A Survey of Theory Solvers

Emina Torlak

emina@cs.washington.edu

Today

Last lecture

* Introduction to Satisfiability Modulo Theories (SMT)

Today
* A quick survey of theory solvers
* An in-depth look at the core theory solver (theory of equality
and uninterpreted functions)
Reminder

» Start thinking about your project & find a partner
* Pick up HWI during OH today at 4:30-5:30 in Gates |52

Recall: Satisfiability Modulo Theories (SMT)

(un)satisfiable

x = g(y) —
2x+y <5 T 5 /Y\ SMT solver
b>>2)=c— 7 — % |
----------------- 4 | -
Z, . 4 —>» Core solver |[¢——
ali] = x - 1!
DPLL(T)
|
v v
| Theory Theory

Theories First-Order Logic solver [-++| solver |

A brief survey of common theory solvers

2x+y <5

Theory
solver

2i+j<5

X = g(y)

Core solver

Theory
solver

(b>>12)=c

Theory
solver

ali] = x

Theory
solver

A brief survey of common theory solvers

2x+y <5

Linear Real

X = g(y)

Equality and UF

2i+j<5

(b>>2) =c

Arithmetic

Linear Integer
Arithmetic

Bitvectors

ali] = x

Arrays

A brief survey of common theory solvers

2x+y <5

Linear Real
Arithmetic

X = g(y)

Equality and UF

2i+j<5

(b>>2) =c

Linear Integer
Arithmetic

Bitvectors

- Conjunctions of linear constraints over R

» Can be decided in polynomial time, but in
practice solved with the General Simplex
method (worst case exponential)

 Can also be decided with Fourier-Motzkin
elimination (exponential)

ali] = x

Arrays

A brief survey of common theory solvers

x = g(y)
Equality and UF

2x+y <5 2i+j<5 (b>>12)=c afi] = x
Linear Real Linear Integer Bitvector Arr
Arithmetic Arithmetic tVectors s

- Conjunctions of linear constraints over Z
- Branch-and-cut (based on Simplex)
- Omega Test (extension of Fourier-Motzkin)

* Small-Domain Encoding used for arbitrary
combinations of linear constraints over Z

* NP-complete

A brief survey of common theory solvers

2x+y <5

Linear Real
Arithmetic

x = g(y)
Equality and UF

2i+j<5 (b>>2)=c

Linear Integer

. . Bitvectors
Arithmetic

- Arbitrary combination of
constraints over bitvectors

- Bit blasting (reduction to SAT)

* NP-complete

ali] = x

Arrays

A brief survey of common theory solvers

2x+y <5

Linear Real
Arithmetic

X = g(y)

Equality and UF

2i+j<5

(b>>2)=c a[i] = x

Linear Integer
Arithmetic

Bitvectors Arrays

- Conjunctions of constraints over
read/write terms in the theory of arrays

 Reduce to T= satisfiability

* NP-complete (because the reduction
introduces disjunctions)

A brief survey of common theory solvers

2x+y <5

Linear Real
Arithmetic

- Conjunctions of

X = g(y)

Equality and UF

2i+j<5

(b>>2) =

Linear Integer
Arithmetic

equality constraints over
uninterpreted functions

- Congruence closure

* Polynomial time

C ali] = x

Bitvectors

Arrays

Theory of equality and UF (T-)

Signature (all symbols)
- {=,a,b,c,...,f,8...,p.q, ...}

Axioms
reflexivity: Vvx. x =x
* symmetry: VX, Y. X=y ?y=X
° transitivity: VX, ¥,Z. X=YAY=Z P> X=1Z
* congruence: VXI, ..., Xn, Y1y .., Yn. (Al<isn Xi = Yi) = f(X1, ..., Xn) = f(y1, ..., ¥n)

* congruence: VXI, ..., Xn, Y1y «+«; Yn. (Al<i=sn Xi = ¥i) = P(XI, ..., Xn) <> P(Y15 «.s Yn)

Theory of equality and UF (T-)

Signhature (all symbols)

- {=,a,bc,...,fg xX}

Axioms
reflexivity: Vvx. x =x

* symmetry: VX, Y. X=y ?y=X

Replace predicates with equality
constraints over functions:

* introduce a fresh constant T

* for each predicate p, introduce a
fresh function f;

* p(Xi, ..., Xn) ww> fo(X1, ..., Xn) =T

° transitivity: VX, ¥,Z. X=YAY=Z P> X=1Z

* congruence: VXi, ..., Xn, Yl ««s Yn. (Al<izn Xi

Xcongruence: VXI5 oees Xny Yy o ooy Yno (Al <izn Xi

=vyi) = f(xi,...,%n) = f(y1, ..., ¥n)
=Yi) = p(X1, ..., Xn) < P(YI, .-+, ¥n)

Is a conjunction of T-= literals satisfiable?

f(f(f(a))) = a A f(f(f(f(f(a))))) = a A f(a) # a

Is a conjunction of T-= literals satisfiable?

f3(a) =a Af(a)=aAnf(a) +#a

Congruence closure algorithm: example

f3a) =a Af(a) =aAnf(a) #a

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

f(a)
a f2(a)

f3a) =a Af(a) =aAnf(a) #a

f5(a) f(a)
f4(a)

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F

+ Merge the classes for t; and t;

f(a)
a f2(a)

f3a) =a A fP(a) =a A f(a) # a

f5(a) f(a)
f4(a)

Congruence closure algorithm: example

- Place each subterm of F into its own
congruence class f(a)

 For each positive literal t| =tz in F
f3a) a f2(a)
+ Merge the classes for t; and t;

f3a) =a A fP(a) =a A f(a) # a

f(a)
f(a)

Congruence closure algorithm: example

- Place each subterm of F into its own

congruence class f(a)
 For each positive literal t| =tz in F
f3a) a f2(a)
+ Merge the classes for t; and t;
- Propagate the resulting
congruences P =arf(a)=anfa *a
f>(a)

()

Congruence closure algorithm: example

o f(a)

» Place each subterm of F into its own

congruence class f(a)
 For each positive literal t| =tz in F

f3a) a f2(a)
+ Merge the classes for t; and t;
- Propagate the resulting
congruences P =arf(a)=anfa *a

f(a)

Congruence closure algorithm: example

o f(a)

» Place each subterm of F into its own

congruence class f(a)
 For each positive literal t| =tz in F

f3a) a
+ Merge the classes for t; and t;
- Propagate the resulting
congruences P =arf(a)=anfa *a

Ba) ()

Congruence closure algorithm: example

o f(a)

» Place each subterm of F into its own

congruence class f(a)
 For each positive literal t| =tz in F

f3a) a
+ Merge the classes for t; and t;
- Propagate the resulting
congruences P =arf(a)=anfa)*a

Ba) ()

Congruence closure algorithm: example

o f(a)

» Place each subterm of F into its own

congruence class f(a)
 For each positive literal t| =tz in F

+ Merge the classes for t; and t;

- Propagate the resulting

congruences P =arf(a)=anfa)*a
f>(a) f%(a)

f3a) a

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F
+ Merge the classes for t; and t;

- Propagate the resulting
congruences P =arf(a)=anfa)*a

B) () f(a)

B@) a f(a)

Congruence closure algorithm: example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F
+ Merge the classes for t; and t;

- Propagate the resulting

congruences P =arf(a)=anf(a)*a

* If F has a negative literal t| # t, with

both terms in the same congruence
f> f2 f4
class, output UNSAT () @) f)

* Otherwise, output SAT @) a f(a)

Congruence closure algorithm: example

- Place each subterm of F into its own

congruence class UNSAT
 For each positive literal t| =tz in F
+ Merge the classes for t; and t;

- Propagate the resulting

congruences P =arf(a)=anf(a)*a

* If F has a negative literal t| # t, with

both terms in the same congruence
f> f2 f4
class, output UNSAT () @) f)

* Otherwise, output SAT @) a f(a)

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F
+ Merge the classes for t; and t;

- Propagate the resulting
congruences f(x) = f(y) Ax #y

* If F has a negative literal t| # t, with
both terms in the same congruence

class, output UNSAT
* Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F

X
+ Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) = f(y) Ax #y
* If F has a negative literal t| # t, with
both terms in the same congruence
° f(x) f(y)

class, output UNSAT
* Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F
+ Merge the classes for t; and t;

- Propagate the resulting

congruences f(x) = f(y) Ax #y

* If F has a negative literal t| # t, with

both terms in the same congruence () £(y)
class, output UNSAT 4

* Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F
+ Merge the classes for t; and t;

- Propagate the resulting

congruences f(x) = f(y) Ax #y

* If F has a negative literal t| # t, with

both terms in the same congruence () f(y)
class, output UNSAT 4

* Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F

X
+ Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) = f(y) Ax #y
* If F has a negative literal t| # t, with
both terms in the same congruence
° f6) f(y)

class, output UNSAT
* Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

 For each positive literal t| =tz in F
+ Merge the classes for t; and t;

- Propagate the resulting
congruences f(x) = f(y) Ax #y

* If F has a negative literal t| # t, with

both terms in the same congruence () f(y)
class, output UNSAT 4

* Otherwise, output SAT

SAT

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

vx,y. AR(xi, yi) = R(f(x), f(y))

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

vx,y. AR(xi, yi) = R(f(x), f(y))

The equivalence class of an element s € S
under an equivalence relation R:

{s’eS|R(s,s)}

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

vx,y. AR(xi, yi) = R(f(x), f(y))

The equivalence class of an element s € S
under an equivalence relation R:

{s’eS|R(s,s)}

What is the equivalence
class of 9 under =3?

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation if for every n-ary function f

vx,y. AR(xi, yi) = R(f(x), f(y))

The equivalence class of an element s € S
under an equivalence relation R:

{s’eS|R(s,s)}

An equivalence class is called a congruence
class if R is a congruence relation.

Congruence closure algorithm: definitions

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

What is the equivalence
closure of R = {{a, b), (b, c), (d, d)}?

Congruence closure algorithm: definitions

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

What is the equivalence
closure of R = {{a, b), (b, c), (d, d)}?

RE = {{a, a), {b, b), {c, ©),{d, d)
(a, by, <b,a), <b, ¢), {c, b),
(a, 0, {c,a)}

Congruence closure algorithm: definitions

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.

The congruence closure R¢ of a
binary relation R is the smallest
congruence relation that contains R.

The congruence closure
algorithm computes the
congruence closure of the
equality relation over terms
asserted by a conjunctive
quantifier-free formula in T=,

Congruence closure algorithm: data structure

f(a,b) =a A f(f(a,b),b) # a

Congruence closure algorithm: data structure

+ Represent subterms with a DAG

f(a,b) = a A f(f(a,b),b) # a

| f

2:f

3:a 4:b

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) # a

+ Represent subterms with a DAG |: f

+ Each node has a find pointer to another
node in its congruence class (or to itself

if it is the representative) o

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) # a

+ Represent subterms with a DAG |: f

+ Each node has a find pointer to another
node in its congruence class (or to itself
if it is the representative) 5§

» Each representative has a ccp field that
stores all parents of all nodes in its
congruence class.

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) # a

2:f

[\

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) # a
» FIND returns the representative of a
node’s equivalence class by following O
find pointers until it finds a self-loop.

2:f

Congruence closure algorithm: union-find

» FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

- UNION combines equivalence classes
for nodes i and i»:

* nj,n2 < FIND(ii), FIND(i2)
* ni.find < n
* N2.CCp € Nnj.ccp U n2.ccp

* ni.ccp < &

f(a,b) = a A f(f(a,b),b) # a

2:f

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) # a

» FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

- UNION combines equivalence classes
for nodes i and i»:
L 2:f

* nj,n2 < FIND(ii), FIND(i2)
* ni.find < n

* N2.CCP + NJ|.CCp U n2.ccp

* ni.ccp < &

What is UNION(I, 2)?

Congruence closure algorithm: union-find

f(a,b) = a A f(f(a,b),b) # a

» FIND returns the representative of a
node’s equivalence class by following
find pointers until it finds a self-loop.

| f

- UNION combines equivalence classes
for nodes i and i»:
L 2:f

* nj,n2 < FIND(ii), FIND(i2)
* ni.find < n

* N2.CCP + NJ|.CCp U n2.ccp

* ni.ccp < &

What is UNION(I, 2)?

Congruence closure algorithm: congruent

f(a,b) = a A f(f(a,b),b) # a

- CONGRUENT takes as input two nodes G
and returns true iff their

* functions are the same

» corresponding arguments are in - f
the same congruence class

Congruence closure algorithm: congruent

f(a,b) = a A f(f(a,b),b) # a

- CONGRUENT takes as input two nodes G
and returns true iff their

* functions are the same

» corresponding arguments are in - f
the same congruence class

CONGRUENT(I, 2)?

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) # a
MERGE (i1 , i2)
ni, n2 « FIND(i|), FIND(i2) 0
if n| = n2 then return

Pl, P2 € nj.ccp, n2.ccp
UNION(ni, n2)
for each t,t2 € p1 X p2

if FIND(t/) # FIND(t2) A CONGRUENT(t], t2)

then MERGE(t), t2) Q

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) # a
MERGE (i1 , i2)
ni, n2 « FIND(i|), FIND(i2) 0
if n| = n2 then return

Pl, P2 € nj.ccp, n2.ccp
UNION(ni, n2)
for each t,t2 € p1 X p2

if FIND(t/) # FIND(t2) A CONGRUENT(t], t2)

then MERGE(t), t2) Q

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) # a

MERGE (i1 , i2)
ni, n2 « FIND(i|), FIND(i2) G

if n| = n2 then return
Pl, P2 € nj.ccp, n2.ccp
UNION(ni, n2) - f
for each t,t2 € p1 X p2
if FIND(t1) # FIND(t2) A CONGRUENT(ti, t2)
then MERGE(t), t2)

Congruence closure algorithm: merge

f(a,b) = a A f(f(a,b),b) # a
MERGE (i , i2)
ni,n2 < FIND(i1), FIND(in) Hi
if n| = n2 then return
Pl, P2 € nj.ccp, n2.ccp
UNION(ni, n2) - f
for each t,t2 € p1 X p2
if FIND(t1) # FIND(t2) A CONGRUENT(ti, t2)
then MERGE(t), t2)

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) # a
DECIDE (F)
construct the DAG for F’s subterms 0
forsi-t,c F
MERGE(si, ti)
forsi-tcF a
if FIND(si) = FIND(t;)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) # a
DECIDE (F)
construct the DAG for F’s subterms 0
forsi-t,c F
MERGE(si, ti)
forsi-tcF a
if FIND(si) = FIND(t;)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) # a

DECIDE (F)
construct the DAG for F’s subterms | f
forsi-ticF
MERGE(s;, ti)
forsi-tieckF £

if FIND(si) = FIND(t;)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) # a

DECIDE (F)
construct the DAG for F’s subterms | f
forsi-ticF
MERGE(s;, ti)
forsi-tieckF £

if FIND(si) = FIND(t;)) then return UNSAT
return SAT

Congruence closure algorithm: deciding T-

f(a,b) = a A f(f(a,b),b) # a

DECIDE (F)
construct the DAG for F’s subterms | f
UNSAT
forsi-ticF
MERGE(s;, ti)
forsi-tieckF £

if FIND(si) = FIND(t;)) then return UNSAT
return SAT

sSummary

Today
» A brief survey of theory solvers

 Congruence closure algorithm for deciding conjunctive T= formulas

NeXxt lecture

» Combining (decision procedures for different) theories

