
CSE507
Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

Satisfiability Modulo Theories

Today

Last lecture
• Practical applications of SAT and the need for a richer logic

Today
• Introduction to Satisfiability Modulo Theories (SMT)

• Syntax and semantics of (quantifier-free) first-order logic

• Overview of key theories

Reminder
• HW1 due tonight at 11pm to

pi
cs

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order LogicTheories

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y)

2x + y ≤ 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

Core solver

DPLL(T)

Theory
solver

Theory
solver…

Logical symbols
• Connectives: ¬, ∧, ∨, →, ↔
• Parentheses: ()
• Quantifiers: ∀, ∃

Non-logical symbols
• Constants: x, y, z
• N-ary functions: f, g
• N-ary predicates: p, q
• Variables: u, v, w

Syntax of First-Order Logic (FOL)

Logical symbols
• Connectives: ¬, ∧, ∨, →, ↔
• Parentheses: ()
• Quantifiers: ∀, ∃

Non-logical symbols
• Constants: x, y, z
• N-ary functions: f, g
• N-ary predicates: p, q
• Variables: u, v, w

We will only consider the
quantifier-free fragment of
FOL.

Syntax of First-Order Logic (FOL)

✗

Logical symbols
• Connectives: ¬, ∧, ∨, →, ↔
• Parentheses: ()
• Quantifiers: ∀, ∃

Non-logical symbols
• Constants: x, y, z
• N-ary functions: f, g
• N-ary predicates: p, q
• Variables: u, v, w

We will only consider the
quantifier-free fragment of
FOL.

Syntax of First-Order Logic (FOL)

✗

In particular, we will consider
quantifier-free ground
formulas.

✗

• A term is a constant, or an n-
ary function applied to n terms.

• An atom is ⊤, ⊥, or an n-ary
predicate applied to n terms.

• A literal is an atom or its
negation.

• A (quantifier-free ground)
formula is a literal or the
application of logical connectives
to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols
• Connectives: ¬, ∧, ∨, →, ↔
• Parentheses: ()
• Quantifiers: ∀, ∃

Non-logical symbols
• Constants: x, y, z
• N-ary functions: f, g
• N-ary predicates: p, q
• Variables: u, v, w

• A term is a constant, or an n-
ary function applied to n terms.

• An atom is ⊤, ⊥, or an n-ary
predicate applied to n terms.

• A literal is an atom or its
negation.

• A (quantifier-free ground)
formula is a literal or the
application of logical connectives
to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols
• Connectives: ¬, ∧, ∨, →, ↔
• Parentheses: ()
• Quantifiers: ∀, ∃

Non-logical symbols
• Constants: x, y, z
• N-ary functions: f, g
• N-ary predicates: p, q
• Variables: u, v, w

isPrime(x) → ¬ isInteger(sqrt(x))

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an

element of I: I[c] ∈ U
• Maps an n-ary function symbol f

to a function fI : Un → U
• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: first-order structures ⟨U, I⟩

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an

element of I: I[c] ∈ U
• Maps an n-ary function symbol f

to a function fI : Un → U
• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: universe

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an

element of U: I[c] ∈ U
• Maps an n-ary function symbol f

to a function fI : Un → U
• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: interpretation

I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])

I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])

⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true

⟨U, I⟩ ⊨ ¬F iff ⟨U, I⟩ ⊭ F

…

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an

element of U: I[c] ∈ U
• Maps an n-ary function symbol f

to a function fI : Un → U
• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: inductive definition

I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])

I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])

⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true

⟨U, I⟩ ⊨ ¬F iff ⟨U, I⟩ ⊭ F

…

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an

element of U: I[c] ∈ U
• Maps an n-ary function symbol f

to a function fI : Un → U
• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: inductive definition

This is the semantics of unsorted FOL. SMT solvers work on many-
sorted FOL, which partitions the universe into different types or sorts, and
assigns types to non-logical symbols. SMT interpretations respect these types.

U = {☀, ☁}

I[x] = ☀
I[y] = ☁
I[f] = {☀ ↦ ☁, ☁ ↦ ☀}

I[p] = {⟨☀,☀⟩, ⟨☀,☁⟩}

⟨U, I⟩ ⊨ p(f(y), f(f(x))) ?

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an

element of U: I[c] ∈ U
• Maps an n-ary function symbol f

to a function fI : Un → U
• Maps an n-ary predicate symbol

p to an n-ary relation pI ⊆ Un

Semantics of FOL: example

Satisfiability and validity of FOL

F is satisfiable iff M ⊨ F for some
structure M = ⟨U, I⟩.

F is valid iff M ⊨ F for all structures
M = ⟨U, I⟩.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models
• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and ΣT-models are
the models of the theory axioms)

First-order theories

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models
• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and ΣT-models are
the models of the theory axioms)

First-order theories

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models
• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and T-models are
the models of the theory axioms)

First-order theories

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models
• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and T-models are
the models of the theory axioms)

First-order theories

A formula F is satisfiable
modulo T iff M ⊨ F for some T-
model M.

A formula F is valid modulo T
iff M ⊨ F for all T-models M.

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models
• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and T-models are
the models of the theory axioms)

First-order theories: expansion

Signature ΣT

• Set of constant, predicate, and
function symbols

Set of T-models
• One or more (possibly infinitely

many) models that fix the
interpretation of the symbols in ΣT

• Can also view a theory as a set of
axioms over ΣT (and T-models are
the models of the theory axioms)

First-order theories: expansion

We can expand a theory’s
signature to include additional
uninterpreted symbols (e.g.,
constants).

If ET is an expansion of ΣT, then
the T-models of ET are the set of
all possible expansions of the T-
models of ΣT to include
interpretations for the symbols in
ET ∖ ΣT.

Equality (and uninterpreted functions)
• x = g(y)

Fixed-width bitvectors
• (b >> 1) = c

Linear arithmetic (over R and Z)
• 2x + y ≤ 5

Arrays
• a[i] = x

Common theories

Signature: {=, x, y, z, …, f, g, …, p, q, …}

• The binary predicate = is interpreted.
• All constant, function, and predicate symbols are uninterpreted.

Axioms
• ∀x. x = x
• ∀x, y. x = y → y = x

• ∀x, y, z. x = y ∧ y = z → x = z

• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (f(x1, …, xn) = f(y1, …, yn))
• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (p(x1, …, xn) ↔ p(y1, …, yn))

Deciding T=

• Conjunctions of literals modulo T= is decidable in polynomial time.

Theory of equality with uninterpreted functions

A formula that is unsatisfiable iff programs are
equivalent:

T= example: checking program equivalence

int fun1(int y) {
 int x, z;
 z = y;
 y = x;
 x = z;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Example from Sanjit Seshia

A formula that is unsatisfiable iff programs are
equivalent:

T= example: checking program equivalence

int fun1(int y) {
 int x, z;
 z = y;
 y = x;
 x = z;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Example from Sanjit Seshia

(z1 = y0 ∧ y1 = x0 ∧ x1 = z1 ∧ r1 = x1*x1) ∧

(r2 = y0*y0) ∧

¬(r2 = r1)

A formula that is unsatisfiable iff programs are
equivalent:

T= example: checking program equivalence

int fun1(int y) {
 int x, z;
 z = y;
 y = x;
 x = z;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Example from Sanjit Seshia

(z1 = y0 ∧ y1 = x0 ∧ x1 = z1 ∧ r1 = x1*x1) ∧

(r2 = y0*y0) ∧

¬(r2 = r1)

Using 32-bit integers, a SAT
solver fails to return an answer in
5 min.

A formula that is unsatisfiable iff programs are
equivalent:

(z1 = y0 ∧ y1 = x0 ∧ x1 = z1 ∧ r1 = mul(x1, x1)) ∧

(r2 = mul(y0, y0)) ∧

¬(r2 = r1)

Using T=, an SMT solver proves
unsatisfiability in a fraction of a
second.

T= example: checking program equivalence

int fun1(int y) {
 int x, z;
 z = y;
 y = x;
 x = z;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Example from Sanjit Seshia

T= example: checking program equivalence

int fun1(int y) {
 int x;
 x = x ^ y;
 y = x ^ y;
 x = x ^ y;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Example from Sanjit Seshia

T= example: checking program equivalence

int fun1(int y) {
 int x;
 x = x ^ y;
 y = x ^ y;
 x = x ^ y;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Example from Sanjit Seshia

Is the uninterpreted function abstraction
going to work in this case?

T= example: checking program equivalence

int fun1(int y) {
 int x;
 x = x ^ y;
 y = x ^ y;
 x = x ^ y;
 return x*x;
}

int fun2(int y) {
 return y*y;
}

Example from Sanjit Seshia

Is the uninterpreted function abstraction
going to work in this case?

No, we need the theory of fixed-width
bitvectors to reason about ^ (xor).

Signature
• Fixed-width words modeling machine ints, longs, …
• Arithmetic operations: bvadd, bvsub, bvmul, …
• Bitwise operations: bvand, bvor, bvnot, …
• Comparison predicates: bvlt, bvgt, …
• Equality: =
• Expanded with all constant symbols: x, y, z, …

Deciding TBV

• NP-complete.

Theory of fixed-width bitvectors

Signature
• Integers (or reals)
• Arithmetic operations: multiplication by an integer (or real) number, +, -.
• Predicates: =, ≤.
• Expanded with all constant symbols: x, y, z, …

Deciding TLIA and TLRA

• NP-complete for linear integer arithmetic (LIA).
• Polynomial time for linear real arithmetic (LRA).

• Polynomial time for difference logic (conjunctions of the form x - y ≤ c,
where c is an integer or real number).

Theories of linear integer and real arithmetic

A LIA formula that is unsatisfiable iff
this transformation is valid:

LIA example: compiler optimization

for (i=1; i<=10; i++) {
 a[j+i] = a[j];
}

int v = a[j];
for (i=1; i<=10; i++) {
 a[j+i] = v;
}

A LIA formula that is unsatisfiable iff
this transformation is valid:

LIA example: compiler optimization

for (i=1; i<=10; i++) {
 a[j+i] = a[j];
}

int v = a[j];
for (i=1; i<=10; i++) {
 a[j+i] = v;
}

(i ≥ 1) ∧ (i ≤ 10) ∧

(j + i = j)

Polyhedral model

Signature
• Array operations: read, write
• Equality: =
• Expanded with all constant symbols: x, y, z, …

Axioms
• ∀a, i, v. read(write(a, i, v), i) = v
• ∀a, i, j, v. ¬(i = j) → (read(write(a, i, v), j) = read(a, j))

• ∀a, b. (∀i. read(a, i) = read(b, i)) → a = b

Deciding TA

• Satisfiability problem: NP-complete.
• Used in many software verification tools to model memory.

Theory of arrays

Summary

Today
• Introduction to SMT

• Quantifier-free FOL (syntax & semantics)

• Overview of common theories

Next lecture
• Survey of theory solvers

