Satisfiability Modulo Theories

Emina Torlak
emina@cs.washington.edu

Today

Last lecture

- Practical applications of SAT and the need for a richer logic

Today

- Introduction to Satisfiability Modulo Theories (SMT)
- Syntax and semantics of (quantifier-free) first-order logic
- Overview of key theories

Reminder

- HWI due tonight at IIpm

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT)

First-Order Logic

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT)

First-Order Logic

Satisfiability Modulo Theories (SMT)

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- Parentheses: ()
- Quantifiers: \forall, \exists

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f,g
- N-ary predicates: p,q
- Variables: u, v, w

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- Parentheses: ()
X Quantifiers: \forall, \exists
Non-logical symbols
We will only consider the quantifier-free fragment of FOL.
- Constants: x, y, z
- N-ary functions: f,g
- N-ary predicates: p, q
- Variables: u, v, w

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- Parentheses: ()

X Quantifiers: \forall, \exists
Non-logical symbols
We will only consider the quantifier-free fragment of FOL.

- Constants: x, y, z
- N-ary functions: f,g
- N -ary predicates: p,q

X Variables: u, v, w
In particular, we will consider quantifier-free ground formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

- Connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- Parentheses: ()

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f,g
- N -ary predicates: p, q
- A term is a constant, or an n ary function applied to n terms.
- An atom is T, \perp, or an n-ary predicate applied to n terms.
- A literal is an atom or its negation.
- A (quantifier-free ground) formula is a literal or the application of logical connectives to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

- Connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- Parentheses: ()

Non-logical symbols

- Constants: x, y, z
- N-ary functions: f,g
- N -ary predicates: p, q
- A term is a constant, or an n ary function applied to n terms.
- An atom is T, \perp, or an n-ary predicate applied to n terms.
- A literal is an atom or its negation.
- A (quantifier-free ground) formula is a literal or the application of logical connectives to formulas.
isPrime $(x) \rightarrow \neg$ isInteger $(\operatorname{sqrt}(x))$

Semantics of FOL: first-order structures 〈U, I〉

Universe

Interpretation

Semantics of FOL: universe

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

Semantics of FOL: interpretation

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of $U: I[c] \in U$
- Maps an n-ary function symbol f to a function $f_{i}: U^{n} \rightarrow U$
- Maps an n-ary predicate symbol p to an n-ary relation $\mathrm{pI} \subseteq \mathrm{Un}^{n}$

Semantics of FOL: inductive definition

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of $U: I[c] \in U$
- Maps an n-ary function symbol f to a function $f_{i}: U^{n} \rightarrow U$
- Maps an n-ary predicate symbol p to an n-ary relation $\mathrm{p} \subseteq \mathrm{Un}^{n}$

$$
\begin{aligned}
& I\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=\mathrm{I}[f]\left(\mid\left[t_{1}\right], \ldots, \mathrm{I}\left[\mathrm{t}_{n}\right]\right) \\
& \mathrm{I}\left[\mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right]=\left(\left\langle\mid\left[\mathrm{t}_{1}\right], \ldots, \mathrm{I}\left[\mathrm{t}_{n}\right]\right\rangle \in \mathrm{I}[\mathrm{p}]\right) \\
& \langle\mathrm{U}, \mathrm{I}\rangle \vDash T \\
& \langle\mathrm{U}, \mathrm{I}\rangle \not \models \perp \\
& \langle\mathrm{U}, \mathrm{I}\rangle \vDash \mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right) \text { iff } \mid\left[\mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right]=\text { true } \\
& \langle\mathrm{U}, \mathrm{I}\rangle \vDash \neg \mathrm{F} \text { iff }\langle\mathrm{U}, \mathrm{I}\rangle \not \equiv \mathrm{F}
\end{aligned}
$$

Semantics of FOL: inductive definition

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of $U: I[c] \in U$
- Maps an n-ary function symbol f to a function $f_{i}: U^{n} \rightarrow U$
- Maps an n-ary predicate symbol p to an n-ary relation $p ı \subseteq n$

$$
\begin{aligned}
& I\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=\mathrm{I}[f]\left(I\left[t_{1}\right], \ldots, \mathrm{I}\left[\mathrm{t}_{n}\right]\right) \\
& \mathrm{I}\left[\mathrm{P}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right]=\left(\left\langle\mathrm{I}\left[\mathrm{t}_{1}\right], \ldots, \mathrm{I}\left[\mathrm{t}_{n}\right]\right\rangle \in \mathrm{I}[\mathrm{p}]\right) \\
& \langle\mathrm{U}, \mathrm{I}\rangle \vDash \mathrm{T} \\
& \langle\mathrm{U}, \mathrm{I}\rangle \not \models \perp \\
& \langle\mathrm{U}, \mathrm{I}\rangle \vDash \mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right) \text { iff } \mid\left[\mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right]=\text { true } \\
& \langle\mathrm{U}, \mathrm{I}\rangle \vDash \neg \mathrm{F} \text { iff }\langle\mathrm{U}, \mathrm{I}\rangle \nLeftarrow \mathrm{F}
\end{aligned}
$$

This is the semantics of unsorted FOL. SMT solvers work on manysorted FOL, which partitions the universe into different types or sorts, and assigns types to non-logical symbols. SMT interpretations respect these types.

Semantics of FOL: example

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of $U: I[c] \in U$
- Maps an n-ary function symbol f to a function $f_{i}: U^{n} \rightarrow U$
- Maps an n-ary predicate symbol p to an n-ary relation $p ı U^{n}$

$$
\begin{aligned}
& \mathrm{U}=\{\boldsymbol{q}, \boldsymbol{*}\} \\
& \mathrm{I}[\mathrm{x}]=- \\
& \mathrm{I}[\mathrm{y}]=\boldsymbol{*}
\end{aligned}
$$

$$
\begin{aligned}
& \langle U, I\rangle \vDash p(f(y), f(f(x))) ?
\end{aligned}
$$

Satisfiability and validity of FOL

F is satisfiable iff $M \models F$ for some structure $M=\langle U, I\rangle$.
F is valid iff $M \models F$ for all structures $M=\langle U, l\rangle$.

Duality of satisfiability and validity:
F is valid iff $\neg F$ is unsatisfiable.

First-order theories

Signature $\boldsymbol{\Sigma}_{\boldsymbol{T}}$

Set of T-models

First-order theories

Signature $\boldsymbol{\Sigma}_{\mathbf{T}}$

- Set of constant, predicate, and function symbols

Set of T-models

First-order theories

Signature $\boldsymbol{\Sigma}_{\mathbf{T}}$

- Set of constant, predicate, and function symbols

Set of T-models

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_{T}
- Can also view a theory as a set of axioms over Σ_{T} (and T-models are the models of the theory axioms)

First-order theories

Signature $\boldsymbol{\Sigma}_{\mathbf{T}}$

- Set of constant, predicate, and function symbols

Set of T-models

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_{T}
- Can also view a theory as a set of axioms over Σ_{T} (and T-models are the models of the theory axioms)

A formula F is satisfiable modulo T iff $M \vDash F$ for some T model M.

A formula F is valid modulo T iff $M \vDash F$ for all T-models M.

First-order theories: expansion

Signature $\boldsymbol{\Sigma}_{\mathbf{T}}$

- Set of constant, predicate, and function symbols

Set of T-models

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_{T}
- Can also view a theory as a set of axioms over Σ_{T} (and T-models are the models of the theory axioms)

First-order theories: expansion

Signature $\boldsymbol{\Sigma}_{\mathbf{T}}$

- Set of constant, predicate, and function symbols

Set of T-models

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_{T}
- Can also view a theory as a set of axioms over Σ_{T} (and T-models are the models of the theory axioms)

We can expand a theory's signature to include additional uninterpreted symbols (e.g., constants).

If E_{T} is an expansion of Σ_{T}, then the T -models of E_{T} are the set of all possible expansions of the T models of Σ_{T} to include interpretations for the symbols in $\mathrm{E}_{\mathrm{T}} \backslash \Sigma_{\mathrm{T}}$.

Common theories

Equality (and uninterpreted functions)

- $x=g(y)$

Fixed-width bitvectors

- (b >> I) = c

Linear arithmetic (over \mathbf{R} and \mathbf{Z})

- $2 x+y \leq 5$

Arrays

- $a[i]=x$

Theory of equality with uninterpreted functions

Signature: $\{=, \mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots, f, g, \ldots, p, q, \ldots\}$

- The binary predicate $=$ is interpreted.
- All constant, function, and predicate symbols are uninterpreted.

Axioms

- $\forall x . x=x$
- $\forall x, y \cdot x=y \rightarrow y=x$
- $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
- $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n .}\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$
- $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$

Deciding $\mathbf{T}=$

- Conjunctions of literals modulo $T=$ is decidable in polynomial time.

T= example: checking program equivalence

```
int fun1(int y) {
    int x, z;
    z = y;
    y = X;
    X = Z;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

T= example: checking program equivalence

```
int fun1(int y) {
    int x, z;
    z = y;
    y = X;
    X = Z;
    return X*X;
}
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

$$
\begin{aligned}
& \left(z_{1}=y_{0} \wedge y_{1}=x_{0} \wedge x_{1}=z_{1} \wedge r_{1}=x_{1}^{*} x_{1}\right) \wedge \\
& \left(r_{2}=y_{0}{ }^{*} y_{0}\right) \wedge \\
& \neg\left(r_{2}=r_{1}\right)
\end{aligned}
$$

T= example: checking program equivalence

```
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    X = Z;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

$$
\begin{aligned}
& \left(z_{1}=y_{0} \wedge y_{1}=x_{0} \wedge x_{1}=z_{1} \wedge r_{1}=x_{1}^{*} x_{1}\right) \wedge \\
& \left(r_{2}=y_{0}{ }^{*} y_{0}\right) \wedge \\
& \neg\left(r_{2}=r_{1}\right)
\end{aligned}
$$

Using 32-bit integers, a SAT solver fails to return an answer in 5 min.

T= example: checking program equivalence

```
int fun1(int y) {
    int x, z;
    z = y;
    y = X;
    X = Z;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

A formula that is unsatisfiable iff programs are equivalent:

$$
\begin{aligned}
& \left(z_{1}=y_{0} \wedge y_{1}=x_{0} \wedge x_{1}=z_{1} \wedge r_{1}=\operatorname{mul}\left(x_{1}, x_{1}\right)\right) \wedge \\
& \left(r_{2}=\operatorname{mul}\left(y_{0}, y_{0}\right)\right) \wedge \\
& \neg\left(r_{2}=r_{1}\right)
\end{aligned}
$$

Using $\mathrm{T}_{=\text {, an }}$ SMT solver proves unsatisfiability in a fraction of a second.

T= example: checking program equivalence

```
int fun1(int y) {
    int x;
    x = x ^ y;
    y = x ^^y;
    x = x ^ y;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```


T= example: checking program equivalence

```
int fun1(int y) {
    int x;
    x = x ^ y;
    y = x ^ y;
    x = x ^ y;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

Is the uninterpreted function abstraction going to work in this case?

T= example: checking program equivalence

```
int fun1(int y) {
    int x;
    x = x ^ y;
    y = x ^ y;
    x = x ^ y;
    return x*x;
}
int fun2(int y) {
    return y*y;
}
```

Is the uninterpreted function abstraction going to work in this case?

No, we need the theory of fixed-width bitvectors to reason about ^ (xor).

Theory of fixed-width bitvectors

Signature

- Fixed-width words modeling machine ints, longs, ...
- Arithmetic operations: bvadd, bvsub, bvmul, ...
- Bitwise operations: bvand, bvor, bvnot, ...
- Comparison predicates: bvlt, bvgt, ...
- Equality: =
- Expanded with all constant symbols: x, y, z, \ldots

Deciding $\mathbf{T B V}_{B V}$

- NP-complete.

Theories of linear integer and real arithmetic

Signature

- Integers (or reals)
- Arithmetic operations: multiplication by an integer (or real) number, +, -.
- Predicates: =, \leq.
- Expanded with all constant symbols: x, y, z, \ldots

Deciding Tlia $_{\text {and }}$ Tra

- NP-complete for linear integer arithmetic (LIA).
- Polynomial time for linear real arithmetic (LRA).
- Polynomial time for difference logic (conjunctions of the form $x-y \leq c$, where c is an integer or real number).

LIA example: compiler optimization

```
for (i=1; i<=10; i++) {
    a[j+i] = a[j];
}
```

A LIA formula that is unsatisfiable iff this transformation is valid:

```
int v = a[j];
for (i=1; i<=10; i++) {
    a[j+i] = v;
}
```


LIA example: compiler optimization

```
for (i=1; i<=10; i++) {
    a[j+i] = a[j];
}
```

A LIA formula that is unsatisfiable iff this transformation is valid:

$$
\begin{aligned}
& (i \geq I) \wedge(i \leq 10) \wedge \\
& (j+i=j)
\end{aligned}
$$

```
int v = a[j];
for (i=1; i<=10; i++) {
    a[j+i] = v;
}
```


Polyhedral model

Theory of arrays

Signature

- Array operations: read, write
- Equality: =
- Expanded with all constant symbols: x, y, z, \ldots

Axioms

- $\forall \mathrm{a}, \mathrm{i}, \mathrm{v} . \operatorname{read}(\mathrm{write}(\mathrm{a}, \mathrm{i}, \mathrm{v}), \mathrm{i})=\mathrm{v}$
- $\forall \mathrm{a}, \mathrm{i}, \mathrm{j}, \mathrm{v} . \neg(\mathrm{i}=\mathrm{j}) \rightarrow(\operatorname{read}($ write $(\mathrm{a}, \mathrm{i}, \mathrm{v}), \mathrm{j})=\operatorname{read}(\mathrm{a}, \mathrm{j}))$
- $\forall \mathrm{a}, \mathrm{b} .(\forall \mathrm{i} . \operatorname{read}(\mathrm{a}, \mathrm{i})=\operatorname{read}(\mathrm{b}, \mathrm{i})) \rightarrow \mathrm{a}=\mathrm{b}$

Deciding TA

- Satisfiability problem: NP-complete.
- Used in many software verification tools to model memory.

Summary

Today

- Introduction to SMT
- Quantifier-free FOL (syntax \& semantics)
- Overview of common theories

Next lecture

- Survey of theory solvers

