Computer-Aided Reasoning for Software

Reasoning about Programs II

Emina Torlak

emina@cs.washington.edu

Overview

Last week

- · Reasoning about (partial) correctness with Hoare Logic
- Reasoning about total correctness with Dafny

Today

 Automating Hoare Logic with verification condition generation—how tools like Dafny work

Recap: Imperative Programming Language (IMP)

Expression E

• $Z | V | E_1 + E_2 | E_1 * E_2$

Conditional C

• true | false | $E_1 = E_2 \mid E_1 \le E_2$

Statement S

• skip (Skip)

• abort (Abort)

V := E (Assignment)

• S₁; S₂ (Composition)

• if C then S_1 else S_2 (If)

• while C do S (While)

Recap: inference rules for Hoare logic

$$\vdash \{P\} S_1 \{R\} \vdash \{R\} S_2 \{Q\}$$

 $\vdash \{P\} S_1; S_2 \{Q\}$

$$\vdash \{P \land C\} S_1 \{Q\} \vdash \{P \land \neg C\} S_2 \{Q\}$$
$$\vdash \{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2 \{Q\}$$

$$\vdash \{Q[E/x]\} x := E\{Q\}$$

$$\vdash \{P_I\} S \{Q_I\} \quad P \Rightarrow P_I \quad Q_I \Rightarrow Q$$

$$\vdash \{P\} S \{Q\}$$

$$\vdash \{P \land C\} S \{P\}$$

$$\vdash \{P\} \text{ while C do } S \{P \land \neg C\}$$

loop invariant

Challenge: manual proof construction is tedious!

Hoare Logic proofs are highly manual:

- When to apply the rule of consequence?
- What loop invariants to use?

Challenge: manual proof construction is tedious!

```
\{x \le n\} // precondition

while (x < n) do

\{x \le n\} // loop invariant

x := x + 1
```

// postcondition

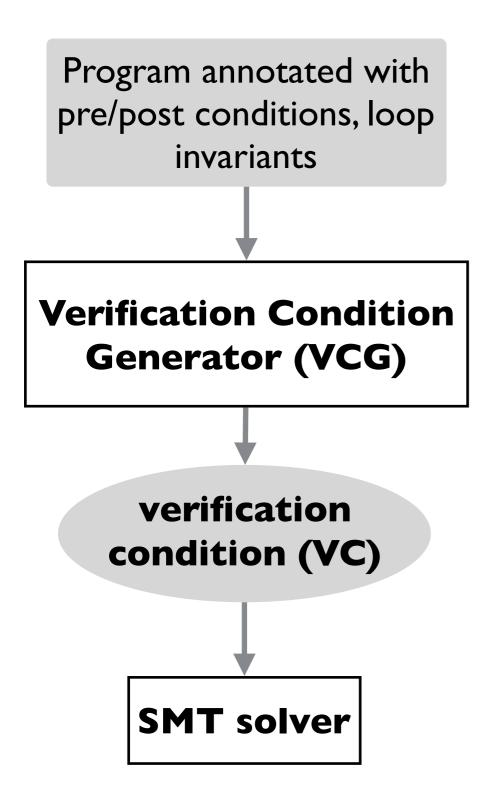
 $\{x = n\}$

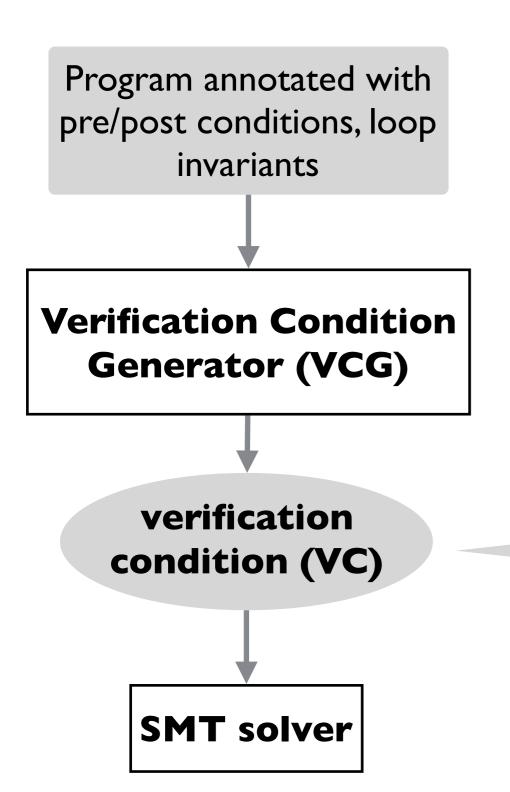
Hoare Logic proofs are highly manual:

- When to apply the rule of consequence?
- What loop invariants to use?

We can automate much of the proof process with verification condition generation!

 But loop invariants still need to be provided ...





A formula φ generated automatically from the annotated program.

The program satisfies the specification if ϕ is valid.

Program annotated with pre/post conditions, loop invariants **Intermediate Verification** Language (IVL) **Verification Condition Generator (VCG)** verification condition (VC) **SMT** solver

Program annotated with pre/post conditions, loop invariants

Intermediate Verification Language (IVL)

Verification Condition Generator (VCG)

verification condition (VC)

SMT solver

Forwards computation:

- Starting from the precondition, generate formulas to prove the postcondition.
- Based on computing strongest postconditions (sp).

Backwards computation:

- Starting from the postcondition, generate formulas to prove the precondition.
- Based on computing weakest liberal preconditions (wp).

sp(S, P)

 The strongest predicate that holds for states produced by executing S on a state satisfying P. Symbolic execution, covered in next lecture, computes SPs for finite programs (no unbounded loops).

sp(S, P)

 The strongest predicate that holds for states produced by executing S on a state satisfying P. Symbolic execution, covered in next lecture, computes SPs for finite programs (no unbounded loops).

wp(S, Q)

 The weakest predicate that guarantees Q will hold for states produced by executing S on a state satisfying that predicate. Today, we'll see how to compute weakest liberal preconditions (WP) for IMP.

sp(S, P)

 The strongest predicate that holds for states produced by executing S on a state satisfying P. Symbolic execution, covered in next lecture, computes SPs for finite programs (no unbounded loops).

wp(S, Q)

 The weakest predicate that guarantees Q will hold for states produced by executing S on a state satisfying that predicate. Today, we'll see how to compute weakest liberal preconditions (WP) for IMP.

This lets us verify partial correctness properties.

{P} S {Q} is valid if

- $P \Rightarrow wp(S, Q)$ or
- $sp(S, P) \Rightarrow Q$

VC generation with WP

Program annotated with pre/post conditions, loop invariants **Intermediate Verification** Language (IVL) **Verification Condition Generator (VCG)** verification condition (VC) **SMT** solver

VC generation with WP

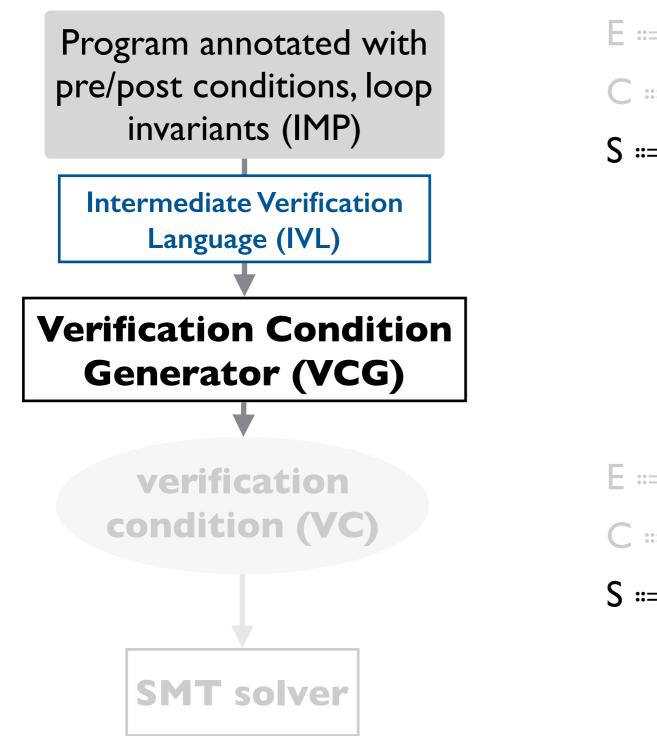
Program annotated with pre/post conditions, loop invariants **Intermediate Verification** Language (IVL) **Verification Condition Generator (VCG)** verification condition (VC) **SMT** solver

VC generation with WP: from IMP to IVL

Program annotated with pre/post conditions, loop invariants (IMP) Intermediate Verification Language (IVL) **Verification Condition Generator (VCG)** verification condition (VC) **SMT** solver

VC generation with WP: from IMP to IVL

Program annotated with pre/post conditions, loop invariants (IMP) Intermediate Verification Language (IVL) **Verification Condition Generator (VCG)** verification condition (VC) **SMT** solver



```
{P} S {Q}
E := Z |V| E + E |E * E
C := true \mid false \mid E = E \mid E \leq E
S = \text{skip} | \text{abort} | V := E | S; S |
     if C then S else S
     while C {I} do S
E := Z | V | E + E | E * E
C := true \mid false \mid E = E \mid E \leq E
S := skip | abort | V := E | S; S |
     if C then S else S
     assert C | assume C | havoc V
```

wp(S, Q):

• wp(skip, Q) = Q

- wp(skip, Q) = Q
- wp(abort, Q) = true

- wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x := E, Q) = Q[E / x]

- wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$

- wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2 , Q) = (C \rightarrow wp(S_1 , Q)) \land (\neg C \rightarrow wp(S_2 , Q))

- wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2 , Q) = (C \rightarrow wp(S_1 , Q)) \land (\neg C \rightarrow wp(S_2 , Q))
- wp(while C {|| do S, Q) = ?

wp(S, Q):

- wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2 , Q) = (C \rightarrow wp(S_1 , Q)) \land (\neg C \rightarrow wp(S_2 , Q))
- wp(while C {|} do S, Q) = X

A fixpoint! In general, cannot be expressed as a syntactic construction in terms of the postcondition.

wp(S, Q):

- wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2 , Q) = (C \rightarrow wp(S_1 , Q)) \land (\neg C \rightarrow wp(S_2 , Q))
- wp(while C {I} do S, Q) = X

A fixpoint! In general, cannot be expressed as a syntactic construction in terms of the postcondition.

while C {I} do S

```
while C {I} do S
```

Cut the loop.

```
assert l;
havoc x; ... // for each loop target x
assume l;
if C then S; assert l; assume false;
else skip;
```

```
while C {I} do S
```

Cut the loop.

wp(S, Q):

```
assert l;
havoc x; ... // for each loop target x
assume l;
if C then S; assert l; assume false;
else skip;
```

while C {I} do S

Cut the loop.

assert l;

havoc x; ... // for each loop target x

assume I;

if C then S; assert I; assume false;
 else skip;

Use loop invariants to approximate loop behavior. Then check each invariant is correct and strong enough.

wp(S, Q):

• wp(assert $C, Q) = C \wedge Q$

while C {I} do S

Cut the loop.

assert I;

havoc x; ... // for each loop target x

assume I;

if C then S; assert I; assume false;
else skip;

Use loop invariants to approximate loop behavior. Then check each invariant is correct and strong enough.

- wp(assert C, Q) = $C \land Q$
- wp(assume $C, Q) = C \rightarrow Q$

while C {I} do S

Cut the loop.

assert I;

havoc x; ... // for each loop target x

assume I;

if C then S; assert I; assume false;
 else skip;

Use loop invariants to approximate loop behavior. Then check each invariant is correct and strong enough.

- wp(assert C, Q) = $C \land Q$
- wp(assume $C, Q) = C \rightarrow Q$
- wp(havoc x, Q) = \forall x . Q

VC generation with WP: putting it all together

- wp(skip, Q) = Q
- wp(abort, Q) = true
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2 , Q) = $(C \rightarrow wp(S_1, Q)) \land (\neg C \rightarrow wp(S_2, Q))$
- wp(assert $C, Q) = C \wedge Q$
- wp(assume $C, Q) = C \rightarrow Q$
- wp(havoc x, Q) = \forall x . Q

- I. Translate IMP to IVL by cutting loops.
- 2. Compute WP for IVL.

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the following formula is valid

 $P \rightarrow wp(S_{IVL}, Q)$

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the following formula is valid

 $P \rightarrow wp(S_{IVL}, Q)$

The other direction doesn't hold because loop invariants may not be strong enough or they may be incorrect. Might get false alarms.

Summary

Today

Automating Hoare Logic with VCG based on WPs

Next lecture

Symbolic execution