(x))

Synthesis as a search problem.

Inductive (syntax-guided)
synthesis Synthesis as a problem in

deductive theorem proving.

Deductive (classic) synthesis

Two kinds of program synthesis

∃ P. ∀ x. φ(x, P(x))

Synthesis as a search problem.

Inductive (syntax-guided)
synthesis Synthesis as a problem in

deductive theorem proving.

Deductive (classic) synthesis

Derive the program P from the
constructive proof of the
theorem ∀ x. ∃ y. φ(y, x).

Two kinds of program synthesis

∃ P. ∀ x. φ(x, P(x))

Synthesis as a search problem.

Inductive (syntax-guided)
synthesis

Discover the program P by
searching a restricted space of
candidate programs for one that
satisfies φ on all inputs.

Synthesis as a problem in
deductive theorem proving.

Deductive (classic) synthesis

Derive the program P from the
constructive proof of the
theorem ∀ x. ∃ y. φ(y, x).

Two kinds of program synthesis

∃ P. ∀ x. φ(x, P(x))

Synthesis as a search problem.

Inductive (syntax-guided)
synthesis

Discover the program P by
searching a restricted space of
candidate programs for one that
satisfies φ on all inputs.

Synthesis as a problem in
deductive theorem proving.

Deductive (classic) synthesis

Derive the program P from the
constructive proof of the
theorem ∀ x. ∃ y. φ(y, x).

Two kinds of program synthesis

∃ P. ∀ x. φ(x, P(x))

FlashFillSPIRAL

http://research.microsoft.com/en-us/um/people/sumitg/flashfill.html
http://www.spiral.net/

Deductive synthesis with axioms and E-graphs

Denali Superoptimizer
[Joshi, Nelson,

Randall, PLDI’02]

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Deductive synthesis with axioms and E-graphs

reg6 * 4 + 1

Specification φ, given as a
reference
implementation.

Denali Superoptimizer
[Joshi, Nelson,

Randall, PLDI’02]

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Deductive synthesis with axioms and E-graphs

reg6 * 4 + 1 s4addl(reg6, 1)

Specification φ, given as a
reference
implementation.

Optimal (lowest cost)
program P that is
equivalent to φ on all
inputs (values of reg6).

Denali Superoptimizer
[Joshi, Nelson,

Randall, PLDI’02]

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

Deductive synthesis with axioms and E-graphs

reg6 * 4 + 1 s4addl(reg6, 1)

Specification φ, given as a
reference
implementation.

Optimal (lowest cost)
program P that is
equivalent to φ on all
inputs (values of reg6).

Denali Superoptimizer
[Joshi, Nelson,

Randall, PLDI’02]

Two kinds of axioms:

• Instruction semantics.

• Algebraic properties of functions
and relations used for specifying
instruction semantics.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

Deductive synthesis with axioms and E-graphs

reg6 * 4 + 1 s4addl(reg6, 1)

Specification φ, given as a
reference
implementation.

Optimal (lowest cost)
program P that is
equivalent to φ on all
inputs (values of reg6).

Denali Superoptimizer
[Joshi, Nelson,

Randall, PLDI’02]

Two kinds of axioms:

• Instruction semantics.

• Algebraic properties of functions
and relations used for specifying
instruction semantics.

1. Construct an E-graph.

2. Use a SAT solver to
search the E-graph for
a K-cycle program.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Denali by example

∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

reg6 * 4 + 1

E-graph matching

SAT

s4addl(reg6, 1)

Denali by example

∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

reg6 * 4 + 1

E-graph matching

SAT

s4addl(reg6, 1)

reg6

*

4

+

1

Denali by example

∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

reg6 * 4 + 1

E-graph matching

SAT

s4addl(reg6, 1)

reg6

*

4

+

1

2

*

2

Denali by example

∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

reg6 * 4 + 1

E-graph matching

SAT

s4addl(reg6, 1)

reg6

*

4

+

1

2

*

2

2

<<

Denali by example

∀ k, n. 2n = 2**n

∀ k, n. k*2n = k << n

∀ k, n. k*4 + n = s4addl(k, n)

…

reg6 * 4 + 1

E-graph matching

SAT

s4addl(reg6, 1)

reg6

*

4

+

1

2

*

2

2

<<
s4addl

Deductive synthesizer
• Non-deterministic.

• Searches all correct rewrites for one that is
optimal.

Compiler
• Deterministic.

• Lowers a source program into a target program
using a fixed sequence of rewrite steps.

Deductive synthesis versus compilation

reg6

*

4

+

1

2

*

2

2

<<
s4addl

reg6 * 4 + 1

reg6 << 2 + 1

Deductive synthesis versus inductive synthesis

Deductive synthesis

• Efficient and provably correct: thanks
to the semantics-preserving rules,
only correct programs are explored.

• Requires sufficient axiomatization of
the domain.

• Requires complete specifications to
seed the derivation.

∃ P. ∀ x. φ(x, P(x))

Deductive synthesis versus inductive synthesis

Inductive synthesis

• Works with multi-modal and partial
specifications.

• Requires no axioms.

• But often at the cost of lower
efficiency and weaker (bounded)
guarantees on the correctness/
optimality of synthesized code.

Deductive synthesis

• Efficient and provably correct: thanks
to the semantics-preserving rules,
only correct programs are explored.

• Requires sufficient axiomatization of
the domain.

• Requires complete specifications to
seed the derivation.

∃ P. ∀ x. φ(x, P(x))

Inductive syntax-guided synthesis

CEGIS:
Counterexample-Guided

Inductive Synthesis
[Solar-Lezama et al,

ASPLOS'06]

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Inductive syntax-guided synthesis

CEGIS:
Counterexample-Guided

Inductive Synthesis
[Solar-Lezama et al,

ASPLOS'06]

A partial or multimodal
specification φ of the
desired program (e.g.,
assertions, i/o pairs).

reg6 * 4 + 1

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Inductive syntax-guided synthesis

CEGIS:
Counterexample-Guided

Inductive Synthesis
[Solar-Lezama et al,

ASPLOS'06]

expr :=
 const | reg6 |
 s4addl(expr, expr) |
 …

A partial or multimodal
specification φ of the
desired program (e.g.,
assertions, i/o pairs).

reg6 * 4 + 1

A syntactic sketch (e.g., a grammar)
describing the shape of the desired
program P.

This defines the space of candidate
programs to search. Can be fine-
tuned for better performance.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Inductive syntax-guided synthesis

CEGIS:
Counterexample-Guided

Inductive Synthesis
[Solar-Lezama et al,

ASPLOS'06]

expr :=
 const | reg6 |
 s4addl(expr, expr) |
 …

A partial or multimodal
specification φ of the
desired program (e.g.,
assertions, i/o pairs).

reg6 * 4 + 1

A syntactic sketch (e.g., a grammar)
describing the shape of the desired
program P.

This defines the space of candidate
programs to search. Can be fine-
tuned for better performance.

s4addl(reg6, 1)

A program P from the
given space of candidates
that satisfies φ on all
(usually bounded) inputs.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Inductive syntax-guided synthesis

CEGIS:
Counterexample-Guided

Inductive Synthesis
[Solar-Lezama et al,

ASPLOS'06]

expr :=
 const | reg6 |
 s4addl(expr, expr) |
 …

A partial or multimodal
specification φ of the
desired program (e.g.,
assertions, i/o pairs).

reg6 * 4 + 1

A syntactic sketch (e.g., a grammar)
describing the shape of the desired
program P.

This defines the space of candidate
programs to search. Can be fine-
tuned for better performance.

s4addl(reg6, 1)

A program P from the
given space of candidates
that satisfies φ on all
(usually bounded) inputs.

Guess a program that works
on a finite set of inputs, verify
it, and learn from bad guesses.

http://dl.acm.org/citation.cfm?id=512566
http://dl.acm.org/citation.cfm?id=512566

Overview of CEGIS

Specification φ

Sketch S
Synthesizer Verifier

Overview of CEGIS

Specification φ

Sketch S
Synthesizer Verifier

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

Overview of CEGIS

Specification φ

Sketch S
Synthesizer Verifier

Fail

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

Searches for an
input xi+i on which P
violates φ.

Overview of CEGIS

Specification φ

Sketch S
Synthesizer Verifier

Fail

P ∈ S s.t. ⋀i φ(xi, P(xi))

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

Searches for an
input xi+i on which P
violates φ.

Overview of CEGIS

Specification φ

Sketch S
Synthesizer Verifier

Fail P

no
counterexample

P ∈ S s.t. ⋀i φ(xi, P(xi))

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

Searches for an
input xi+i on which P
violates φ.

Overview of CEGIS

Specification φ

Sketch S
Synthesizer Verifier

Fail P

no
counterexample

P ∈ S s.t. ⋀i φ(xi, P(xi))

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

xi+1

Searches for an
input xi+i on which P
violates φ.

Overview of CEGIS

Specification φ

Sketch S

Fail P

no
counterexample

P ∈ S s.t. ⋀i φ(xi, P(xi))

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

xi+1

Searches for an
input xi+i on which P
violates φ.

Usually a solver, but
can be a test suite,
end-user, etc.

Overview of CEGIS

Specification φ

Sketch S

Fail P

no
counterexample

P ∈ S s.t. ⋀i φ(xi, P(xi))

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

xi+1

Searches for an
input xi+i on which P
violates φ.

Usually a solver, but
can be a test suite,
end-user, etc.

Overview of CEGIS

Specification φ

Sketch S

Fail P

no
counterexample

P ∈ S s.t. ⋀i φ(xi, P(xi))

Searches for a program P
∈ S that satisfies φ on all
inputs xi seen so far.

xi+1

Any search algorithm:
e.g., a solver, enumerative
search, stochastic search.

Logical encoding of
the synthesis
problem for the
inputs 0, 1, 2.

Solver-based synthesis

Synthesizing programs with a solver

x << ??

x * 4

0, 1, 2

[Solar-Lezama et al, ASPLOS'06]

http://dl.acm.org/citation.cfm?id=512566

Logical encoding of
the synthesis
problem for the
inputs 0, 1, 2.

• Replace each ?? with a
fresh symbolic constant.

• Translate the resulting
problem to constraints
w.r.t. the current inputs.

• If SAT, convert the model
to a program P.

Synthesizing programs with a solver

x << ??

x * 4

0, 1, 2

n

[Solar-Lezama et al, ASPLOS'06]

http://dl.acm.org/citation.cfm?id=512566

• Replace each ?? with a
fresh symbolic constant.

• Translate the resulting
problem to constraints
w.r.t. the current inputs.

• If SAT, convert the model
to a program P.

Synthesizing programs with a solver

x << ??

x * 4

0, 1, 2

(0 << n = 0) ∧

(1 << n = 4) ∧

(2 << n = 8)n

[Solar-Lezama et al, ASPLOS'06]

http://dl.acm.org/citation.cfm?id=512566

• Replace each ?? with a
fresh symbolic constant.

• Translate the resulting
problem to constraints
w.r.t. the current inputs.

• If SAT, convert the model
to a program P.

Synthesizing programs with a solver

x << ??

x * 4

0, 1, 2

(0 << n = 0) ∧

(1 << n = 4) ∧

(2 << n = 8)n

x << 2
[Solar-Lezama et al, ASPLOS'06]

http://dl.acm.org/citation.cfm?id=512566

Enumeration-based
synthesis

A candidate
program consistent
with current inputs.

Synthesizing programs with enumerative search

x * 4

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 2

http://dl.acm.org/citation.cfm?id=512566

A candidate
program consistent
with current inputs.

• Iteratively construct all
programs of size K until
one is consistent with
the current inputs.

• If two programs produce
the same output on all
current inputs, keep just
one of the two.

Synthesizing programs with enumerative search

x * 4

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 2

http://dl.acm.org/citation.cfm?id=512566

• Iteratively construct all
programs of size K until
one is consistent with
the current inputs.

• If two programs produce
the same output on all
current inputs, keep just
one of the two.

Synthesizing programs with enumerative search

x * 4

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Udupa et al, PLDI'13]

K=1: 0

0, 1, 2

http://dl.acm.org/citation.cfm?id=512566

• Iteratively construct all
programs of size K until
one is consistent with
the current inputs.

• If two programs produce
the same output on all
current inputs, keep just
one of the two.

Synthesizing programs with enumerative search

x * 4

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 20, 1, 2

http://dl.acm.org/citation.cfm?id=512566

• Iteratively construct all
programs of size K until
one is consistent with
the current inputs.

• If two programs produce
the same output on all
current inputs, keep just
one of the two.

Synthesizing programs with enumerative search

x * 4

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 2

http://dl.acm.org/citation.cfm?id=512566

K=1: 0, 1, 2, x

• Iteratively construct all
programs of size K until
one is consistent with
the current inputs.

• If two programs produce
the same output on all
current inputs, keep just
one of the two.

Synthesizing programs with enumerative search

x * 4

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 2

http://dl.acm.org/citation.cfm?id=512566

K=1: 0, 1, 2, x

K=2: 1 << 2, 2 << 2,  
 x << 1, x << 2

• Iteratively construct all
programs of size K until
one is consistent with
the current inputs.

• If two programs produce
the same output on all
current inputs, keep just
one of the two.

Synthesizing programs with enumerative search

x * 4

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Udupa et al, PLDI'13]

0, 1, 2

http://dl.acm.org/citation.cfm?id=512566

Stochastic synthesis

Synthesizing programs with stochastic search

A candidate
program consistent
with current inputs.

x * 4

0, 1, 2

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Schkufza et al, ASPLOS'13]

http://dl.acm.org/citation.cfm?id=2451150

• Use Metropolis-Hastings
to sample expressions.

• Mutate the current
candidate program and
keep the mutation with
probability proportional
to its correctness w.r.t.
the current inputs.

Synthesizing programs with stochastic search

A candidate
program consistent
with current inputs.

x * 4

0, 1, 2

expr :=
 0 | 1 | 2 | x |
 expr << expr

[Schkufza et al, ASPLOS'13]

http://dl.acm.org/citation.cfm?id=2451150

Thanks for a great quarter!

