Program Synthesis

Emina Torlak
emina@cs.washington.edu
Today

Last lecture
 • Solvers as angelic runtime oracle

Today
 • Program synthesis: computers programming computers

Reminders
 • HW3 is due tonight.
 • Demo day logistics: 8 min per group, all members should present.
The program synthesis problem

$$\exists P. \forall x. \varphi(x, P(x))$$

Find a program P that satisfies the specification φ on all inputs.
The program synthesis problem

∃ P. ∀ x. φ(x, P(x))

φ may be a formula, a reference implementation, input / output pairs, traces, demonstrations, etc.

Find a program P that satisfies the specification φ on all inputs.
The program synthesis problem

\[\exists P . \forall x. \varphi(x, P(x)) \]

\(\varphi\) may be a formula, a reference implementation, input / output pairs, traces, demonstrations, etc.

Synthesis improves

- Productivity (when writing \(\varphi\) is easier than writing \(P\)).
- Correctness (when verifying \(\varphi\) is easier than verifying \(P\)).

Find a program \(P\) that satisfies the specification \(\varphi\) on all inputs.
Two kinds of program synthesis

Synthesis as a problem in deductive theorem proving.

$$\exists P \forall x. \varphi(x, P(x))$$

Synthesis as a search problem.
Two kinds of program synthesis

Two kinds of program synthesis:

- **Deductive (classic) synthesis**
- **Inductive (syntax-guided) synthesis**

Formally:

\[\exists P. \forall x. \varphi(x, P(x)) \]
Two kinds of program synthesis

Deductive (classic) synthesis

Derive the program P from the constructive proof of the theorem ∀ x. ∃ y. φ(y, x).

Inductive (syntax-guided) synthesis

∃ P. ∀ x. φ(x, P(x))
Two kinds of program synthesis

- **Deductive (classic) synthesis**
 Derive the program P from the constructive proof of the theorem $\forall x. \exists y. \varphi(y, x)$.

- **Inductive (syntax-guided) synthesis**
 Discover the program P by searching a restricted space of candidate programs for one that satisfies φ on all inputs.

\[\exists P. \forall x. \varphi(x, P(x)) \]
Two kinds of program synthesis

Deductive (classic) synthesis

Derive the program P from the constructive proof of the theorem $\forall x. \exists y. \varphi(y, x)$.

Inductive (syntax-guided) synthesis

Discover the program P by searching a restricted space of candidate programs for one that satisfies φ on all inputs.

\[\exists P. \forall x. \varphi(x, P(x)) \]
Deductive synthesis with axioms and E-graphs

Denali Superoptimizer
[Joshi, Nelson, Randall, PLDI’02]
Deductive synthesis with axioms and E-graphs

Specification \(\varphi \), given as a reference implementation.

\[\text{reg6} \times 4 + 1 \]

Denali Superoptimizer

[Joshi, Nelson, Randall, PLDI’02]
Deductive synthesis with axioms and E-graphs

Specification φ, given as a reference implementation.

$\text{reg6} \times 4 + 1$

Denali Superoptimizer
[Joshi, Nelson, Randall, PLDI’02]

Optimal (lowest cost) program P that is equivalent to φ on all inputs (values of reg6).
Deductive synthesis with axioms and E-graphs

Specification φ, given as a reference implementation.

reg6 = 4 * 4 + 1

Denali Superoptimizer [Joshi, Nelson, Randall, PLDI’02]

Optimal (lowest cost) program P that is equivalent to φ on all inputs (values of reg6).

Two kinds of axioms:
- Instruction semantics.
- Algebraic properties of functions and relations used for specifying instruction semantics.

$\forall k, n. 2^n = 2^{**n}$
$\forall k, n. k*2^n = k << n$
$\forall k, n. k*4 + n = s4addl(k, n)$

...
Deductive synthesis with axioms and E-graphs

1. Construct an E-graph.
2. Use a SAT solver to search the E-graph for a K-cycle program.

Optimal (lowest cost) program P that is equivalent to φ on all inputs (values of reg6).

- Instruction semantics.
- Algebraic properties of functions and relations used for specifying instruction semantics.

Two kinds of axioms:

- $\forall k, n. 2^n = 2^{**n}$
- $\forall k, n. k*2^n = k << n$
- $\forall k, n. k*4 + n = s4addl(k, n)$
- ...
Denali by example

\[\forall k, n. \ 2^n = 2^{k \cdot n} \]

\[\forall k, n. \ k \cdot 2^n = k << n \]

\[\forall k, n. \ k \cdot 4 + n = s4addl(k, n) \]

...
Denali by example

\[\forall k, n. 2^n = 2^{kn} \]
\[\forall k, n. k \cdot 2^n = k \ll n \]
\[\forall k, n. k \cdot 4 + n = \text{s4addl}(k, n) \]

\[\text{reg6} \times 4 + 1 \]

E-graph matching

\[\text{sat} \]

\[\text{s4addl(reg6, 1)} \]
Denali by example

\[
\forall k, n. 2^n = 2^{**n}
\]

\[
\forall k, n. k*2^n = k << n
\]

\[
\forall k, n. k*4 + n = \text{s4addl}(k, n)
\]

...
Denali by example

\[\forall k, n. 2^n = 2^{**n} \]
\[\forall k, n. k*2^n = k \ll n \]
\[\forall k, n. k*4 + n = s4add\!\!\!\!l(k, n) \]

\[\text{E-graph matching} \]

\[\ll \]
\[\ast \]
\[+ \]
\[1 \]
\[2 \]
\[4 \]
\[\text{s4add}\!\!\!\!l(\text{reg}6, 1) \]
Denali by example

\[
\forall k, n. 2^n = 2^{**n}
\]

\[
\forall k, n. k*2^n = k << n
\]

\[
\forall k, n. k*4 + n = s4addl(k, n)
\]

\[
\text{reg6 } \ast 4 + 1
\]

E-graph matching

\[
s4addl
\]

\[
\text{reg6}
\]

\[
4
\]

\[
*\]

\[
1
\]

\[
<<
\]

\[
2
\]

\[
+
\]

\[
2
\]

\[
4
\]

\[
*\]

\[
2
\]

\[
2
\]

\[
s4addl(reg6, 1)
\]

SAT
Deductive synthesis versus compilation

Deductive synthesizer

- Non-deterministic.
- Searches all correct rewrites for one that is optimal.

Compiler

- Deterministic.
- Lowers a source program into a target program using a fixed sequence of rewrite steps.
Deductive synthesis versus inductive synthesis

Deductive synthesis

• Efficient and provably correct: thanks to the semantics-preserving rules, only correct programs are explored.

• Requires sufficient axiomatization of the domain.

• Requires complete specifications to seed the derivation.
Deductive synthesis versus inductive synthesis

![Formula: $\exists P. \forall x. \varphi(x, P(x))$]

Deductive synthesis
- Efficient and provably correct: thanks to the semantics-preserving rules, only correct programs are explored.
- Requires **sufficient axiomatization** of the domain.
- Requires **complete** specifications to seed the derivation.

Inductive synthesis
- Works with **multi-modal and partial specifications**.
- Requires **no axioms**.
- But often at the cost of **lower efficiency** and weaker (bounded) guarantees on the correctness/optimality of synthesized code.
Inductive syntax-guided synthesis

CEGIS:
Counterexample-Guided
Inductive Synthesis
[Solar-Lezama et al, ASPLOS'06]
Inductive syntax-guided synthesis

A partial or multimodal specification φ of the desired program (e.g., assertions, i/o pairs).

$$\text{reg6} \times 4 + 1$$

CEGIS: Counterexample-Guided Inductive Synthesis
[Solar-Lezama et al, ASPLOS'06]
Inductive syntax-guided synthesis

A partial or multimodal specification φ of the desired program (e.g., assertions, i/o pairs).

$\text{reg6} \times 4 + 1$

$\text{expr} := \text{const} | \text{reg6} | \text{s4addl}(\text{expr}, \text{expr}) | ...$

CEGIS: Counterexample-Guided Inductive Synthesis [Solar-Lezama et al, ASPLOS'06]

A syntactic sketch (e.g., a grammar) describing the shape of the desired program P.
This defines the space of candidate programs to search. Can be fine-tuned for better performance.
Inductive syntax-guided synthesis

A partial or multimodal specification φ of the desired program (e.g., assertions, i/o pairs).

```
expr ::= const | reg6 | s4addl(expr, expr) | ...
```

A syntactic sketch (e.g., a grammar) describing the shape of the desired program P.
This defines the space of candidate programs to search. Can be fine-tuned for better performance.

CEGIS: Counterexample-Guided Inductive Synthesis
[Solar-Lezama et al, ASPLOS'06]

A program P from the given space of candidates that satisfies φ on all (usually bounded) inputs.

reg6 * 4 + 1

s4addl(reg6, 1)
Inductive syntax-guided synthesis

A partial or multimodal specification ϕ of the desired program (e.g., assertions, i/o pairs).

$\text{expr} := \text{const} \mid \text{reg6} \mid \text{s4addl(expr, expr)} \mid \ldots$

Guess a program that works on a finite set of inputs, verify it, and learn from bad guesses.

A program P from the given space of candidates that satisfies ϕ on all (usually bounded) inputs.

CEGIS: Counterexample-Guided Inductive Synthesis [Solar-Lezama et al, ASPLOS'06]

A syntactic sketch (e.g., a grammar) describing the shape of the desired program P.

This defines the space of candidate programs to search. Can be fine-tuned for better performance.
Overview of CEGIS

Specification φ
Sketch S

Synthesizer
Verifier
Overview of CEGIS

Specification φ
Sketch S

Searches for a program $P \in S$ that satisfies φ on all inputs x_i seen so far.
Overview of CEGIS

Synthesizer

Verifier

Searches for a program $P \in S$ that satisfies φ on all inputs x_i seen so far.

Specification φ

Sketch S

Fail
Overview of CEGIS

Specification φ
Sketch S

Searches for a program $P \in S$ that satisfies φ on all inputs x_i seen so far.

Searches for an input x_{i+i} on which P violates φ.

$P \in S$ s.t. $\land_i \varphi(x_i, P(x_i))$

Synthesizer

Verifier

Fail
Overview of CEGIS

- Searches for a program $P \in S$ that satisfies φ on all inputs x_i seen so far.

- Searches for an input x_{i+1} on which P violates φ.

Specification φ

Sketch S

Synthesizer

$P \in S \text{ s.t. } \land_i \varphi(x_i, P(x_i))$

Verifier

- Fail
- P

no counterexample
Overview of CEGIS

Specification φ

Sketch S

Searches for a program $P \in S$ that satisfies φ on all inputs x_i seen so far.

Searches for an input x_{i+1} on which P violates φ.

$P \in S$ s.t. $\wedge_i \varphi(x_i, P(x_i))$

Synthesizer

Verifier

X_{i+1}

Fail

no counterexample

P
Searches for a program $P \in S$ that satisfies φ on all inputs x_i seen so far.

Searches for an input x_{i+1} on which P violates φ.

$P \in S$ s.t. $\land_i \varphi(x_i, P(x_i))$
Overview of CEGIS

Searches for a program $P \in S$ that satisfies φ on all inputs x_i seen so far.

Usually a solver, but can be a test suite, end-user, etc.

$P \in S \text{ s.t. } \bigwedge_i \varphi(x_i, P(x_i))$
Overview of CEGIS

Any search algorithm: e.g., a solver, enumerative search, stochastic search.

Usually a solver, but can be a test suite, end-user, etc.

Specification φ

Sketch S

$P \in S \text{ s.t. } \bigwedge_i \varphi(x_i, P(x_i))$

x_{i+1}

no counterexample

Fail

P

$P \in S$ s.t. $\bigwedge_i \varphi(x_i, P(x_i))$

x_{i+1}
Synthesizing programs with a solver

Logical encoding of the synthesis problem for the inputs 0, 1, 2.

[Solar-Lezama et al, ASPLOS'06]
Synthesizing programs with a solver

Logical encoding of the synthesis problem for the inputs 0, 1, 2.

- Replace each ?? with a fresh symbolic constant.
- Translate the resulting problem to constraints w.r.t. the current inputs.
- If SAT, convert the model to a program P.

\[x \times 4 \]
\[x \ll n \]

[Solar-Lezama et al, ASPLOS'06]
Synthesizing programs with a solver

• Replace each `??` with a fresh symbolic constant.
• Translate the resulting problem to constraints w.r.t. the current inputs.

\[\begin{align*}
x \times 4 \\
x \ll n
\end{align*} \]

\[\begin{align*}
0, 1, 2 \\
(0 \ll n = 0) \land \\
(1 \ll n = 4) \land \\
(2 \ll n = 8)
\end{align*} \]

[Solar-Lezama et al, ASPLOS'06]
Synthesizing programs with a solver

- Replace each `??` with a fresh symbolic constant.
- Translate the resulting problem to constraints w.r.t. the current inputs.
- If SAT, convert the model to a program P.

$x * 4$

$0, 1, 2$

$x << n$

$(0 << n = 0) \land (1 << n = 4) \land (2 << n = 8)$

$x << 2$

[Solar-Lezama et al, ASPLOS'06]
Synthesizing programs with enumerative search

0 → Enumeration-based synthesis → A candidate program consistent with current inputs.

$x \ast 4$

$expr := 0 \mid 1 \mid 2 \mid x \mid expr \ll expr$

[Udupa et al, PLDI'13]
Synthesizing programs with enumerative search

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

$expr := 0 | 1 | 2 | x | expr \ll expr$

[Udupa et al, PLDI'13]
Synthesizing programs with enumerative search

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

$\text{expr} := 0 \mid 1 \mid 2 \mid x \mid \text{expr} \ll \text{expr}$

[Udupa et al, PLDI'13]
Synthesizing programs with enumerative search

• Iteratively construct all programs of size K until one is consistent with the current inputs.
• If two programs produce the same output on all current inputs, keep just one of the two.

[Udupa et al, PLDI'13]
Synthesizing programs with enumerative search

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

$expr ::= 0 \mid 1 \mid 2 \mid x \mid expr \ll expr$

[Udupa et al, PLDI'13]
Synthesizing programs with enumerative search

• Iteratively construct all programs of size K until one is consistent with the current inputs.
• If two programs produce the same output on all current inputs, keep just one of the two.

$expr := 0 \mid 1 \mid 2 \mid x \mid expr \ll expr$

$K = l: 0, 1, 2, x$

[Udupa et al, PLDI'13]
Synthesizing programs with enumerative search

- Iteratively construct all programs of size K until one is consistent with the current inputs.
- If two programs produce the same output on all current inputs, keep just one of the two.

$expr := 0 \mid 1 \mid 2 \mid x \mid expr \ll expr$

$K=1: 0, 1, 2, x$

$K=2: 1 \ll 2, 2 \ll 2, x \ll 1, x \ll 2$

[Udupa et al, PLDI'13]
Synthesizing programs with stochastic search

0, 1, 2

expr :=
0 | 1 | 2 | x |
expr <= expr

0 * 4

A candidate program consistent with current inputs.

[Schkufza et al, ASPLOS'13]
Synthesizing programs with stochastic search

Use Metropolis-Hastings to sample expressions.

Mutate the current candidate program and keep the mutation with probability proportional to its correctness w.r.t. the current inputs.

A candidate program consistent with current inputs.

expr :=
0 | 1 | 2 | x |
expr << expr

[Schkufza et al, ASPLOS'13]
Thanks for a great quarter!