Computer-Aided Reasoning for Software

Satisfiability Modulo Theories

Emina Torlak

emina@cs.washington.edu

Today

Last lecture

• Practical applications of SAT and the need for a richer logic

Today

- Introduction to Satisfiability Modulo Theories (SMT)
- Syntax and semantics of (quantifier-free) first-order logic
- Overview of key theories

Reminder

• HWI due tonight at IIpm

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow
- Parentheses: ()
- Quantifiers: \forall , \exists

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f, g
- N-ary predicates: p, q
- Variables: u, v, w

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow
- Parentheses: ()
- ¥Quantifiers: ∀,∃

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f, g
- N-ary predicates: p, q
- Variables: u, v, w

We will only consider the **quantifier-free** fragment of FOL.

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow
- Parentheses: ()
- Quantifiers: ∀,∃

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f, g
- N-ary predicates: p, q

We will only consider the **quantifier-free** fragment of FOL.

In particular, we will consider quantifier-free **ground** formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

- Connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow
- Parentheses: ()

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f, g
- N-ary predicates: p, q

- A **term** is a constant, or an nary function applied to n terms.
- An **atom** is \top , \bot , or an n-ary predicate applied to n terms.
- A **literal** is an atom or its negation.
- A (quantifier-free ground) formula is a literal or the application of logical connectives to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

- Connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow
- Parentheses: ()

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f, g
- N-ary predicates: p, q

 $isPrime(x) \rightarrow \neg isInteger(sqrt(x))$

- A **term** is a constant, or an nary function applied to n terms.
- An **atom** is \top , \bot , or an n-ary predicate applied to n terms.
- A **literal** is an atom or its negation.
- A (quantifier-free ground) formula is a literal or the application of logical connectives to formulas.

Semantics of FOL: first-order structures (U, I)

Universe

Semantics of FOL: universe

Universe

- A non-empty set of valuesFinite or (un)countably infinite

Semantics of FOL: interpretation

Universe

- A non-empty set of values
- Finite or (un)countably infinite

- Maps a constant symbol c to an element of U: $I[c] \in U$
- Maps an n-ary function symbol f to a function $f_I: U^n \rightarrow U$
- Maps an n-ary predicate symbol p to an n-ary relation $p_I \subseteq U^n$

Semantics of FOL: inductive definition

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of U: $I[c] \in U$
- Maps an n-ary function symbol f to a function $f_I:\,U^n\to U$
- Maps an n-ary predicate symbol p to an n-ary relation $p_I \subseteq U^n$

$$\begin{split} & I[f(t_1, \ldots, t_n)] = I[f](I[t_1], \ldots, I[t_n]) \\ & I[p(t_1, \ldots, t_n)] = (\langle I[t_1], \ldots, I[t_n] \rangle \in I[p]) \\ & \langle U, I \rangle \vDash \top \\ & \langle U, I \rangle \nvDash \bot \\ & \langle U, I \rangle \vDash p(t_1, \ldots, t_n) \text{ iff } I[p(t_1, \ldots, t_n)] = true \\ & \langle U, I \rangle \vDash \neg F \text{ iff } \langle U, I \rangle \nvDash F \\ & \ldots \end{split}$$

Semantics of FOL: inductive definition

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of U: $I[c] \in U$
- Maps an n-ary function symbol f to a function $f_I: U^n \rightarrow U$
- Maps an n-ary predicate symbol p to an n-ary relation $p_I \subseteq U^n$

```
\begin{split} & I[f(t_1, \ldots, t_n)] = I[f](I[t_1], \ldots, I[t_n]) \\ & I[p(t_1, \ldots, t_n)] = (\langle I[t_1], \ldots, I[t_n] \rangle \in I[p]) \\ & \langle U, I \rangle \vDash \top \\ & \langle U, I \rangle \nvDash \bot \\ & \langle U, I \rangle \nvDash \mu \\ & \langle U, I \rangle \vDash \mu f(t_1, \ldots, t_n) \text{ iff } I[p(t_1, \ldots, t_n)] = \text{true} \\ & \langle U, I \rangle \vDash \neg F \text{ iff } \langle U, I \rangle \nvDash F \\ & \ldots \end{split}
```

This is the semantics of **unsorted FOL**. SMT solvers work on **manysorted FOL**, which partitions the universe into different types or sorts, and assigns types to non-logical symbols. SMT interpretations respect these types.

Semantics of FOL: example

Universe

- A non-empty set of values
- Finite or (un)countably infinite

- Maps a constant symbol c to an element of U: $I[c] \in U$
- Maps an n-ary function symbol f to a function $f_I: U^n \rightarrow U$
- Maps an n-ary predicate symbol p to an n-ary relation $p_I \subseteq U^n$

U = {∹, ♣}
I[x] = →
I[y] = ♣
$I[f] = \{ \forall \to \Phi, \Phi \mapsto \forall \in \}$
$I[p] = \{\langle \stackrel{\scriptstyle{\downarrow}}{\not{\neg}}, \stackrel{\scriptstyle{\downarrow}}{\not{\neg}} \rangle, \langle \stackrel{\scriptstyle{\downarrow}}{\not{\neg}}, \stackrel{\scriptstyle{\bullet}}{\not{\neg}} \rangle\}$
$\langle U, I \rangle \models p(f(y), f(f(x))) ?$

Satisfiability and validity of FOL

```
F is satisfiable iff M \models F for some structure M = \langle U, I \rangle.
```

```
F is valid iff M \models F for all structures M = \langle U, I \rangle.
```

Duality of satisfiability and validity:

F is valid iff $\neg F$ is unsatisfiable.

Signature Σ_{T}

Signature Σ_T

 Set of constant, predicate, and function symbols

Signature Σ_T

• Set of constant, predicate, and function symbols

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_T
- Can also view a theory as a set of axioms over Σ_T (and T-models are the models of the theory axioms)

Signature Σ_T

• Set of constant, predicate, and function symbols

Set of T-models

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_T
- Can also view a theory as a set of axioms over Σ_T (and T-models are the models of the theory axioms)

A formula F is **satisfiable modulo T** iff $M \models F$ for some Tmodel M.

A formula F is **valid modulo T** iff $M \models F$ for all T-models M.

First-order theories: expansion

Signature Σ_T

 Set of constant, predicate, and function symbols

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_T
- Can also view a theory as a set of axioms over Σ_T (and T-models are the models of the theory axioms)

First-order theories: expansion

Signature Σ_T

 Set of constant, predicate, and function symbols

Set of T-models

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_T
- Can also view a theory as a set of axioms over Σ_T (and T-models are the models of the theory axioms)

We can **expand** a theory's signature to include additional *uninterpreted* symbols (e.g., constants).

If E_T is an expansion of Σ_T , then the T-models of E_T are the set of all possible expansions of the Tmodels of Σ_T to include interpretations for the symbols in $E_T \setminus \Sigma_T$.

Common theories

Equality (and uninterpreted functions)

• x = g(y)

Fixed-width bitvectors

• (b >> I) = c

Linear arithmetic (over R and Z)

• $2x + y \le 5$

Arrays

• a[i] = x

Theory of equality with uninterpreted functions

Signature: {=, x, y, z, ..., f, g, ..., p, q, ...}

- The binary predicate = is *interpreted*.
- All constant, function, and predicate symbols are *uninterpreted*.

Axioms

- $\forall x. x = x$
- $\forall x, y. x = y \rightarrow y = x$
- $\forall x, y, z. x = y \land y = z \rightarrow x = z$
- $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $(x_1 = y_1 \land \ldots \land x_n = y_n) \rightarrow (f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$
- $\forall x_1, ..., x_n, y_1, ..., y_n$. $(x_1 = y_1 \land ... \land x_n = y_n) \rightarrow (p(x_1, ..., x_n) \leftrightarrow p(y_1, ..., y_n))$

Deciding T=

• Conjunctions of literals modulo T= is decidable in polynomial time.

```
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    x = z;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

```
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    x = z;
    return x*x;
}
```

```
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

$$(z_1 = y_0 \land y_1 = x_0 \land x_1 = z_1 \land r_1 = x_1^* x_1) \land$$

 $(r_2 = y_0^* y_0) \land$
 $\neg (r_2 = r_1)$

```
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    x = z;
    return x*x;
}
```

```
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

$$(z_1 = y_0 \land y_1 = x_0 \land x_1 = z_1 \land r_1 = x_1^* x_1) \land$$

 $(r_2 = y_0^* y_0) \land$
 $\neg (r_2 = r_1)$

Using 32-bit integers, a SAT solver fails to return an answer in 5 min.

```
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    x = z;
    return x*x;
}
```

```
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

$$(z_1 = y_0 \land y_1 = x_0 \land x_1 = z_1 \land r_1 = mul(x_1, x_1)) \land$$

 $(r_2 = mul(y_0, y_0)) \land$
 $\neg(r_2 = r_1)$

Using T₌, an SMT solver proves unsatisfiability in a fraction of a second.

```
int fun1(int y) {
    int x;
    x = x ^ y;
    y = x ^ y;
    x = x ^ y;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

```
int fun1(int y) {
    int x;
    x = x ^ y;
    y = x ^ y;
    x = x ^ y;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

Is the uninterpreted function abstraction going to work in this case?

```
int fun1(int y) {
    int x;
    x = x ^ y;
    y = x ^ y;
    x = x ^ y;
    return x*x;
}
int fun2(int y) {
    return y*y;
```

Is the uninterpreted function abstraction going to work in this case?

No, we need the theory of fixed-width bitvectors to reason about ^ (xor).

}

Theory of fixed-width bitvectors

Signature

- Fixed-width words modeling machine ints, longs, ...
- Arithmetic operations: bvadd, bvsub, bvmul, ...
- Bitwise operations: bvand, bvor, bvnot, ...
- Comparison predicates: bvlt, bvgt, ...
- Equality: =
- Expanded with all constant symbols: x, y, z, ...

Deciding T_{BV}

• NP-complete.

Theories of linear integer and real arithmetic

Signature

- Integers (or reals)
- Arithmetic operations: multiplication by an integer (or real) number, +, -.
- Predicates: =, \leq .
- Expanded with all constant symbols: x, y, z, ...

Deciding T_{LIA} and T_{LRA}

- NP-complete for linear integer arithmetic (LIA).
- Polynomial time for linear real arithmetic (LRA).
- Polynomial time for difference logic (conjunctions of the form $x y \le c$, where c is an integer or real number).

LIA example: compiler optimization

```
for (i=1; i<=10; i++) {</pre>
  a[j+i] = a[j];
}
                                       A LIA formula that is unsatisfiable iff
                                       this transformation is valid:
int v = a[j];
for (i=1; i<=10; i++) {</pre>
  a[j+i] = v;
}
```

LIA example: compiler optimization

```
for (i=1; i<=10; i++) {
    a[j+i] = a[j];
}</pre>
```

A LIA formula that is unsatisfiable iff this transformation is valid:

$$(i \ge 1) \land (i \le 10) \land$$
$$(j + i = j)$$

int v = a[j];
for (i=1; i<=10; i++) {
 a[j+i] = v;
}</pre>

Polyhedral model

Theory of arrays

Signature

- Array operations: read, write
- Equality: =
- Expanded with all constant symbols: x, y, z, ...

Axioms

- $\forall a, i, v. read(write(a, i, v), i) = v$
- $\forall a, i, j, v. \neg(i = j) \rightarrow (read(write(a, i, v), j) = read(a, j))$
- $\forall a, b. (\forall i. read(a, i) = read(b, i)) \rightarrow a = b$

Deciding T_A

- Satisfiability problem: NP-complete.
- Used in many software verification tools to model memory.

Summary

Today

- Introduction to SMT
- Quantifier-free FOL (syntax & semantics)
- Overview of common theories

Next lecture

• Survey of theory solvers