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Today

Last lecture
• Practical applications of SAT and the need for a richer logic

Today  
• Introduction to Satisfiability Modulo Theories (SMT)

• Syntax and semantics of (quantifier-free) first-order logic

• Overview of key theories

Reminder
• HW1 due tonight at 11pm to

pi
cs
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Logical symbols
• Connectives:  ¬, ∧, ∨, →, ↔
• Parentheses:  ()
• Quantifiers:  ∀, ∃

Non-logical symbols  
• Constants:  x, y, z
• N-ary functions:  f, g
• N-ary predicates:  p, q
• Variables:  u, v, w

Syntax of First-Order Logic (FOL)
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Non-logical symbols  
• Constants:  x, y, z
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We will only consider the 
quantifier-free fragment of 
FOL.
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In particular, we will consider 
quantifier-free ground 
formulas.

✗



• A term is a constant, or an n-
ary function applied to n terms.

• An atom is ⊤, ⊥, or an n-ary 
predicate applied to n terms.

• A literal is an atom or its 
negation.

• A (quantifier-free ground) 
formula is a literal or the 
application of logical connectives 
to formulas.

Syntax of quantifier-free ground FOL formulas
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• A term is a constant, or an n-
ary function applied to n terms.

• An atom is ⊤, ⊥, or an n-ary 
predicate applied to n terms.

• A literal is an atom or its 
negation.

• A (quantifier-free ground) 
formula is a literal or the 
application of logical connectives 
to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols
• Connectives:  ¬, ∧, ∨, →, ↔
• Parentheses:  ()
• Quantifiers:  ∀, ∃

Non-logical symbols  
• Constants:  x, y, z
• N-ary functions:  f, g
• N-ary predicates:  p, q
• Variables:  u, v, w

isPrime(x) → ¬ isInteger(sqrt(x))



Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an 

element of I:  I[c] ∈ U
• Maps an n-ary function symbol f 

to a function fI :  Un → U
• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  first-order structures ⟨U, I⟩
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Universe
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Interpretation
• Maps a constant symbol c to an 

element of U:  I[c] ∈ U
• Maps an n-ary function symbol f 

to a function fI :  Un → U
• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  interpretation



I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])

I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])

⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true

⟨U, I⟩ ⊨ ¬F iff ⟨U, I⟩ ⊭ F

…
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I[f(t1, …, tn)] = I[f](I[t1], …, I[tn])

I[p(t1, …, tn)] = (⟨I[t1], …, I[tn]⟩ ∈ I[p])

⟨U, I⟩ ⊨ ⊤

⟨U, I⟩ ⊭⊥

⟨U, I⟩ ⊨ p(t1, …, tn) iff I[p(t1, …, tn)] = true
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…

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an 

element of U:  I[c] ∈ U
• Maps an n-ary function symbol f 

to a function fI :  Un → U
• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  inductive definition

This is the semantics of unsorted FOL.  SMT solvers work on many-
sorted FOL, which partitions the universe into different types or sorts, and 
assigns types to non-logical symbols.  SMT interpretations respect these types.



U = {☀, ☁}

I[x] = ☀
I[y] = ☁
I[f] = {☀ ↦ ☁, ☁ ↦ ☀}

I[p] = {⟨☀,☀⟩, ⟨☀,☁⟩}

⟨U, I⟩ ⊨ p(f(y), f(f(x))) ?

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an 

element of U:  I[c] ∈ U
• Maps an n-ary function symbol f 

to a function fI :  Un → U
• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  example



Satisfiability and validity of FOL

F is satisfiable iff M ⊨ F for some 
structure M = ⟨U, I⟩.

F is valid iff M ⊨ F for all structures 
M = ⟨U, I⟩.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.



Signature ΣT

• Set of constant, predicate, and 
function symbols

Set of T-models
• One or more (possibly infinitely 

many) models that fix the 
interpretation of the symbols in ΣT

• Can also view a theory as a set of 
axioms over ΣT (and ΣT-models are 
the models of the theory axioms)

First-order theories
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interpretation of the symbols in ΣT

• Can also view a theory as a set of 
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A formula F is satisfiable 
modulo T iff M ⊨ F for some T-
model M.

A formula F is valid modulo T 
iff M ⊨ F for all T-models M.
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Signature ΣT

• Set of constant, predicate, and 
function symbols

Set of T-models
• One or more (possibly infinitely 

many) models that fix the 
interpretation of the symbols in ΣT

• Can also view a theory as a set of 
axioms over ΣT (and T-models are 
the models of the theory axioms)

First-order theories: expansion

We can expand a theory’s 
signature to include additional 
uninterpreted symbols (e.g., 
constants). 

If ET is an expansion of ΣT, then 
the T-models of ET are the set of 
all possible expansions of the T-
models of ΣT to include 
interpretations for the symbols in 
ET ∖ ΣT.



Equality (and uninterpreted functions)
• x = g(y)

Fixed-width bitvectors 
• (b >> 1) = c

Linear arithmetic (over R and Z) 
• 2x + y ≤ 5

Arrays
• a[i] = x 

Common theories



Signature: {=, x, y, z, …, f, g, …, p, q, …}

• The binary predicate = is interpreted.
• All constant, function, and predicate symbols are uninterpreted. 

Axioms
• ∀x.  x = x 
• ∀x, y.  x = y  → y = x

• ∀x, y, z.  x = y ∧ y = z → x = z

• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (f(x1, …, xn) = f(y1, …, yn))
• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (p(x1, …, xn) ↔ p(y1, …, yn))

Deciding T=

• Conjunctions of literals modulo T= is decidable in polynomial time.

Theory of equality with uninterpreted functions



A formula that is unsatisfiable iff programs are 
equivalent:

T= example:  checking program equivalence

int fun1(int y) { 
  int x, z; 
  z = y; 
  y = x; 
  x = z; 
  return x*x; 
} 

int fun2(int y) { 
  return y*y; 
}

Example from Sanjit Seshia
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(r2 = y0*y0) ∧

¬(r2 = r1)



A formula that is unsatisfiable iff programs are 
equivalent:

T= example:  checking program equivalence

int fun1(int y) { 
  int x, z; 
  z = y; 
  y = x; 
  x = z; 
  return x*x; 
} 

int fun2(int y) { 
  return y*y; 
}

Example from Sanjit Seshia

(z1 = y0 ∧ y1 = x0 ∧ x1 = z1 ∧ r1 = x1*x1) ∧

(r2 = y0*y0) ∧

¬(r2 = r1)

Using 32-bit integers, a SAT 
solver fails to return an answer in 
5 min. 



A formula that is unsatisfiable iff programs are 
equivalent:

(z1 = y0 ∧ y1 = x0 ∧ x1 = z1 ∧ r1 = mul(x1, x1)) ∧

(r2 = mul(y0, y0)) ∧

¬(r2 = r1)

Using T=, an SMT solver proves 
unsatisfiability in a fraction of a 
second.

T= example:  checking program equivalence

int fun1(int y) { 
  int x, z; 
  z = y; 
  y = x; 
  x = z; 
  return x*x; 
} 

int fun2(int y) { 
  return y*y; 
}

Example from Sanjit Seshia



T= example:  checking program equivalence

int fun1(int y) { 
  int x; 
  x = x ^ y; 
  y = x ^ y; 
  x = x ^ y; 
  return x*x; 
} 

int fun2(int y) { 
  return y*y; 
}

Example from Sanjit Seshia



T= example:  checking program equivalence

int fun1(int y) { 
  int x; 
  x = x ^ y; 
  y = x ^ y; 
  x = x ^ y; 
  return x*x; 
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}
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Is the uninterpreted function abstraction 
going to work in this case? 



T= example:  checking program equivalence

int fun1(int y) { 
  int x; 
  x = x ^ y; 
  y = x ^ y; 
  x = x ^ y; 
  return x*x; 
} 

int fun2(int y) { 
  return y*y; 
}

Example from Sanjit Seshia

Is the uninterpreted function abstraction 
going to work in this case? 

No, we need the theory of fixed-width 
bitvectors to reason about ^ (xor).



Signature
• Fixed-width words modeling machine ints, longs, …
• Arithmetic operations:  bvadd, bvsub, bvmul, …
• Bitwise operations:  bvand, bvor, bvnot, …
• Comparison predicates:  bvlt, bvgt, …
• Equality: =
• Expanded with all constant symbols: x, y, z, …

Deciding TBV

• NP-complete.

Theory of fixed-width bitvectors



Signature
• Integers (or reals)
• Arithmetic operations: multiplication by an integer (or real) number, +, -.
• Predicates: =, ≤.
• Expanded with all constant symbols: x, y, z, …

Deciding TLIA and TLRA

• NP-complete for linear integer arithmetic (LIA).
• Polynomial time for linear real arithmetic (LRA).

• Polynomial time for difference logic (conjunctions of the form x - y ≤ c, 
where c is an integer or real number).

Theories of linear integer and real arithmetic



A LIA formula that is unsatisfiable iff 
this transformation is valid:

LIA example:  compiler optimization

for (i=1; i<=10; i++) { 
  a[j+i] = a[j]; 
}

int v = a[j]; 
for (i=1; i<=10; i++) { 
  a[j+i] = v; 
}



A LIA formula that is unsatisfiable iff 
this transformation is valid:

LIA example:  compiler optimization

for (i=1; i<=10; i++) { 
  a[j+i] = a[j]; 
}

int v = a[j]; 
for (i=1; i<=10; i++) { 
  a[j+i] = v; 
}

(i ≥ 1) ∧ (i ≤ 10) ∧

(j + i = j)

Polyhedral model



Signature 
• Array operations: read, write
• Equality: =
• Expanded with all constant symbols: x, y, z, …

Axioms
• ∀a, i, v. read(write(a, i, v), i) = v
• ∀a, i, j, v.  ¬(i = j) → (read(write(a, i, v), j) = read(a, j))

• ∀a, b. (∀i. read(a, i) = read(b, i)) → a = b

Deciding TA

• Satisfiability problem:  NP-complete.
• Used in many software verification tools to model memory.

Theory of arrays



Summary

Today
• Introduction to SMT

• Quantifier-free FOL (syntax & semantics)

• Overview of common theories

Next lecture
• Survey of theory solvers


